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Abstract

The last decade has witnessed a significant increase in the relevance of artificial 
intelligence (AI) in neuroscience. Gaining notoriety from its potential to revolutionize 
medical decision making, data analytics, and clinical workflows, AI is poised to be 
increasingly implemented into neurosurgical practice. However, certain considerations 
pose significant challenges to its immediate and widespread implementation. Hence, 
this chapter will explore current developments in AI as it pertains to the field of clinical 
neuroscience, with a primary focus on neurosurgery. Additionally included is a brief 
discussion of important economic and ethical considerations related to the feasibil-
ity and implementation of AI-based technologies in neurosciences, including future 
horizons such as the operational integrations of human and non-human capabilities.

Keywords: artificial intelligence, neurosurgery, machine learning, deep learning, 
neural networks, telemedicine, robotic neurosurgery

1. Introduction

Beginning with Harvey Cushing’s work in the early 1900s, modern neurosurgical 
advancements are often entwined with parallel developments in both medical and non-
medical technologies [1]. Just as the application of microscopy, endoscopy, computed 
tomography (CT), magnetic resonance imaging (MRI), and ultrasound in neurosurgery 
have revolutionized and transformed the field, artificial intelligence (AI) is poised to do 
the same [2]. The past decade has witnessed exponential growth in research seeking to 
reconcile AI and neurosurgery, with primary goals of improving patient outcomes and 
enhancing quality of care. Academic interest toward the intersection of the two fields is 
very evident, with literature search permutations of the phrase “neurosurgery and AI” 
revealing over 20,000 absolute publications in the last 10 years on the PubMed database 
[3]. As AI grows in sophistication, ease of applicability, and prominence, it may grow 
and develop to be intrinsically tied with neurosurgical care in the future. This chapter 
will provide an overview of the current thoughts and applications of AI in neurosurgery 
within pre-, intra-, and postoperative contexts, evaluate the nuances of AI functionality 
in both developmental and use stages, consider implementation costs, feasibility, and 
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limitations. We will also discuss any misconceptions related to the integration of AI 
within neurosurgery, with a focus on dispelling both exuberantly optimistic and overly 
negative views.

2. Methods

A literature search was performed using Google Scholar ™ search keywords of 
“artificial intelligence in medicine,” “robotic neurosurgery,” “artificial intelligence 
and neurosurgery,” and “cost of artificial intelligence in medicine.” This keyword 
search was mirrored in PubMed. The PubMed database and Google Scholar ™ were 
also searched for information on the basic information and explanation of artificial 
intelligence technologies, using the keywords “machine learning and neurosurgery,” 
“neural networks in neurosurgery,” and “deep learning in neurosurgery.” There were 
no de facto inclusion criteria and no specific time limitation or time frame to the 
articles being utilized; rather, the articles were included based on relevance or relation 
to artificial intelligence use in medicine and the neuroscience field.

3. Artificial intelligence development and use: woos and woes

Artificial intelligence is an emerging field broadly defined as a set of technologies 
capable of incorporating human behavior and intelligence into machines and systems 
[4]. Due to its potential scope in diagnostic efficacy and treatment recommendations, 
AI is poised to be increasingly implemented into healthcare and clinical practice. 
However, a better understanding of what AI entails is warranted.

3.1 Machine learning

A discussion of AI in neurosurgery would be incomplete without a basic under-
standing of machine learning (ML), a subfield of AI [5]. The accelerated increase in 
computerization of patient data in healthcare has resulted in vast quantities of infor-
mation beyond what can be reasonably digested by traditional methods of statistical 
analysis, commonly referred to as “big data” [6]. However, the emergence of ML has 
unlocked new possibilities for the extraction and identification of potentially valuable 
patterns from not only past data, but also created a framework for predicting future 
data trends [7–9]. The predictive potential of ML can only be harnessed when the 
model can be presented with large quantities of annotated data [10]. For instance, in 
radiographic imaging, ML is able to treat each computerized picture element, or pixel, 
as its own unique variable. Thus, when fed large quantities of data, the ML algorithm 
can learn at a degree of complexity (e.g., trace contours of fracture lines, parenchymal 
opacities, etc.) and a scale that is beyond natural human capabilities [10].

Machine learning subdomains have traditionally been grouped into two large 
categories: supervised and unsupervised learning. The former uses annotated datasets 
to train an algorithm to predict outcomes on unseen data; unsupervised learning, 
however, uses ML to cluster datasets without using labels, enabling the extraction 
of unknown features that may be useful for categorizing and predicting relevant 
clinical outputs without human intervention [11]. Nevertheless, many ML models in 
healthcare have been shown to demonstrate performance no better than conventional 
statistical methods [12, 13]. It should be repeatedly emphasized that the field of ML, 
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in addition to being new, still possesses many fundamental weaknesses that limit its 
immediate widespread applicability.

Using diagnostic testing to determine the presence or absence of disease is an 
essential process in clinical medicine. In these scenarios, test results are oftentimes 
obtained as continuous values, which require conversion and interpretation into 
dichotomous groups to determine the presence or absence of a disease [14]. A key 
stage in this process involves defining a cut-off value, or reference value, to differenti-
ate normal from abnormal conditions. The receiver operating characteristic (ROC) 
curve, the primary tool used for this determination, classifies a patient’s disease 
state as positive or negative based on test outcomes, simultaneously identifying the 
optimal cut-off value with the best diagnostic performance [14]. The area under the 
curve (AUC) serves as a singular, scalar value summarizing the overall performance 
of a binary classifier [15]. This measure provides an aggregate evaluation of perfor-
mance across all potential classification thresholds. In essence, the AUC measures the 
two-dimensional area beneath the ROC curve from points (0,0) to [1,1]. An AUC of 
1.0 signifies perfect, error-free classification, whereas an AUC of 0.5, comparable to 
a random classification method like a coin toss, holds no diagnostic value. Typically, 
an AUC exceeding 0.8 is deemed acceptable in non-medical contexts, and an AUC 
surpassing 0.9 is considered excellent [16].

Nonetheless, it is crucial to underscore that strong performance as indicated 
by AUC values greater than 0.80 does not necessarily guarantee a robust model. If 
machine learning algorithms have not been cross-validated with novel datasets, they 
risk being overfit to past data, compromising their generalizability [14]. Thus, when 
attempting to leverage the model to predict performance on unseen data, the ML 
model may, at best, only offer slight gains compared to traditional statistical analysis 
[12, 13, 17–19]. Additionally, the robustness of any given ML model is directly depen-
dent on the quality and quantity of data fed. If biases from differences in data collec-
tion methodologies are present in a dataset, both generalizability and performance of 
the model are negatively impacted [10]. Furthermore, the AUC is often presented with 
a 95% confidence interval because the data obtained from the sample are not fixed 
values but rather influenced by statistical errors. Finally, the use of real-world data 
inherently introduces corruptions in the dataset, also known as “noise.” Random noise 
in input datasets can confound ML tasks of classification, clustering, and association 
analysis in addition to increasing model complexity and time of learning, all of which 
can degrade the performance of the learning algorithm as noise cannot be easily dis-
tinguished from desired inputs unless appropriately pre-processed before introduction 
to the model [20, 21]. In other words, despite impressive AUC values, such models may 
lack reliability when applied to new, unseen data, underscoring the critical importance 
of rigorous validation processes in the development of diagnostic tools.

