394 research outputs found

    Cryptanalysis of public-key cryptosystems that use subcodes of algebraic geometry codes

    Get PDF
    We give a polynomial time attack on the McEliece public key cryptosystem based on subcodes of algebraic geometry (AG) codes. The proposed attack reposes on the distinguishability of such codes from random codes using the Schur product. Wieschebrink treated the genus zero case a few years ago but his approach cannot be extent straightforwardly to other genera. We address this problem by introducing and using a new notion, which we call the t-closure of a code

    Using LDGM Codes and Sparse Syndromes to Achieve Digital Signatures

    Full text link
    In this paper, we address the problem of achieving efficient code-based digital signatures with small public keys. The solution we propose exploits sparse syndromes and randomly designed low-density generator matrix codes. Based on our evaluations, the proposed scheme is able to outperform existing solutions, permitting to achieve considerable security levels with very small public keys.Comment: 16 pages. The final publication is available at springerlink.co

    Cryptanalysis of McEliece Cryptosystem Based on Algebraic Geometry Codes and their subcodes

    Full text link
    We give polynomial time attacks on the McEliece public key cryptosystem based either on algebraic geometry (AG) codes or on small codimensional subcodes of AG codes. These attacks consist in the blind reconstruction either of an Error Correcting Pair (ECP), or an Error Correcting Array (ECA) from the single data of an arbitrary generator matrix of a code. An ECP provides a decoding algorithm that corrects up to d1g2\frac{d^*-1-g}{2} errors, where dd^* denotes the designed distance and gg denotes the genus of the corresponding curve, while with an ECA the decoding algorithm corrects up to d12\frac{d^*-1}{2} errors. Roughly speaking, for a public code of length nn over Fq\mathbb F_q, these attacks run in O(n4log(n))O(n^4\log (n)) operations in Fq\mathbb F_q for the reconstruction of an ECP and O(n5)O(n^5) operations for the reconstruction of an ECA. A probabilistic shortcut allows to reduce the complexities respectively to O(n3+εlog(n))O(n^{3+\varepsilon} \log (n)) and O(n4+ε)O(n^{4+\varepsilon}). Compared to the previous known attack due to Faure and Minder, our attack is efficient on codes from curves of arbitrary genus. Furthermore, we investigate how far these methods apply to subcodes of AG codes.Comment: A part of the material of this article has been published at the conferences ISIT 2014 with title "A polynomial time attack against AG code based PKC" and 4ICMCTA with title "Crypt. of PKC that use subcodes of AG codes". This long version includes detailed proofs and new results: the proceedings articles only considered the reconstruction of ECP while we discuss here the reconstruction of EC

    On Burst Error Correction and Storage Security of Noisy Data

    Full text link
    Secure storage of noisy data for authentication purposes usually involves the use of error correcting codes. We propose a new model scenario involving burst errors and present for that several constructions.Comment: to be presented at MTNS 201
    corecore