422,206 research outputs found

    Probing emotional influences on cognitive control: an ALE meta-analysis of cognition emotion interactions

    Get PDF
    Increasing research documents an integration of cognitive control and affective processes. Despite a surge of interest in investigating the exact nature of this integration, no consensus has been reached on the precise neuroanatomical network involved. Using the Activation Likelihood Estimation meta-analysis method, we examined 43 functional Magnetic Resonance Imaging (fMRI) studies (total number of foci = 332; total number of participants, N =820) from the literature that have reported significant interactions between emotion and cognitive control. Meta-analytic results revealed that concurrent emotion (relative to emotionally neutral trials) consistently increased neural activation during high relative to low cognitive control conditions across studies and paradigms. Specifically, these activations emerged in regions commonly implicated in cognitive control such as the lateral prefrontal cortex (inferior frontal junction, inferior frontal gyrus), the medial prefrontal cortex, and the basal ganglia. In addition, some areas emerged during the interaction contrast that were not present during one of the main effects and included the subgenual anterior cingulate cortex and the precuneus. These data provide new evidence for a network of cognition emotion interaction within a cognitive control setting. The findings are discussed within current theories of cognitive and attentional control

    State-dependent changes of connectivity patterns and functional brain network topology in Autism Spectrum Disorder

    Get PDF
    Anatomical and functional brain studies have converged to the hypothesis that Autism Spectrum Disorders (ASD) are associated with atypical connectivity. Using a modified resting-state paradigm to drive subjects' attention, we provide evidence of a very marked interaction between ASD brain functional connectivity and cognitive state. We show that functional connectivity changes in opposite ways in ASD and typicals as attention shifts from external world towards one's body generated information. Furthermore, ASD subject alter more markedly than typicals their connectivity across cognitive states. Using differences in brain connectivity across conditions, we classified ASD subjects at a performance around 80% while classification based on the connectivity patterns in any given cognitive state were close to chance. Connectivity between the Anterior Insula and dorsal-anterior Cingulate Cortex showed the highest classification accuracy and its strength increased with ASD severity. These results pave the path for diagnosis of mental pathologies based on functional brain networks obtained from a library of mental states

    Structural MRI Correlates of Episodic Memory Processes in Parkinson's Disease Without Mild Cognitive Impairment.

    Get PDF
    BackgroundChanges in episodic memory are common early in Parkinson's disease (PD) and may be a risk factor for future cognitive decline. Although medial temporal lobe (MTL) memory and frontostriatal (FS) executive systems are thought to play different roles in distinct components of episodic memory impairment in PD, no study has investigated whether different aspects of memory functioning are differentially associated with MTL and FS volumes in nondemented patients without mild cognitive impairment (PD-woMCI).ObjectivesThe present study investigated MRI markers of different facets of memory functioning in 48 PD-woMCI patients and 42 controls.MethodsRegional volumes were measured in structures comprising the MTL and FS systems and then correlated with key indices of memory from the California Verbal Learning Test.ResultsIn PD-woMCI patients, memory was impaired only for verbal learning, which was not associated with executive, attention/working memory, or visuospatial functioning. Despite an absence of cortical atrophy, smaller right MTL volumes in patients were associated with poorer verbal learning, long delayed free recall, long delayed cued recall, and recognition memory hits and false positives. Smaller right pars triangularis (inferior frontal) volumes were also associated with poorer long delayed cued recall and recognition memory hits. These relationships were not found in controls.ConclusionsThe findings indicate that MTL volumes are sensitive to subtle changes in almost all facets of memory in PD-woMCI, whereas FS volumes are sensitive only to memory performances in cued-testing formats

    Differences in hearing acuity among “normal-hearing” young adults modulate the neural basis for speech comprehension

    Get PDF
    AbstractIn this paper, we investigate how subtle differences in hearing acuity affect the neural systems supporting speech processing in young adults. Auditory sentence comprehension requires perceiving a complex acoustic signal and performing linguistic operations to extract the correct meaning. We used functional MRI to monitor human brain activity while adults aged 18–41 years listened to spoken sentences. The sentences varied in their level of syntactic processing demands, containing either a subject-relative or object-relative center-embedded clause. All participants self-reported normal hearing, confirmed by audiometric testing, with some variation within a clinically normal range. We found that participants showed activity related to sentence processing in a left-lateralized frontotemporal network. Although accuracy was generally high, participants still made some errors, which were associated with increased activity in bilateral cingulo-opercular and frontoparietal attention networks. A whole-brain regression analysis revealed that activity in a right anterior middle frontal gyrus (aMFG) component of the frontoparietal attention network was related to individual differences in hearing acuity, such that listeners with poorer hearing showed greater recruitment of this region when successfully understanding a sentence. The activity in right aMFGs for listeners with poor hearing did not differ as a function of sentence type, suggesting a general mechanism that is independent of linguistic processing demands. Our results suggest that even modest variations in hearing ability impact the systems supporting auditory speech comprehension, and that auditory sentence comprehension entails the coordination of a left perisylvian network that is sensitive to linguistic variation with an executive attention network that responds to acoustic challenge.</jats:p