3.2 Neural networks

The basic functional unit of the nervous system is the neuron [22]. Neurons 
function by receiving an input, processing the signal, and generating an output 
signal [23, 24]. Anatomically speaking, neurons are capable of consolidating up to 
thousands of neurotransmitter-driven synaptic inputs simultaneously via dendritic 
extensions, processing a highly transformed version of the original inputs in the 
soma, and producing a singular output through its axon in the form of an action 
potential [25]. Importantly, neuronal outputs are not generated at a fixed rate but 
rather are a function of whether or not the signal summation (excitatory - inhibitory 
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inputs) exceeds a predefined threshold value in order to successfully depolarize the 
neuron and induce an action potential [26–28]. After traveling through the axon, 
the action potential signal is transmitted to a multiplicity of neurons synapsed at the 
axon terminal.

Broadly speaking, artificial neural networks (ANNs) model the biological princi-
ples of neuronal signaling in order to stratify and solve complex, nonlinear problems 
[29]. Considered a subfield of ML, ANNs refer to a digital machine learning algorithm 
based upon the concept of a biological neuron. Comparatively, where neurons rely on 
neurotransmitter signaling inputs ANNs leverage binary, categorical, or numeric data 
sets [5]. Transformation of input signals at the soma into an action potential is akin to 
an ANN arithmetic-based calculation of inputs into an output [30].

Although the theory underlying ANNs was first developed in the 1980s, premier 
advances in computational power and training data acquisition at scale have enabled its 
extensive application in recent years. In neurosurgery, ANNs have grown to be increas-
ingly utilized in diagnostics, prognostics, and management [31]. Deep learning (DL) is 
yet another class of algorithms increasingly studied in the literature. Although similar 
to neural networks in principle, the term “deep” refers to the increasing depth of layers 
present in the neural network – typically accepted to imply at least three layers [32].

The ability to analyze non-linear data by ANNs is ideal for assisting neurosurgeons 
in clinical decision-making [33]. In particular, ANNs have been widely demonstrated 
to be superior to traditional analytical methods, especially as it pertains to clinical 
imaging tasks [34]. Even so, significant challenges still exist which limit the wide-
spread use of ANNs and DL in neurosurgery and medicine at large, including insuf-
ficient data, obscured interpretability, reliability of data, high threshold of processing 
power, and data privacy [3].

3.3 Natural language processing

Natural language processing (NLP) is another subfield that falls under the scope 
of ML. As its name implies, the goal of NLP is to better enable human-computer com-
munication by leveraging natural human language to better perform data abstraction 
processes [35]. In other words, the computer functions to understand human-gener-
ated text inputs by breaking down sentences into their constituent parts and applying 
algorithms to derive meaningful outputs. There are two primary divisions within the 
field of NLP: rules-based models and machine-based models. A rules-based model 
boasts minimal set-up costs, however is burdensome to scale for large datasets and 
inflexible as language usage evolves over time; conversely, machine-based models are 
preferable for large datasets as it can circumvent the rigidity of rules-based model 
while adapting to evolutions in human lexicon over time [36]. Three methodological 
approaches that dominate the application of NLP to neurosurgery are classification, 
annotation, and prediction [37]. Classification involves providing further diagnos-
tic information, and informing the surgeon’s decision making in the preoperative 
phase. Annotation entails automatizing the annotation of a large amount of data 
(e.g., radiological images) by identifying specific phenotypes related to a disease 
condition, enabling the NLP algorithm to train on much larger amounts of data and 
better extrapolate clinical outcomes. Prediction exploits previous data (e.g., free text 
notes) to predict patient surgical outcomes and enable the neurosurgeon to arrange 
the resources necessary for their care accordingly. Machine-based NLP as applied to 
neurosurgery and medicine at scale remains in its infantile stages, though its possibili-
ties rise with the emergence of Large Language Models.
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3.4 Large language models

Large Language Models (LLMs) like ChatGPT, developed by OpenAI, are a new 
wave of AI technology that have profound implications for diverse fields, including 
healthcare. Educated on a colossal quantity of textual data, these models grasp the 
delicate intricacies and nuances of human language, thereby equipping them to form 
pertinent and contextually relevant responses to a broad spectrum of prompts [38].

In March 2023, the performance of ChatGPT and GPT-4 was assessed on a 
500-question mock neurosurgical written boards examination. Using Self-Assessment 
Exam 1 from the American Board of Neurological Surgery (ABNS), Ali et al. fed ques-
tions in single best answer, multiple-choice format. ChatGPT and GPT-4 achieved 
scores of 73.4 and 83.4%, respectively, relative to the question bank user average of 
73.7% [39]. Both the question bank users and the LLMs exceeded the previous year’s 
passing threshold of 69%, demonstrating the models’ potential technical utility [39].

In a clinical context, including neurosurgery, LLMs could serve multiple pur-
poses. Firstly, they could play a significant role in patient education, simplifying 
complex neurosurgical procedures, and providing insights into the recovery process 
in an accessible language [40]. Secondly, these models could help facilitate medical 
research, from identifying new hypotheses to aiding in clinical decision-making by 
providing summaries of recent research, medical literature, or guideline updates 
relevant to specific cases [41].

Another promising application lies in the realm of medical documentation. LLMs 
could help transcribe doctor-patient conversations, draft surgical reports, or sum-
marize patient histories, thereby streamlining administrative tasks and allowing 
physicians to focus more on patient care [42]. Continuing Medical Education could also 
benefit from LLMs. By simulating complex clinical scenarios or generating case stud-
ies, these models could serve as an effective teaching tool for medical trainees [43].

4. Preoperative applications

The goal of the preoperative phase of care is to prepare both the neurosurgeon and 
the patient for a potential operation through means of diagnosis, surgical candidacy 
stratification, selection of treatment, and informed consent. AI is increasingly enter-
ing these realms as a potential adjunct to clinical practice.

4.1 Patient selection

A quantitative means of evaluating an individual patient outcome preoperatively 
is highly desirable in improving surgical decision-making. At the present moment, 
clinical outcome judgment is heavily reliant on the individual neurosurgeon. 
Prognostic indices in use today, though easily applicable, lack adequate predictive 
performance primarily due to the streamlining of numerical data to categorical data 
[44, 45]. Conversely, ML, by its very nature, could circumvent such a simplification.

Until now, previous literature has compared neurosurgical patient outcome 
predictive performance between ML algorithms, classical logistic regressions, prog-
nostic indices, and neurosurgeons with differential results. Against classical logistic 
regressions, ML models have demonstrated superior performance in predictions of 
successful endoscopic third ventriculostomy, postoperative ventricular peritoneal 
shunt infection, mortality after embolization of AVMs, patient satisfaction after 



Artificial Intelligence in Medicine and Surgery - An Exploration of Current Trends, Potential...

