96 research outputs found

    Survey of Spectrum Sharing for Inter-Technology Coexistence

    Full text link
    Increasing capacity demands in emerging wireless technologies are expected to be met by network densification and spectrum bands open to multiple technologies. These will, in turn, increase the level of interference and also result in more complex inter-technology interactions, which will need to be managed through spectrum sharing mechanisms. Consequently, novel spectrum sharing mechanisms should be designed to allow spectrum access for multiple technologies, while efficiently utilizing the spectrum resources overall. Importantly, it is not trivial to design such efficient mechanisms, not only due to technical aspects, but also due to regulatory and business model constraints. In this survey we address spectrum sharing mechanisms for wireless inter-technology coexistence by means of a technology circle that incorporates in a unified, system-level view the technical and non-technical aspects. We thus systematically explore the spectrum sharing design space consisting of parameters at different layers. Using this framework, we present a literature review on inter-technology coexistence with a focus on wireless technologies with equal spectrum access rights, i.e. (i) primary/primary, (ii) secondary/secondary, and (iii) technologies operating in a spectrum commons. Moreover, we reflect on our literature review to identify possible spectrum sharing design solutions and performance evaluation approaches useful for future coexistence cases. Finally, we discuss spectrum sharing design challenges and suggest future research directions

    Cellular Wireless Networks in the Upper Mid-Band

    Full text link
    The upper mid-band -- roughly from 7 to 24 GHz -- has attracted considerable recent interest for new cellular services. This frequency range has vastly more spectrum than the highly congested bands below 7 GHz while offering more favorable propagation and coverage than the millimeter wave (mmWave) frequencies. Realizing the full potential of these bands, however, will require fundamental changes to the design of cellular systems. Most importantly, spectrum will likely need to be shared with incumbents including communication satellites, military RADAR, and radio astronomy. Also, due to the wide bandwidth, directional nature of transmission, and intermittent occupancy of incumbents, cellular systems will need to be agile to sense and intelligently use large spatial and bandwidth degrees of freedom. This paper attempts to provide an initial assessment of the feasibility and potential gains of wideband cellular systems operating in the upper mid-band. The study includes: (1) a system study to assess potential gains of multi-band systems in a representative dense urban environment; (2) propagation calculations to assess potential cross interference between satellites and terrestrial cellular services; and (3) design and evaluation of a compact multi-band antenna array structure. Leveraging these preliminary results, we identify potential future research directions to realize next-generation systems in these frequencies.Comment: 11 page

    Context-Aware Spectrum Coexistence of Terrestrial Beyond 5G Networks in Satellite Bands

    Full text link
    Spectrum sharing between terrestrial 5G and incumbent networks in the satellite bands presents a promising avenue to satisfy the ever-increasing bandwidth demand of the next-generation wireless networks. However, protecting incumbent operations from harmful interference poses a fundamental challenge in accommodating terrestrial broadband cellular networks in the satellite bands. State-of-the-art spectrum-sharing policies usually consider several worst-case assumptions and ignore site-specific contextual factors in making spectrum-sharing decisions, and thus, often results in under-utilization of the shared band for the secondary licensees. To address such limitations, this paper introduces CAT3S (Context-Aware Terrestrial-Satellite Spectrum Sharing) framework that empowers the coexisting terrestrial 5G network to maximize utilization of the shared satellite band without creating harmful interference to the incumbent links by exploiting the contextual factors. CAT3S consists of the following two components: (i) context-acquisition unit to collect and process essential contextual information for spectrum sharing and (ii) context-aware base station (BS) control unit to optimize the set of operational BSs and their operation parameters (i.e., transmit power and active beams per sector). To evaluate the performance of the CAT3S, a realistic spectrum coexistence case study over the 12 GHz band is considered. Experiment results demonstrate that the proposed CAT3S achieves notably higher spectrum utilization than state-of-the-art spectrum-sharing policies in different weather contexts
    corecore