66,803 research outputs found

    Integrated optical devices based on broadband epsilon-near-zero meta-atoms

    Get PDF
    We verify the feasibility of the proposed theoretical strategy for designing the broadband near-zero permittivity (ENZ) metamaterial at optical frequency range with numerical simulations. In addition, the designed broadband ENZ stack are used as meta-atoms to build functional nanophotonic devices with extraordinary properties, including an ultranarrow electromagnetic energy tunneling channel and an ENZ concave focusing lens. c 2012 Optical Society of America OCIS codes: 160.2710, 160.3918, 160.4236, 310.4165 Recently, materials with near-zero permittivity (ENZ) have been widely investigated in theory and engineering due to their anomalous electromagnetic properties. Owing to the exotic features, ENZ materials possess a great deal of exciting applications, such as directive antenna and waveguide which is related to the thickness of each layer (d i ) and the metallic inclusion filling ratio (f i ) in each layer. The s-parameter is defined as s = ε 2 /(ε 2 − ε 1 ). On the other hand, according to the Bergman spectral representation, the effective permittivity of the stack can be mathematically characterized as with a pair of spectral factors: the singularity (s i ) and the spectral density (F i ) corresponding to the operating frequency range and the desired effective permittivity. For the same ENZ stack, Eqs. The effective permittivity of the ENZ stack is retrieved from its reflectance S 11 and transmittance S 21 , according to the algorithm in Ref

    Power and Bandwidth Efficient Coded Modulation for Linear Gaussian Channels

    Get PDF
    A scheme for power- and bandwidth-efficient communication on the linear Gaussian channel is proposed. A scenario is assumed in which the channel is stationary in time and the channel characteristics are known at the transmitter. Using interleaving, the linear Gaussian channel with its intersymbol interference is decomposed into a set of memoryless subchannels. Each subchannel is further decomposed into parallel binary memoryless channels, to enable the use of binary codes. Code bits from these parallel binary channels are mapped to higher-order near-Gaussian distributed constellation symbols. At the receiver, the code bits are detected and decoded in a multistage fashion. The scheme is demonstrated on a simple instance of the linear Gaussian channel. Simulations show that the scheme achieves reliable communication at 1.2 dB away from the Shannon capacity using a moderate number of subchannels

    LAS-CDMA using Various Time Domain Chip-Waveforms

    No full text
    LAS CDMA exhibits a significantly better performance than that of classic random code based DS-CDMA, when operating in a quasi-synchronous scenario. Classic frequency-domain raised cosine Nyquist filtering is known to show the best possible performance, but its complexity may be excessive in highchip-rate systems. Hence in these systems often low-complexity time-domain waveform shaping is considered. Motivated by this fact, the achievable performance of LAS-CDMA is investigated in conjunction with three different time-limited chipwaveforms, which exhibit an infinite bandwidth. The raised cosine time-domain waveform based DS-CDMA system is shown to achieve the best performance in the context of a strictly band-limited system, because its frequency-domain spectral side-lobes are relatively low

    Rotating star initial data for a constrained scheme in numerical relativity

    Full text link
    A new numerical code for computing stationary axisymmetric rapidly rotating stars in general relativity is presented. The formulation is based on a fully constrained-evolution scheme for 3+1 numerical relativity using the Dirac gauge and maximal slicing. We use both the polytropic and MIT bag model equations of state to demonstrate that the code can construct rapidly rotating neutron star and strange star models. We compare numerical models obtained by our code and a well-established code, which uses a different gauge condition, and show that the two codes agree to high accuracy.Comment: Minor changes and one figure added. Version accepted for publication in Class. Quant. Gra

    Computing a k-sparse n-length Discrete Fourier Transform using at most 4k samples and O(k log k) complexity

    Full text link
    Given an nn-length input signal \mbf{x}, it is well known that its Discrete Fourier Transform (DFT), \mbf{X}, can be computed in O(nlogn)O(n \log n) complexity using a Fast Fourier Transform (FFT). If the spectrum \mbf{X} is exactly kk-sparse (where k<<nk<<n), can we do better? We show that asymptotically in kk and nn, when kk is sub-linear in nn (precisely, knδk \propto n^{\delta} where 0<δ<10 < \delta <1), and the support of the non-zero DFT coefficients is uniformly random, we can exploit this sparsity in two fundamental ways (i) {\bf {sample complexity}}: we need only M=rkM=rk deterministically chosen samples of the input signal \mbf{x} (where r<4r < 4 when 0<δ<0.990 < \delta < 0.99); and (ii) {\bf {computational complexity}}: we can reliably compute the DFT \mbf{X} using O(klogk)O(k \log k) operations, where the constants in the big Oh are small and are related to the constants involved in computing a small number of DFTs of length approximately equal to the sparsity parameter kk. Our algorithm succeeds with high probability, with the probability of failure vanishing to zero asymptotically in the number of samples acquired, MM.Comment: 36 pages, 15 figures. To be presented at ISIT-2013, Istanbul Turke

    Design and performance of CDMA codes for multiuser communications

    Get PDF
    Walsh and Gold sequences are fixed power codes and are widely used in multiuser CDMA communications. Their popularity is due to the ease of implementation. Availability of these code sets is limited because of their generating kernels. Emerging radio applications like sensor networks or multiple service types in mobile and peer-to-peer communications networks might benefit from flexibilities in code lengths and possible allocation methodologies provided by large set of code libraries. Walsh codes are linear phase and zero mean with unique number of zero crossings for each sequence within the set. DC sequence is part of the Walsh code set. Although these features are quite beneficial for source coding applications, they are not essential for spread spectrum communications. By relaxing these unnecessary constraints, new sets of orthogonal binary user codes (Walsh-like) for different lengths are obtained with comparable BER performance to standard code sets in all channel conditions. Although fixed power codes are easier to implement, mathematically speaking, varying power codes offer lower inter- and intra-code correlations. With recent advances in RF power amplifier design, it might be possible to implement multiple level orthogonal spread spectrum codes for an efficient direct sequence CDMA system. A number of multiple level integer codes have been generated by brute force search method for different lengths to highlight possible BER performance improvement over binary codes. An analytical design method has been developed for multiple level (variable power) spread spectrum codes using Karhunen-Loeve Transform (KLT) technique. Eigen decomposition technique is used to generate spread spectrum basis functions that are jointly spread in time and frequency domains for a given covariance matrix or power spectral density function. Since this is a closed form solution for orthogonal code set design, many options are possible for different code lengths. Design examples and performance simulations showed that spread spectrum KLT codes outperform or closely match with the standard codes employed in present CDMA systems. Hybrid (Kronecker) codes are generated by taking Kronecker product of two spreading code families in a two-stage orthogonal transmultiplexer structure and are judiciously allocated to users such that their inter-code correlations are minimized. It is shown that, BER performance of hybrid codes with a code selection and allocation algorithm is better than the performance of standard Walsh or Gold code sets for asynchronous CDMA communications. A redundant spreading code technique is proposed utilizing multiple stage orthogonal transmultiplexer structure where each user has its own pre-multiplexer. Each data bit is redundantly spread in the pre-multiplexer stage of a user with odd number of redundancy, and at the receiver, majority logic decision is employed on the detected redundant bits to obtain overall performance improvement. Simulation results showed that redundant spreading method improves BER performance significantly at low SNR channel conditions
    corecore