1,206 research outputs found

    Exploiting programmable architectures for WiFi/ZigBee inter-technology cooperation

    Get PDF
    The increasing complexity of wireless standards has shown that protocols cannot be designed once for all possible deployments, especially when unpredictable and mutating interference situations are present due to the coexistence of heterogeneous technologies. As such, flexibility and (re)programmability of wireless devices is crucial in the emerging scenarios of technology proliferation and unpredictable interference conditions. In this paper, we focus on the possibility to improve coexistence performance of WiFi and ZigBee networks by exploiting novel programmable architectures of wireless devices able to support run-time modifications of medium access operations. Differently from software-defined radio (SDR) platforms, in which every function is programmed from scratch, our programmable architectures are based on a clear decoupling between elementary commands (hard-coded into the devices) and programmable protocol logic (injected into the devices) according to which the commands execution is scheduled. Our contribution is two-fold: first, we designed and implemented a cross-technology time division multiple access (TDMA) scheme devised to provide a global synchronization signal and allocate alternating channel intervals to WiFi and ZigBee programmable nodes; second, we used the OMF control framework to define an interference detection and adaptation strategy that in principle could work in independent and autonomous networks. Experimental results prove the benefits of the envisioned solution

    WiSHFUL : enabling coordination solutions for managing heterogeneous wireless networks

    Get PDF
    The paradigm shift toward the Internet of Things results in an increasing number of wireless applications being deployed. Since many of these applications contend for the same physical medium (i.e., the unlicensed ISM bands), there is a clear need for beyond-state-of-the-art solutions that coordinate medium access across heterogeneous wireless networks. Such solutions demand fine-grained control of each device and technology, which currently requires a substantial amount of effort given that the control APIs are different on each hardware platform, technology, and operating system. In this article an open architecture is proposed that overcomes this hurdle by providing unified programming interfaces (UPIs) for monitoring and controlling heterogeneous devices and wireless networks. The UPIs enable creation and testing of advanced coordination solutions while minimizing the complexity and implementation overhead. The availability of such interfaces is also crucial for the realization of emerging software-defined networking approaches for heterogeneous wireless networks. To illustrate the use of UPIs, a showcase is presented that simultaneously changes the MAC behavior of multiple wireless technologies in order to mitigate cross-technology interference taking advantage of the enhanced monitoring and control functionality. An open source implementation of the UPIs is available for wireless researchers and developers. It currently supports multiple widely used technologies (IEEE 802.11, IEEE 802.15.4, LTE), operating systems (Linux, Windows, Contiki), and radio platforms (Atheros, Broadcom, CC2520, Xylink Zynq,), as well as advanced reconfigurable radio systems (IRIS, GNURadio, WMP, TAISC)

    Multi-channel Utilization Algorithms for IEEE 802.15.4 based Wireless Network: A Survey

    Get PDF
    In the pass years, IEEE 802.15.4 based Wireless Sensor Networks (WSNs) have received great attention and have been employed in many areas such as inventory checking, local monitoring and alarming etc. One of the key issues affecting WSN's system performance is interference caused by devices operating with the same or different standards on the overlapping frequency within the 2.4 GHz ISM band. This paper addresses the coexistence problem, which is the key motivation for the necessity of flexible channel usage. A review of existing approaches being proposed to date supporting multi-channel utilization in IEEE 802.15.4 based WSNs is categorized and discussed. The paper also presents major functionalities needed in implementing multi-channel utilization

    Throughput Analysis of Primary and Secondary Networks in a Shared IEEE 802.11 System

    Full text link
    In this paper, we analyze the coexistence of a primary and a secondary (cognitive) network when both networks use the IEEE 802.11 based distributed coordination function for medium access control. Specifically, we consider the problem of channel capture by a secondary network that uses spectrum sensing to determine the availability of the channel, and its impact on the primary throughput. We integrate the notion of transmission slots in Bianchi's Markov model with the physical time slots, to derive the transmission probability of the secondary network as a function of its scan duration. This is used to obtain analytical expressions for the throughput achievable by the primary and secondary networks. Our analysis considers both saturated and unsaturated networks. By performing a numerical search, the secondary network parameters are selected to maximize its throughput for a given level of protection of the primary network throughput. The theoretical expressions are validated using extensive simulations carried out in the Network Simulator 2. Our results provide critical insights into the performance and robustness of different schemes for medium access by the secondary network. In particular, we find that the channel captures by the secondary network does not significantly impact the primary throughput, and that simply increasing the secondary contention window size is only marginally inferior to silent-period based methods in terms of its throughput performance.Comment: To appear in IEEE Transactions on Wireless Communication

    60 GHz MAC Standardization: Progress and Way Forward

    Full text link
    Communication at mmWave frequencies has been the focus in the recent years. In this paper, we discuss standardization efforts in 60 GHz short range communication and the progress therein. We compare the available standards in terms of network architecture, medium access control mechanisms, physical layer techniques and several other features. Comparative analysis indicates that IEEE 802.11ad is likely to lead the short-range indoor communication at 60 GHz. We bring to the fore resolved and unresolved issues pertaining to robust WLAN connectivity at 60 GHz. Further, we discuss the role of mmWave bands in 5G communication scenarios and highlight the further efforts required in terms of research and standardization
    corecore