28,157 research outputs found

    On the Two-user Multi-carrier Joint Channel Selection and Power Control Game

    Full text link
    In this paper, we propose a hierarchical game approach to model the energy efficiency maximization problem where transmitters individually choose their channel assignment and power control. We conduct a thorough analysis of the existence, uniqueness and characterization of the Stackelberg equilibrium. Interestingly, we formally show that a spectrum orthogonalization naturally occurs when users decide sequentially about their transmitting carriers and powers, delivering a binary channel assignment. Both analytical and simulation results are provided for assessing and improving the performances in terms of energy efficiency and spectrum utilization between the simultaneous-move game (with synchronous decision makers), the social welfare (in a centralized manner) and the proposed Stackelberg (hierarchical) game. For the first time, we provide tight closed-form bounds on the spectral efficiency of such a model, including correlation across carriers and users. We show that the spectrum orthogonalization capability induced by the proposed hierarchical game model enables the wireless network to achieve the spectral efficiency improvement while still enjoying a high energy efficiency.Comment: 31 pages, 13 figures, accepted in IEEE Transactions on Communication

    Introducing Hierarchy in Energy Games

    Full text link
    In this work we introduce hierarchy in wireless networks that can be modeled by a decentralized multiple access channel and for which energy-efficiency is the main performance index. In these networks users are free to choose their power control strategy to selfishly maximize their energy-efficiency. Specifically, we introduce hierarchy in two different ways: 1. Assuming single-user decoding at the receiver, we investigate a Stackelberg formulation of the game where one user is the leader whereas the other users are assumed to be able to react to the leader's decisions; 2. Assuming neither leader nor followers among the users, we introduce hierarchy by assuming successive interference cancellation at the receiver. It is shown that introducing a certain degree of hierarchy in non-cooperative power control games not only improves the individual energy efficiency of all the users but can also be a way of insuring the existence of a non-saturated equilibrium and reaching a desired trade-off between the global network performance at the equilibrium and the requested amount of signaling. In this respect, the way of measuring the global performance of an energy-efficient network is shown to be a critical issue.Comment: Accepted for publication in IEEE Trans. on Wireless Communication

    A cognitive hierarchy theory of one-shot games: Some preliminary results

    Get PDF
    Strategic thinking, best-response, and mutual consistency (equilibrium) are three key modelling principles in noncooperative game theory. This paper relaxes mutual consistency to predict how players are likely to behave in in one-shot games before they can learn to equilibrate. We introduce a one-parameter cognitive hierarchy (CH) model to predict behavior in one-shot games, and initial conditions in repeated games. The CH approach assumes that players use k steps of reasoning with frequency f (k). Zero-step players randomize. Players using k (≥ 1) steps best respond given partially rational expectations about what players doing 0 through k - 1 steps actually choose. A simple axiom which expresses the intuition that steps of thinking are increasingly constrained by working memory, implies that f (k) has a Poisson distribution (characterized by a mean number of thinking steps τ ). The CH model converges to dominance-solvable equilibria when τ is large, predicts monotonic entry in binary entry games for τ < 1:25, and predicts effects of group size which are not predicted by Nash equilibrium. Best-fitting values of τ have an interquartile range of (.98,2.40) and a median of 1.65 across 80 experimental samples of matrix games, entry games, mixed-equilibrium games, and dominance-solvable p-beauty contests. The CH model also has economic value because subjects would have raised their earnings substantially if they had best-responded to model forecasts instead of making the choices they did
    corecore