6

laminectomy for lumbar spinal stenosis, in-hospital mortality in patients with trau-
matic brain injury, cerebral vasospasm after aneurysmal subarachnoid hemorrhage, 
and outcomes after a burr-hole procedure for a chronic subdural hematoma [45–52]. 
Against current logistic regression prognostic indices for prediction of successful 
endoscopic third ventriculostomy (ETV) 6 months postoperatively, ANNs have dem-
onstrated superior performance [45]. Masoudi et al. found that for ETV prediction 
6 months postoperative, their multi-layer perceptron ANN demonstrated an AUC 
of 0.913 compared to a logistic regression AUC of 0.819 [53]. Some ML models have 
shown better performance compared to prognostic indices predicting outcome after 
stereotactic radiosurgery for cerebral arteriovenous malformation (AVM) with AUCs 
of 0.70–0.71 vs. 0.57–0.69 [44, 52]. A random forest classifier (RFC), a class of ML 
model achieved an AUC of 0.80, with 0.34 sensitivity, 0.95 specificity, 0.73 positive 
predictive value, 0.80 negative predictive value, and 0.79 accuracy for the prediction 
of traumatic brain injury in children following a cranial CT of the brain, demonstrat-
ing a substantial alternative to the currently used nomogram for the prediction of 
intracranial injury following CT in children with TBI [54].

Some recent studies have investigated the differences in ML and clinician perfor-
mance in predicting neurosurgical outcomes in patients. Emblem et al. found that 
against fuzzy C-means, a class of ML model, neuroradiologists performed similarly 
in survival predictions for newly diagnosed glioma patients [55]. Emblem et al. also 
discovered that a support vector machine (SVM) model combined with perfusion-
weighted magnetic resonance (MR) imaging better predicted survival in glioblastoma 
patients compared to neuroradiologists [56]. Currently, although especially expe-
rienced neurosurgeons have been demonstrated to exhibit strong patient survival 
prediction skills in patients with high-grade glioma undergoing surgery on group-
wide metrics, they often missed on the individual level [57]. Hence, future AI tools 
could help bridge this gap by supporting neurosurgeons’ insights in the prediction of 
patient survival.

4.2 Diagnostics

Both LLMs and ML have utilization within diagnostics. LLMs can serve as an 
adjunct to the patient evaluation process by suggesting rarer diagnoses and interven-
tions that the physician may not have typically considered. These can be incorporated 
with the overall clinical picture as appropriate. The potential scope of which ML can 
be applied to diagnostics is largely divided between three categories: classification, 
detection, and segmentation. Classification involves algorithmic stratification of data 
inputs into categories (e.g., normal, abnormal). Detection entails visual localiza-
tion of an area of interest (e.g., lesion). Segmentation implies outlining a target area 
using a precise, pixel-wise boundary [58]. The following categories will elucidate the 
various areas through which general ML and deep learning (DL) models have been 
applied to neurodiagnostics.

4.3 Intracranial hemorrhage

Earlier efforts were able to determine important correlations between imaging 
characteristics, the presence of intracranial hemorrhage (ICH), and patient outcomes 
[59–61]. Today, approved commercial software for ICH detection exists on the market 
with clinical uses including triage and early warning systems, double reading, and 
hemorrhage type classification. Boasting a validated sensitivity of 88.7 to 96.2% and 
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a specificity of 92.3 to 99.0%, Aidoc for ICH, an FDA-approved DL tool, is one of 
the industry’s leading support systems for evaluation and warning notification of 
unenhanced head CT images of ICHs [62–66]. Aidoc for ICH and other DL learning 
models have been demonstrated to produce inconsistencies in performance when 
applied to non-native trained clinical sites [64, 67]. Thus, further studies have sought 
to investigate alternatives including competing commercial software in addition to 
independently developed models. For instance, McLouth et al. and Rava et al. have 
validated the diagnostic capabilities of other DL ICH tools such as CINA v1.0 and 
Canon’s AUTOStroke Solution ICH across hospital sites in the United States, finding 
high accuracy and specificity with medium sensitivity thresholds [68, 69]. Wang 
et al., winners of the 2019-RSNA Brain CT Hemorrhage Challenge, developed a con-
volutional neural network (CNN) using a diverse array of datasets sourced from three 
institutions that achieved accuracy levels similar to that of senior radiologists [67]. 
Despite the outstanding results of the algorithm, it is important to note that the CNN 
model’s applicability in clinical settings is currently limited by (1) the lack of patient 
clinical information in the RSNA-challenge provided datasets, thereby obscuring the 
confounding effects of scanner type, cause of bleeding, and patient demographics, 
(2) its inapplicability to MRI imaging which is oftentimes crucial for ICH screening 
and diagnosis, and (3) external validation data are lacking [67].

4.4 Stroke

In the past decade, deep learning applications in stroke imaging have dramati-
cally risen, likely as a byproduct of higher stroke imaging volume with the arrival of 
endovascular thrombectomy in addition to the increasing acknowledgement of the 
emergent nature of the disease process [58]. DL applications to stroke imaging can be 
divided into three areas: (1) Alberta Stroke Program Early CT Score (ASPECTS) mea-
surement, (2) large vessel occlusion (LVO) detection, and (3) infarct prognostication.

ASPECTS is a 10-point topographical quantitative grading scale widely used to 
guide acute stroke treatment by measuring 10 regions within the middle cerebral 
artery (MCA) territory for early signs of ischemia [70, 71]. Many commercial DL 
tools designed to perform automated ASPECTS evaluation have been tested in clinical 
settings, demonstrating variable results. One study found that three neuroradiologists 
showed a higher correlation with infarct core than e-ASPECTS (Brainomix) (r = 0.71, 
0.76, 0.80, compared to 0.59) while another study found that RAPID ASPECTS (iSch-
emaView) displayed higher correlation than two neuroradiologists from between 
symptom onset and imaging until 4 hours post-symptom [72, 73]. These results 
suggest that automated ASPECTS evaluation may continue to be implemented as an 
adjunct to current neuroradiological diagnostics. The efficacy of ASPECTS analysis 
depends on the software utilized and established ground truth.

Early identification of large vessel occlusion (LVO) in the early stages of admission 
can mitigate the probability of the patient suffering from the long-term implications of 
stroke and rescue life. A 2019 study developed a U-Net architecture DL tool designed to 
detect the hyperdense MCA sign in noncontrast head CT scans from a local Hong Kong 
population and achieved a high sensitivity (.930), though relatively lower specific-
ity accuracy and AUC [74]. Automated LVO detection on CT angiograms (CTA) has 
become integral to many stroke centers. Viz-AI, a commercial CNN-based solution, has 
demonstrated 82% sensitivity and 94% specificity for LVO detection [71].

