3 research outputs found

    Infant’s MRI Brain Tissue Segmentation using Integrated CNN Feature Extractor and Random Forest

    Get PDF
    Infant MRI brain soft tissue segmentation become more difficult task compare with adult MRI brain tissue segmentation, due to Infant’s brain have a very low Signal to noise ratio among the white matter_WM and the gray matter _GM. Due the fast improvement of the overall brain at this time , the overall shape and appearance of the brain differs significantly. Manual segmentation of anomalous tissues is time-consuming and unpleasant. Essential Feature extraction in traditional machine algorithm is based on experts, required prior knowledge and also system sensitivity has change. Recently, bio-medical image segmentation based on deep learning has presented significant potential in becoming an important element of the clinical assessment process. Inspired by the mentioned objective, we introduce a methodology for analysing infant image in order to appropriately segment tissue of infant MRI images. In this paper, we integrated random forest classifier along with deep convolutional neural networks (CNN) for segmentation of infants MRI of Iseg 2017 dataset. We segmented infants MRI brain images into such as WM- white matter, GM-gray matter and CSF-cerebrospinal fluid tissues, the obtained result show that the recommended integrated CNN-RF method outperforms and archives a superior DSC-Dice similarity coefficient, MHD-Modified Hausdorff distance and ASD-Average surface distance for respective segmented tissue of infants brain MRI

    Artificial Intelligence: Development and Applications in Neurosurgery

    Get PDF
    The last decade has witnessed a significant increase in the relevance of artificial intelligence (AI) in neuroscience. Gaining notoriety from its potential to revolutionize medical decision making, data analytics, and clinical workflows, AI is poised to be increasingly implemented into neurosurgical practice. However, certain considerations pose significant challenges to its immediate and widespread implementation. Hence, this chapter will explore current developments in AI as it pertains to the field of clinical neuroscience, with a primary focus on neurosurgery. Additionally included is a brief discussion of important economic and ethical considerations related to the feasibility and implementation of AI-based technologies in neurosciences, including future horizons such as the operational integrations of human and non-human capabilities
    corecore