    Resting state connectivity and cognitive performance in adults with cerebral autosomal-dominant arteriopathy with subcortical infarcts and leukoencephalopathy

    Get PDF
    Cognitive impairment is an inevitable feature of cerebral autosomal-dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), affecting executive function, attention and processing speed from an early stage. Impairment is associated with structural markers such as lacunes, but associations with functional connectivity have not yet been reported. Twenty-two adults with genetically-confirmed CADASIL (11 male; aged 49.8 ± 11.2 years) underwent functional magnetic resonance imaging at rest. Intrinsic attentional/executive networks were identified using group independent components analysis. A linear regression model tested voxel-wise associations between cognitive measures and component spatial maps, and Pearson correlations were performed with mean intra-component connectivity z-scores. Two frontoparietal components were associated with cognitive performance. Voxel-wise analyses showed an association between one component cluster and processing speed (left middle temporal gyrus; peak −48, −18, −14; ZE = 5.65, pFWEcorr = 0.001). Mean connectivity in both components correlated with processing speed (r = 0.45, p = 0.043; r = 0.56, p = 0.008). Mean connectivity in one component correlated with faster Trailmaking B minus A time (r = −0.77, p &lt; 0.001) and better executive performance (r = 0.56, p = 0.011). This preliminary study provides evidence for associations between cognitive performance and attentional network connectivity in CADASIL. Functional connectivity may be a useful biomarker of cognitive performance in this population

    Mixed Initiative Systems for Human-Swarm Interaction: Opportunities and Challenges

    Full text link
    Human-swarm interaction (HSI) involves a number of human factors impacting human behaviour throughout the interaction. As the technologies used within HSI advance, it is more tempting to increase the level of swarm autonomy within the interaction to reduce the workload on humans. Yet, the prospective negative effects of high levels of autonomy on human situational awareness can hinder this process. Flexible autonomy aims at trading-off these effects by changing the level of autonomy within the interaction when required; with mixed-initiatives combining human preferences and automation's recommendations to select an appropriate level of autonomy at a certain point of time. However, the effective implementation of mixed-initiative systems raises fundamental questions on how to combine human preferences and automation recommendations, how to realise the selected level of autonomy, and what the future impacts on the cognitive states of a human are. We explore open challenges that hamper the process of developing effective flexible autonomy. We then highlight the potential benefits of using system modelling techniques in HSI by illustrating how they provide HSI designers with an opportunity to evaluate different strategies for assessing the state of the mission and for adapting the level of autonomy within the interaction to maximise mission success metrics.Comment: Author version, accepted at the 2018 IEEE Annual Systems Modelling Conference, Canberra, Australi

    Using Noninvasive Brain Measurement to Explore the Psychological Effects of Computer Malfunctions on Users during Human-Computer Interactions

    Full text link
    In today’s technologically driven world, there is a need to better understand the ways that common computer malfunctions affect computer users. These malfunctions may have measurable influences on computer user’s cognitive, emotional, and behavioral responses. An experiment was conducted where participants conducted a series of web search tasks while wearing functional nearinfrared spectroscopy (fNIRS) and galvanic skin response sensors. Two computer malfunctions were introduced during the sessions which had the potential to influence correlates of user trust and suspicion. Surveys were given after each session to measure user’s perceived emotional state, cognitive load, and perceived trust. Results suggest that fNIRS can be used to measure the different cognitive and emotional responses associated with computer malfunctions. These cognitive and emotional changes were correlated with users’ self-report levels of suspicion and trust, and they in turn suggest future work that further explores the capability of fNIRS for the measurement of user experience during human-computer interactions

    Bounded Rationality and Heuristics in Humans and in Artificial Cognitive Systems

    Get PDF
    In this paper I will present an analysis of the impact that the notion of “bounded rationality”, introduced by Herbert Simon in his book “Administrative Behavior”, produced in the field of Artificial Intelligence (AI). In particular, by focusing on the field of Automated Decision Making (ADM), I will show how the introduction of the cognitive dimension into the study of choice of a rational (natural) agent, indirectly determined - in the AI field - the development of a line of research aiming at the realisation of artificial systems whose decisions are based on the adoption of powerful shortcut strategies (known as heuristics) based on “satisficing” - i.e. non optimal - solutions to problem solving. I will show how the “heuristic approach” to problem solving allowed, in AI, to face problems of combinatorial complexity in real-life situations and still represents an important strategy for the design and implementation of intelligent systems
    corecore