The ability to accurately and reliably predict posttreatment stroke outcomes 
can aid the neurosurgeon in selecting patients for thrombectomy or other 
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neuroendovascular procedures and developing a plan of care precisely tailored to the 
individual patient. Recent stroke thrombectomy trials utilizing automated perfusion 
CT and MR imaging have revolutionized the modern care of stroke patients. The now 
commercially available Rapid.AI perfusion product, which employs a threshold-based 
segmentation method, resulted in a 3-fold reduction in severe disability and death 
when used to select patients for thrombectomy [75]. However, CT perfusion (CTP) 
maps have historically been unreliable and threshold-based approaches may fail to 
fully capture the complexity of infarct evolution. Processing this data under a DL 
system, one can take into account other biomarkers and patient-specific factors for 
better prognostication. One study validated a CNN designed to identify and predict 
post-treatment MRI final lesion volume, achieving a modified ROC-AUC of 0.88 [76]. 
Nishi et al. used a U-Net DL tool to assess clinical post-treatment outcomes of LVO 
patients using pretreatment diffusion-weighted image data of patients who under-
went mechanical thrombectomy, finding an ROC-AUC of 0.81 [77].

4.5 Intracranial aneurysms

Intracranial aneurysms (IAs) are commonplace in the population, with a global 
estimated prevalence between 2 and 5% [78]. Although most of these aneurysms are 
asymptomatic, they carry the risk of rupture which if realized leads to a subarachnoid 
hemorrhage – a prognosis producing a dramatic case fatality of 50% [79]. Thus, there 
is great interest in the rapid and accurate identification of unruptured intracranial 
aneurysms on brain imaging.

At the present moment, intra-arterial digital subtraction angiography (IADSA) is the 
gold-standard for the diagnosis of intracranial aneurysms, with computed tomography 
angiography (CTA), magnetic resonance angiography (MRA), and transcranial Doppler 
sonography also shown to be effective diagnostic tests [80]. Time-of-flight MR angi-
ography (TOF-MRA) is a non-invasive, non-contrast enhanced technique that enables 
discrimination between vessels and stationary tissues by inducing blood inflow effects 
[81]. Due to the absence of ionizing radiation or intravenous contrast agents, time-of-
flight MR angiography (TOF-MRA) is typically the first modality of choice for aneurysm 
screening. Hence, many inroads for DL applications have been explored in this area.

Nakao et al. developed a computer-assisted detection (CAD) deep CNN archi-
tecture combined with a maximum intensity projection (MIP) algorithm trained on 
450 patients worth of TOF-MRA scans. The team achieved a high sensitivity of 94.2% 
(98/104) and only 2.9 false positives per case [82]. Faron et al. similarly developed a 
CNN model finding an overall sensitivity of 90% with a false positive rate of 6.1%. 
More consequently, the Faron team further found that there was no significant differ-
ence in aneurysm detection performance between the CNN model and two blinded 
diagnostic neuroradiologists, with an overall increase in human detection sensitivity 
when combining their detection hits with the CNN model’s hits (reader 1: 98% vs. 
95%, P = 0.280; reader 2: 97% vs. 94%, P = 0.333) [83].

Ueda et al. developed a ResNet architecture algorithm fed with 683 TOF-MRA 
patient scans and achieved a sensitivity of 91% (592 of 649) and 93% (74 of 80) for 
their internal and external data sets, respectively [84]. More interestingly, the model 
improved aneurysm detection in their retrospectively collected TOF-MRA scans by 
4.8% (31 of 649) and 13% (10 of 80), respectively, compared to the initial radiologist-
interpreted assessments.

Until recently, machine-learning algorithms largely focused on MRA imag-
ing. However, more recent efforts were expanded to include CT-based imaging 
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approaches. In 2020, Shi et al. developed a 3D CNN trained on 1177 digital subtrac-
tion angiography verified bone-removal CTA cases, which when tested on a cohort of 
suspected acute ischemic stroke (AIS) patients found that the model could exclude 
IA-negative cases with 99.0% confidence [85]. Limitations in their study include 
a relatively small sample of positive cases in the validation cohorts as well as the 
experimentally reasonable exclusion of CTA data with head trauma and arteriovenous 
malformation/fistula (AVM/AVF). In 2021, Yang et al. proposed a 3D CNN algorithm 
for detecting cerebral aneurysms using head CTA images, achieving a very high sen-
sitivity of 97.5% (633 of 649) while revealing 8 intracranial aneurysms overlooked in 
initial reports [86]. When the model was paired with expert radiologists, their overall 
weighted alternative free-response receiver operating characteristic (wAFROC) 
curve improved by 0.01 (P < .05), demonstrating the viability for physician-machine 
adjunct usage.

4.6 Neuro-oncology

For over a century, neurosurgeons have played an essential role in the management 
of cancers afflicting the central nervous system (CNS). As the tenth leading cause of 
death for both men and women, accurate clinical evaluation of disease progression, 
and early detection of brain tumors using effective brain imaging techniques is para-
mount to improving patient outcomes. Historically, the preoperative phase involved 
manual segmentation of brain tumors and small related brain structures by the neuro-
surgeon – a laborious task [87]. Hence, many automated solutions have been explored, 
with the broadest categories for automated brain tumor segmentation of MR images 
including (i) intensity-based, (ii) ML-based, and (iii) hybrid-based approaches.

The intensity-based approaches are among the most conventional methods used 
in brain tumor segmentation, relying on a basic analysis of pixel values within the 
spatial domain. The thresholding technique, for instance, functions by binarizing the 
MR image by pixel intensity relative to an intensity threshold [87]. This technique, 
however, suffers from many limitations including sensitivity to noise and intensity 
non-homogeneity. Also classified as an intensity-based approach, the region-based 
method involves using pre-defined pixel/voxel conditions to extract intensity infor-
mation by locating a region following seed point selection and connecting pixels with 
similar intensity values; many studies have recently improved upon this technique but 
suffer from limitations such as inability to remove noise, subjective manual setting 
of parameters, and annotation bias [88–92]. Most existing methods rely on such fully 
supervised methods [93].

Largely due to the aforementioned constraints and inflexibility, ML-based 
approaches to brain tumor segmentation have increasingly been explored, both 
in traditional ML as well as DL forms. Many recent studies leveraging traditional 
ML models have shown equal or superior performance relative to the conventional 
intensity-based models, though observing limitations in some studies such as subjec-
tive user-directed pixel label refinement of segmentation results, sensitivity to noise 
and distortions, non-uniform intensity distribution, and extraction of redundant 
features [94–96].

