27 research outputs found

    Computability Theory

    Get PDF
    Computability and computable enumerability are two of the fundamental notions of mathematics. Interest in effectiveness is already apparent in the famous Hilbert problems, in particular the second and tenth, and in early 20th century work of Dehn, initiating the study of word problems in group theory. The last decade has seen both completely new subareas develop as well as remarkable growth in two-way interactions between classical computability theory and areas of applications. There is also a great deal of work on algorithmic randomness, reverse mathematics, computable analysis, and in computable structure theory/computable model theory. The goal of this workshop is to bring together researchers representing different aspects of computability theory to discuss recent advances, and to stimulate future work

    Point Degree Spectra of Represented Spaces

    Get PDF

    Rethinking the notion of oracle: A link between synthetic descriptive set theory and effective topos theory

    Full text link
    We present three different perspectives of oracle. First, an oracle is a blackbox; second, an oracle is an endofunctor on the category of represented spaces; and third, an oracle is an operation on the object of truth-values. These three perspectives create a link between the three fields, computability theory, synthetic descriptive set theory, and effective topos theory

    A journey through computability, topology and analysis

    Get PDF
    This thesis is devoted to the exploration of the complexity of some mathematical problems using the framework of computable analysis and descriptive set theory. We will especially focus on Weihrauch reducibility, as a means to compare the uniform computational strength of problems. After a short introduction of the relevant background notions, we investigate the uniform computational content of the open and clopen Ramsey theorems. In particular, since there is not a canonical way to phrase these theorems as multi-valued functions, we identify 8 different multi-valued functions (5 corresponding to the open Ramsey theorem and 3 corresponding to the clopen Ramsey theorem) and study their degree from the point of view of Weihrauch, strong Weihrauch and arithmetic Weihrauch reducibility. We then discuss some new operators on multi-valued functions and study their algebraic properties and the relations with other previously studied operators on problems. These notions turn out to be extremely relevant when exploring the Weihrauch degree of the problem DS of computing descending sequences in ill-founded linear orders. They allow us to show that DS, and the Weihrauch equivalent problem BS of finding bad sequences through non-well quasi-orders, while being very "hard" to solve, are rather weak in terms of uniform computational strength. We then generalize DS and BS by considering Gamma-presented orders, where Gamma is a Borel pointclass or Delta11, Sigma11, Pi11. We study the obtained DS-hierarchy and BS-hierarchy of problems in comparison with the (effective) Baire hierarchy and show that they do not collapse at any finite level. Finally, we focus on the characterization, from the point of view of descriptive set theory, of some conditions involving the notions of Hausdorff/Fourier dimension and of Salem sets. We first work in the hyperspace K([0,1]) of compact subsets of [0,1] and show that the closed Salem sets form a Pi03-complete family. This is done by characterizing the complexity of the family of sets having sufficiently large Hausdorff or Fourier dimension. We also show that the complexity does not change if we increase the dimension of the ambient space and work in K([0,1]^d). We also generalize the results by relaxing the compactness of the ambient space, and show that the closed Salem sets are still Pi03-complete when we endow K(R^d) with the Fell topology. A similar result holds also for the Vietoris topology. We conclude by showing how these results can be used to characterize the Weihrauch degree of the functions computing the Hausdorff and Fourier dimensions
    corecore