9,178 research outputs found

    Codes Correcting Two Deletions

    Full text link
    In this work, we investigate the problem of constructing codes capable of correcting two deletions. In particular, we construct a code that requires redundancy approximately 8 log n + O(log log n) bits of redundancy, where n is the length of the code. To the best of the author's knowledge, this represents the best known construction in that it requires the lowest number of redundant bits for a code correcting two deletions

    Deletion codes in the high-noise and high-rate regimes

    Get PDF
    The noise model of deletions poses significant challenges in coding theory, with basic questions like the capacity of the binary deletion channel still being open. In this paper, we study the harder model of worst-case deletions, with a focus on constructing efficiently decodable codes for the two extreme regimes of high-noise and high-rate. Specifically, we construct polynomial-time decodable codes with the following trade-offs (for any eps > 0): (1) Codes that can correct a fraction 1-eps of deletions with rate poly(eps) over an alphabet of size poly(1/eps); (2) Binary codes of rate 1-O~(sqrt(eps)) that can correct a fraction eps of deletions; and (3) Binary codes that can be list decoded from a fraction (1/2-eps) of deletions with rate poly(eps) Our work is the first to achieve the qualitative goals of correcting a deletion fraction approaching 1 over bounded alphabets, and correcting a constant fraction of bit deletions with rate aproaching 1. The above results bring our understanding of deletion code constructions in these regimes to a similar level as worst-case errors

    Quantum Deletion Codes Derived From Quantum Reed-Solomon Codes

    Full text link
    This manuscript presents a construction method for quantum codes capable of correcting multiple deletion errors. By introducing two new alogorithms, the alternating sandwich mapping and the block error locator, the proposed method reduces deletion error correction to erasure error correction. Unlike previous quantum deletion error-correcting codes, our approach enables flexible code rates and eliminates the requirement of knowing the number of deletions

    Coding for Racetrack Memories

    Full text link
    Racetrack memory is a new technology which utilizes magnetic domains along a nanoscopic wire in order to obtain extremely high storage density. In racetrack memory, each magnetic domain can store a single bit of information, which can be sensed by a reading port (head). The memory has a tape-like structure which supports a shift operation that moves the domains to be read sequentially by the head. In order to increase the memory's speed, prior work studied how to minimize the latency of the shift operation, while the no less important reliability of this operation has received only a little attention. In this work we design codes which combat shift errors in racetrack memory, called position errors. Namely, shifting the domains is not an error-free operation and the domains may be over-shifted or are not shifted, which can be modeled as deletions and sticky insertions. While it is possible to use conventional deletion and insertion-correcting codes, we tackle this problem with the special structure of racetrack memory, where the domains can be read by multiple heads. Each head outputs a noisy version of the stored data and the multiple outputs are combined in order to reconstruct the data. Under this paradigm, we will show that it is possible to correct, with at most a single bit of redundancy, dd deletions with d+1d+1 heads if the heads are well-separated. Similar results are provided for burst of deletions, sticky insertions and combinations of both deletions and sticky insertions
    • …
    corecore