In the past decade, interest toward deep learning as applied to brain tumor segmen-
tation has soared in popularity due to its anticipated superior performance compared 
to more conventional models of data abstraction. Many studies have relied on 
extracting 2D patches from 3D MR images to use as inputs for the 2D CNN [97–109]. 
Though CNNs have generally demonstrated improved performance compared to its 
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intensity-approach counterparts, model training is often time-consuming as a large 
amount of training data, parameters, and processing power are required. Furthermore, 
3D contextual information is often bypassed in 2D CNNs, thus spurring the devel-
opment of 3D CNNs in recent years [110–115]. Although 3D CNNs enable better 
exploitation of 3D features from MR image information data, high computational 
resources (i.e. high network intensiveness and memory consumption) limit its wide-
spread applicability. Thus, 2.5D deep neural networks (DNNs) approaches have been 
explored; Wang et al. validated a cascaded 2.5D model which improved segmentation 
accuracy by striking a balance between memory consumption and model complexity, 
demonstrating superior inference compared to already established models such as 
DeepMedic and ScaleNet [116–118].

Recently, Pham et al. introduced a hybrid metaheuristic-ML model to circum-
vent sensitivity to noise, intensity non-uniformity, and trapping into local minima 
and dependency on initial clustering centroids [119]. However, this model suffered 
from decreases in performance, though its introduction spurred the development 
of many hybrid models to find an optimal balance between each efficiency metric 
[96, 119–122]. Other hybrid approaches such as DL-traditional ML and ML-contour 
based models, though better than conventional methods, have not observed overall 
efficiency greater than the metaheuristic-ML hybrid [87]. At the present moment, the 
literature indicates that deep learning based and hybrid-based metaheuristic models 
are the most efficient and reliable methods available, though its widespread applica-
tion requires further validation. Despite improvements in deep learning models as 
applied to brain tumor segmentation, it is imperative to note that limitations in tumor 
morphological uncertainty, low contrast resolution, annotation biases during data 
labeling, and imbalanced voxel distribution persist. Thus, advances in AI can aid the 
neurosurgeon in various brain tumor segmentation contexts though neurosurgeons 
should remain cautious when using DL models to inform his or her clinical judgment.

4.7 Spine

From the genesis of AI applications in surgery spine has been a site of significant 
innovation in ML and DL models, generating opportunities for applications in scolio-
sis quantification, vertebral fracture detection, and vertebral body segmentation.

The Cobb measuring method is the gold standard for quantification of the 
scoliotic curve [123]. With the digitalization of computerized radiography, most 
surgeons opt to use built-in computer software such as the Picture Archiving and 
Communications System (PACS); despite the proven efficiency of the software 
relative to the traditional “manual” method of Cobb angle measurement, systems like 
PACS use software (e.g., Surgimap) which requires users to manually select the upper 
and lower ends of vertebral bodies inherently introduces human error [123–127]. 
Hence, Cobb angle measurement has been an area of significant AI exploration.

Caesarendra et al. utilized a deep CNN to measure the Cobb angle of patients diag-
nosed with adolescent idiopathic scoliosis, producing accuracies up to 93.6% which 
demonstrates a high reliability compared to neurosurgeons’ measurement (intraclass 
correlation coefficient > 0.95) [123]. Sun et al. assessed DL models based upon CNNs 
designed to segment each vertebra and locate the vertebral corners, finding a very 
high intraclass correlation coefficient (ICC) of 0.994, with a Pearson correlation 
coefficient and mean absolute error between the model and orthopedic annotation of 
0.990 and 2.2° ± 2.0° [128]. These results are especially promising in cases where the 
Cobb angle does not exceed 90°.
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AI applications in vertebral fracture detection have generated tremendous inter-
est due to the relative ease in algorithmic-driven image discrimination relative to 
other neurosurgical contexts. Many studies have evaluated both ML and DL models 
in the context of fracture detection. Tomita et al. utilized a deep neural network to 
detect osteoporotic vertebral fractures trained upon 1432 CT scans, finding an ROC-
AUC between 0.909 and 0.918 with an F-score of 90.8% and accuracy of 89.2%, 
measures approximately equivalent to radiologists [129]. Small et al. tested C- 
spine, an FDA-approved CNN developed by Aidoc to detect cervical spine fractures, 
finding an accuracy, sensitivity, and specificity for the CNN and radiologists of 92 
vs. 95%, 76 vs. 93%, and 97 vs. 96%, respectively [130]. Derkatch et al. trained a 
CNN binary classifier fed with dual-energy x-ray absorptiometry data to vertebral 
compression fractures, which yielded an ROC-AUC of 0.94 with a sensitivity of 
87.4% and a specificity of 88.4% [131]. Thus, these data suggest that ML and DL 
models can serve as an accessory to the radiologist and the neurosurgeon in verte-
bral fracture detection.

Currently, only a few semi-automatic methods for disc and vertebral labeling 
exist and are widely utilized. However, these methods are inundated with subjectiv-
ity due to the presence of user-directed input. Hence, many studies have sought 
to develop alternative methods to enhance accuracy and efficiency in radiological 
evaluation. Lehnen et al. demonstrated the feasibility of using a single CNN to 
identify various degenerative changes of the lumbar spine from MR images, finding 
high diagnostic accuracy for intervertebral disc detection/labeling (100%), spinal 
canal stenosis (98%), and nerve root compressions (91%) as well as moderately 
high diagnostic accuracy for disc herniations (87%), extrusions (86%), bulgings 
(76%), and spondylolisthesis (87.61%) [132]. However, the generalizability of their 
study is limited by a small sample size and exclusion of patients over 70 years old. 
Furthermore, the use of CNNs for spine segmentation is not particularly novel; in 
2018, Whitehead et al. trained a cascade of CNNs and achieved Dice scores of 0.832 
and 0.865 for vertebrae and discs, respectively [133]. Huang et al. developed a DL 
tool appropriately named Spine Explorer which quickly and automatically segments 
and measures lumbar MR images, achieving a near perfect mean Intersection-over-
Union (IoU) of 94.7 and 92.6% for the vertebra and disc, respectively [134]. A year 
later, Shen et al. expanded the scope of Spine Explorer to include the paraspinal 
muscles and the spinal canal, finding IoU values of 83.3 to 88.4% and 82.1%, 
respectively [135]. However, both studies using Spine Explorer suffered from a low 
patient sample size. Recently, Cheng et al. developed a two-stage MultiResUNet 
DL model for the automatic segmentation of specific intervertebral discs, which 
yielded a segmentation accuracy of 94%, potentially indicating its eminence over 
other DL models, such as the U-Net, CNN-based, Attention U-Net, and standard 
MultiResUNet models [136].

Spine imaging findings are often insufficient in the determination of the underly-
ing cause of lower back pain (LBP) and are often not of clinical significance due to 
the high frequency of asymptomatic presenting patients. NLP algorithms, however, 
can bridge the gap in data abstraction in the relationship between spine imaging 
findings and LBP. Tan et al. developed an NLP to identify lumbar spine imaging 
findings related to LBP on x-ray and MR radiology reports, demonstrating a signifi-
cantly greater sensitivity (0.94, compared to 0.83 for rules-based), a higher overall 
AUC (0.98, compared to 0.90 for rules-based), and comparable specificity (0.97 vs. 
0.95 for rules-based) when compared to the rules-based model [36]. Miotto et al. 
developed a convolutional neural network which, after training on manual free-text 
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clinical notes on LBP patients, was able to discriminate between acute and chronic 
LBP (AUC of 0.98 and F score of 0.70), demonstrating the potential for systematiza-
tion of patient symptomatology [137].

5. Intraoperative applications

The intraoperative phase of patient care revolves around optimizing the neurosur-
geon’s functionality and performance in the operating room (OR). AI’s role intraop-
eratively includes augmented reality (AR), ML for pathology and neurooncologic 
applications, using algorithms to automate identification of intraoperative injuries 
based on the operative note.

Augmented reality has a myriad of intraoperative uses in both cranial and spinal 
procedures. From the cerebrovascular standpoint, AR has been used to decrease the 
craniotomy size and delineate aneurysm architecture for safer aneurysm clipping 
[138]. AR has also been used to superimpose white matter tracts onto the surgical field 
as well as identify eloquent brain regions during tumor resections [139]. The imple-
mentation of AR was shown to result in significantly greater rates of total resection 
with better preservation of critical functions such as vision, speech, and motor [139]. 
Head-up AR microscope displays with navigation were found to be more accurate 
than traditional microscopy with navigation based on fiducial or automatic intraop-
erative CT registration in the setting of transsphenoidal surgeries [140]. Rychen et al. 
described the successful use of AR to fuse CTA, DSA, and TOF MRI imaging with 
neuronavigation for superficial temporal artery to middle cerebral artery (STA-MCA) 
bypass operations [141]. Perhaps one of the most impressive features of these applica-
tions is that augmented reality is formulated to work with current microscopes and 
neuronavigation systems that are commonly used for neurosurgical procedures, 
rather than requiring an entirely new device.

Resection margins are of the utmost importance in the resection of malignant 
tumors as remnants of malignant tissue led to the recurrence of disease and decreased 
survival. Real time analysis of resection margins typically requires an experienced 
neuropathologist, as well as a processor well versed in chemistry [142]. ML was 
employed to process samples through the High Resolution Magic Angle Spinning 
Nuclear Magnetic Resonance (HRMAS NMR) methodology, with high accuracy 
(median AUC of 85.6% and AUPR of 93.4%) [142]. Jabarkheel et al. established the 
use of Raman spectroscopy to accurately differentiate benign and malignant tissue 
intraoperatively in pediatric tumor resections [143].

Spinal procedures also utilize AR to aid in the precise placement of pedicle screws, 
superimposing trajectories into the surgical field [144]. Computer-assisted naviga-
tion (CAN) has a wide range of uses from tumor resection to deformity correction. 
When utilized for screw placement, CAN reduces the need for fluoroscopic guidance 
thus decreasing radiation exposure. CAN also increases operative efficiency, which 
diminishes the operative time and patient exposure to anesthesia [145].

Another promising AI application in spinal surgery is robotics. The SpineAssist 
(MAZOR Robotics Inc., Caesarea, Israel), ROSA (Medtech, SA, Montpellier, France), 
the Excelsius GPS Robot (Globus Medical, Inc., Audubon, PA), and the Da Vinci 
Surgical System (Intuitive Surgical, Sunnyvale, CA) are the four most studied 
robotic systems available [145]. Each has its strengths and weaknesses, and it is worth 
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mentioning that all of these systems are still ultimately controlled by the surgeon. 
Prospective trials on the SpineAssist system demonstrate up to 99% accuracy with 
pedicle screw placement, as opposed to the 92% accuracy rate achieved with naviga-
tion alone [145]. The robot mounts directly onto the spinous process or other bony 
landmark and easily interfaces with a CAN system. Retrospective trials and case 
reports for the ROSA and Excelsius machines show increased accuracy of pedicle 
screw placement, however the difference was not statistically significant for the 
ROSA system [145]. Both systems are freestanding which removes the issue of incor-
rect landmark fixation that can occur with the SpineAssist system, and the Excelsius 
decreases total radiation exposure. The ROSA, initially created for intracranial neu-
rosurgery, uses a camera and a percutaneous pin system placed over bony landmarks 
that the robot arm follows. In terms of efficiency, the ROSA is less efficient than cur-
rent methodologies, adding over 70 minutes to the operative time [145]. Lastly, the Da 
Vinci system is the most widely used surgical robot though not typically used for and 
not approved for neurosurgical applications such as spinal instrumentation. Current 
thinking on potential neurosurgical applications of this device are anterior lumbar 
fusions [145]. Further randomized trials are needed and likely some adjustments to 
the systems in order to truly harness the advantages they offer.

6. Postoperative applications

The goals of the postoperative phase of care include predicting prognosis, identi-
fying potential postoperative complications, and optimizing variables for enhanced 
aftercare and recovery. A study by Arvind et al. demonstrated that ANN and LR 
are superior to the American Society of Anesthesiologist (ASA) class in predicting 
the incidence of the cardiac, wound, VTE, and mortality in patients undergoing 
anterior cervical discectomy and fusion (ACDF) [146]. Similarly, Kim et al. found 
ANN and LR to be more accurate than ASA classification for predicting the same 
complications in posterior lumbar fusion [147]. AI has also allowed for greater dis-
tinction between disease progression versus tumor necrosis from radiation therapy 
in gliomas [144, 148].

Follow up in the postoperative phase can be simplified using telemedicine with 
smart phone apps, video conferencing or simple phone communication. A prospec-
tive trial by Reider-Demer et al. found that telemedicine postoperative follow up for 
patients who underwent elective intracranial neurosurgery was a safe and effective 
alternative to in-office visits [149]. What’s more, the patients preferred the conve-
nience of telemedicine visits.

It has been estimated that doctors spend up to 50% of their time on documenta-
tion, and nurses 20% [150]. Moreover, the initiation of the twenty first Century 
Cures Act has created a great need for methods to quickly produce summaries and 
communications that are easily understood [151]. Once further refined, LLMs could 
be invaluable tools to help fill this gap by generating rudimentary plain language 
medical information that can be modified by clinicians. They can also be used to 
generate authorization letters and various other types of documentation based on 
keywords. This would drastically reduce the amount of time spent on documenta-
tion and allow physicians as well as other medical providers to devote more of their 
time to patient care.
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7. Cost, feasibility, & limitations

7.1 Cost and feasibility

Successful integration of any new process or technology is dependent upon 
the ease of implementation, as well as the overall cost of the technology versus the 
revenue and benefit it generates. The United States leads in health care spending but 
has the worst outcomes when compared to nations such as Canada, Germany, the 
United Kingdom, Australia, Japan, Denmark, France, the Netherlands, Switzerland, 
and Sweden [152]. Health care spending is estimated to comprise nearly 20% of the 
US gross domestic product in 2025, which equates to $5.3 trillion [145]. Neurosurgery 
is among the most expensive medical specialties, with the average procedure and 
hospitalization costing $21,825 to $22,924 depending on the volume of the medical 
center [153]. The cost of a spinal fusion is 12 times greater than it was 30 years ago 
[145]. This in combination with the emergence of value-based care and changing 
reimbursement patterns has led to increased research into cost saving methodologies. 
AI applications associated with this research include risk adjusted reimbursement 
models, predictive models of hospital length of stay, and predictors of patients more 
suitable for outpatient procedures. Within the neurosurgical realm, these studies have 
focused on spinal surgeries and there is a paucity of data on the intracranial surgical 
aspects of neurosurgery [154]. A meta-analysis of AI economic studies performed 
by Khanna et al. revealed that most of the research is focused on either diagnosis 
or treatment aspects throughout all medicine and the studies lack consideration of 
purchase and maintenance costs associated with AI, as well as few if any comparisons 
to alternative technologies [152].

Though investigation into the financial aspects of AI use in neurosurgery is on the 
rise, no study to date has produced a thorough net present value assessment within 
a large-scale experimental design [154]. Externally validated studies conducted on a 
larger scale with robust cost and net gain/loss calculations are necessary to accurately 
determine the feasibility and true value of the integration of AI into neurosurgery 
from a financial standpoint. This is particularly important being that the mean cost 
of an AI system ranges from $20,000 to $1 million, depending upon the system. The 
more complex the system, the greater the cost, albeit there are minimal viable prod-
ucts available in the $8000 to $15,000 price range [155].

Maintenance and continued operation represent a significant investment as well. 
AI systems require a staff of project managers, software engineers, data scientists, 
and software developers. A project manager will cost between $1200 to $4600 per 
month. Software engineers and data scientists contribute $600 to $1500 per day and 
$500 to $1100 per day in cost respectively. The annual salary of an in-house data sci-
entist averages $94,000 while a software developer has an annual salary of $80,000 
[156]. Additionally, health networks incur an average cost of $15,000 to recruit candi-
dates to fill these positions, as well as the cost to train the staff [156]. Outsourcing the 
maintenance and operation of the system offers a more frugal alternative to in-house 
staffing, however, there can be a lack of continuity and immediate availability with 
the remote staff.

Reimbursement for AI is still in its relative infancy as payers only began to approve 
coverage of AI use in late 2020 [157]. Currently, eight image-based assistive or 
autonomous AI devices are approved by Center for Medicare and Medicaid (CMS) for 
repayment, with two of the technologies holding surgical utility (Table 1). The crite-
ria for repayment is very specific and quite complex, with payments ultimately only 
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covering a maximum of 65% of the actual expense [158]. Compensation is based on 
Current Procedural Terminology (CPT) codes or New Technology Add-on Payments 
(NTAPs), which have a reimbursement limit of 3 years [157, 158]. In Europe, AI is not 
routinely covered and not recognized as a separately reimbursable expense. Several 
suggested payment models including gainsharing models, outcome incentivization, 
and advance market commitments have been proposed as the potential for abuse/
fraud or underutilization in underserved areas with per use payments has been 
recognized as a legitimate concern [157].

Ultimately, the future integration of AI into the field of neurosurgery will depend 
heavily upon whether the increase in efficiency and performance result in a tangible 
improvement in patient outcomes while providing a net cost savings to health net-
works. If AI is proven to be a substantial solution, reassessment of reimbursements 
and insurance coverage are likely to follow.

7.2 Limitations

The remarkable growth and promise of AI in neurosurgery are not without limita-
tions and concerns that must be taken into account. Firstly, it is imperative to consider 

Manufacturer System Description/Use Payment mechanism

Digital 
diagnostics

IDX-DR Deep learning algorithm to diagnose 
diabetic retinopathy from fundoscopic 
images in the outpatient setting

CPT

viz.ai Viz LVO Radiological computer-assisted triage and 
notification software that analyzes CT 
images of the brain and notifies hospital 
staff when a suspected large-vessel 
occlusion (LVO) is identified

NTAP

Rapid AI Rapid LVO AI-guided medical imaging acquisition 
system intended to assist medical 
professionals in the acquisition of cardiac 
ultrasound images.

NTAP

Caption health Caption 
guidance

NTAP

viz.ai Viz SDH Radiological computer-assisted triage and 
notification software that analyzes CT 
images of the brain and notifies hospital 
staff when a suspected subdural hematoma 
is identified

NTAP

Rapid AI Rapid 
aspects

Computer-aided diagnostic device 
characterizing brain tissue abnormalities 
on brain CT images

NTAP

AIDoc Briefcase 
for PE

Radiological computer-assisted triage and 
notification software that analyzes CT 
images of the chest and notifies hospital 
staff when a suspected pulmonary 
embolism is identified

NTAP

PROCEPT 
BioRobotics 
Corporation

The 
AQUABEAM 
system

Autonomous tissue removal robot for the 
treatment of lower urinary tract symptoms 
due to benign prostatic hyperplasia (BPH).

NTAP

Table 1. 
Modified from paying for artificial intelligence in medicine. Parikh and Helmchen [157].
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that potentially substantial ML-driven improvements in performance are distinct 
from clinically significant improvements. Although ML models may offer drastic 
improvements in big data prediction problems, many medical prediction scenarios 
tend to be intrinsically linear and binary; in such cases, it is unlikely ML models will 
offer substantial improvements in discrimination and be of clinical value to the neu-
rosurgeon [12, 23]. In short, the efficacy of ML algorithms boils down to the ability to 
predict future outcomes based on past data.

A primary concern with LLMs is their current inability to fully comprehend 
context or exercise judgment, which causes significant misinterpretations along with 
the potential to disseminate incorrect and potentially harmful information [159]. 
LLMs lack a mechanism for discriminating against biased or false information and 
cannot inform the end user that the information provided is incorrect. This concern is 
further compounded by the lack of transparency in the decision-making processes of 
LLMs like GPT-4. These models can offer explanations as to how and why they make 
certain decisions upon request, but these justifications are formed post-hoc [160]. 
This makes it impossible to verify if the explanations accurately represent the model’s 
actual decision-making process. Even more problematic is that when probed for an 
explanation, GPT-4 may provide contradictory information to its previous statements 
[159, 160]. The lack of reliability and reproducibility necessitates constant human 
oversight to ensure accuracy. Specific to medicine, clinicians would be required to 
fact check these tools, which could easily negate any time savings LLMs may offer. 
Intellectual property matters are another issue with LLMs. These tools not only pull 
data and property from creators without consent, but some have also created and 
cited false references [150].

Furthermore, there is a tendency for bias, violations of privacy, and inher-
ent logistical difficulties with the global utilization of AI. Datasets used to train 
algorithms are predominantly composed of information representing the majority 
and common conditions. This model bias can negatively impact racial and ethnic 
minority groups, genders, and socioeconomically disadvantaged peoples, in addi-
tion to diminishing the ability to recognize difficult anatomy [161, 162]. A study by 
Kamulageya et al. found that the AI dermatologic algorithm Skin Image Search was 
woefully inaccurate when presented images of pathology in Ugandan patients with 
dark (Fitzpatrick 6) skin types [163]. The company website boasts an accuracy of 
80% and but was found to only be 17% accurate when presented with darker skin 
tones [163]. Facial recognition algorithms have also been found to have diminished 
capabilities with both gender and race, performing the worst with females of darker 
skin tones [164]. These very groups already suffer from diminished access to care 
and undertreatment of disease in comparison to non-disadvantaged people. Model 
variance, which stems from insufficient data from minority groups also furthers the 
bias of AI algorithms. Differences in practices, equipment, and coding also decrease 
the generalization of AI algorithms. Designing algorithms with the global population 
in mind, analyzing performance on a subgroup basis, as well as externally validating 
the algorithms are ways to combat this [162].

Obtaining large quantities of patient data to train AI systems is difficult due to 
the necessary privacy protections added to patient data [161]. Inappropriate access 
to data sets and algorithms poses significant ethical, security, and privacy concerns. 
Algorithms can be manipulated by the addition of noise or altered data to produce 
harmful or deleterious effects on the system. Ensuring data privacy and security 
while allowing users and developers to learn and improve upon the technology is key 
to moving AI forward.
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On a global scale, challenges to telesurgery include lags in connection speeds 
and the potential for delays and disconnections. The introduction of 5G technol-
ogy has been touted as a possible remedy, however this remains to be seen [165]. 
Another consideration to this includes the cost of these systems and the maintenance 
[165, 166]. Will lower to middle income countries, which are in the greatest need 
of assistance, share in the cost or will the burden fall on the higher income nations? 
While this will reduce medical tourism to a point, this will still remain unless the 
infrastructure for preoperative and postoperative care is created within the countries 
in need. A likely solution for remote regions would involve smartphone apps for pre- 
and post-operative care and medical tourism over a shorter distance for operative and 
immediate aftercare until the patient is sufficiently recovered. With any AI solution 
to be implemented in a low to middle income country, the obstacles of infrastructure 
(electricity, wifi, phone lines, etc.), and governance for AI will need to be overcome 
on a broad scale.

Frequently stated worries are overreliance on technology, the loss of jobs, and 
physician disapproval. Most technologies being created are intended to assist and 
prevent fatigue, and skills must be maintained in order to properly utilize the tech-
nology. While there are solutions that involve autonomous actions to be handled 
solely by AI technology, patients themselves are not in favor of operations or pro-
cedures in which a surgeon is not involved. A cross-sectional study conducted by 
Palmisciano et al. found that while the majority of patient respondents thought AI 
use was appropriate for image interpretation/preoperative planning or indicating 
potential complications (76.7 and 82.2% respectively), only 17.7% of these patients 
approved of AI performing an entire operation [167]. Physicians themselves are also 
quite welcoming of AI integration into neurosurgery. A survey of neurosurgeons, 
anesthetists, nurses, and operating room practitioners conducted by Horsfall et al. 
revealed that the majority of respondents viewed the use of AI in various aspects of 
neurosurgery favorably [167].

The responses were 62% in favor of use for imaging interpretation, 82% 
approved of use for operative planning, 70% use for coordinating the surgical team, 
85% in favor of AI generated real time alerts to complications or hazards, and 66% 
approved of autonomous surgery by AI. Members of the Congress of Neurological 
Surgeons and European Association of the Neurosurgical Societies were polled 
by Staartjes and colleagues regarding the use of ML in neurosurgery. The results 
demonstrated that 28.8% of respondents used ML in clinical practice and 31.1% used 
ML for research [168].

8. The future of AI in neurosurgery

Future directions of AI integration into the field of neurosurgery involve both 
simple and complex solutions, some with global implications. The rise of telemedicine 
during the COVID-19 pandemic resulted in expanded applications which can be 
further built upon to partially address the global shortage of neurosurgeons [165]. 
Approximately 39 countries do not have access to neurosurgical care [3]. Smartphone 
apps can be used for postoperative follow up, obviating the need to travel prolonged 
distances to receive continued evaluation. Telesurgery has garnered significant inter-
est, as the potential to decrease transportation costs, improve logistics, and reduce the 
carbon footprint associated with medical tourism is great. Conceptualized iterations 
involve an operative suite with robotic equipment that will be controlled by surgeons 
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in a control room. Given the paucity of neurosurgeons relative to the population in 
need globally, it has been proposed that a general surgeon be at the control room 
adjacent to the patient, while a neurosurgeon is at the helm in a remote control room 
[165]. This also has implications for military use as surgeons would be able to care for 
patients in war zones remotely rather than risking their lives in the field [165].

Within the operating room, the push toward improved logistics and ergonomics 
as well as minimal to no contact procedures continues. Technologies to merge the 
microscope view, navigation imaging, and virtual or augmented reality screen into 
a single device such as surgical glasses are being developed [165]. There are a few 
augmented reality glasses (HoloLens, xvision Spine System) designed for surgi-
cal planning that are already commercially available [169]. The glasses project 3-D 
models of the patient’s anatomy (based on preoperative CT scans) directly into the 
surgical field, and can be controlled in a contactless manner with hand gestures and 
voice commands [169]. Magnetic navigation systems are being piloted for contactless 
endovascular operations [3].

9. Conclusion

This chapter broadly elucidated the scope of artificial intelligence in the field of 
neurosurgery. At the current moment, AI has successfully been introduced in some 
clinical settings, especially in the realm of diagnostics. With the increasing capacity of 
ML and ANNs to abstract patient information and produce clinically relevant results, 
it appears likely that AI will continue to be increasingly integrated within neurosur-
gery. In particular, a trend prioritizing the transition from fully supervised and rules-
based methods toward self, partially, and semi-supervised algorithms is observed in 
deep learning, although the latter possesses its own set of limitations.

Furthermore, the literature has demonstrated ad nauseam that when ML and 
ANN algorithms are tested prospectively on novel patient datasets, they perform, at 
best, equivalent to expert neurosurgeons in diagnostic examples. Thus, notions sug-
gesting a diminishing scope of the neurosurgeon due to the emergence of AI should 
be dispelled. Rather, AI can serve to function as an adjunct to the neurosurgeon by 
playing a supportive role in the pre-, intra-, and postoperative phases of care. An ideal 
world for the neurosurgical patient of the future is one in which they are treated by a 
neurosurgeon clinically informed by artificial intelligence.

Yet, there are certain issues to be addressed prior to the overwhelming adoption 
of AI. In order to make this a truly feasible and applicable solution on a wide scale, 
uniform (or at least interchangeable) and globally generalizable, externally validated 
products are needed. Robust studies to fully elucidate the entire cost versus the cost 
savings from increased efficiency and improved clinical results must be conducted. 
This will help to inform both healthcare networks and payers on the true value of AI, 
thus facilitating the creation of a framework for reimbursement and funding meth-
ods. In short, greater communication and consensus among developers, healthcare 
systems, physicians, and payers will allow for the true potential of AI to be realized as 
a health solution.
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