1,189,322 research outputs found

    Smart Ticket Protection: An Architecture for Cyber-Protecting Physical Tickets Using Digitally Signed Random Pattern Markers

    Full text link
    In order to counter forgeries of tickets for public transport or mass events, a method to validate them, using printed unique random pattern markers was developed. These markers themselves are unforgeable by their physically random distribution. To assure their authenticity, however, they have to be cryptographically protected and equipped with an environment for successful validation, combining physical and cyber security protection. This paper describes an architecture for cryptographically protecting these markers, which are stored in Aztec codes on physical tickets, in order to assure that only an authorized printer can generate a valid Aztec code of such a pattern, thus providing forge protection in combination with the randomness and uniqueness of the pattern. Nevertheless, the choice of the signature algorithm is heavily constrained by the sizes of the pattern, ticket provider data, metadata and the signature confronted by the data volume the code hold. Therefore, this paper also defines an example for a signature layout for the proposed architecture. This allows for a lightweight ticket validation system that is both physically and cryptographically secured to form a smart solution for mass access verification for both shorter to longer periods at relatively low cost.Comment: 4 pages, 2 figure

    Building and Delivering the Virtual World: Commercializing Services for Internet Access

    Get PDF
    This study analyzes the service offerings of Internet Service Providers (ISPs), the commercial suppliers of Internet access in the United States. It presents data on the services of 2089 ISPs in the summer of 1998. By this time, the Internet access industry had undergone its first wave of entry and many ISPs had begun to offer services other than basic access. This paper develops an Internet access industry product code which classifies these services. Significant heterogeneity across ISPs is found in the propensity to offer these services, a pattern with an unconditional urban/rural difference. Most of the explained variance in behavior arises from firm-specific factors, with only weak evidence of location-specific factors for some services. These findings provide a window to the variety of approaches taken to build viable businesses organizations, a vital structural feature of this young market.

    The HPCG benchmark: analysis, shared memory preliminary improvements and evaluation on an Arm-based platform

    Get PDF
    The High-Performance Conjugate Gradient (HPCG) benchmark complements the LINPACK benchmark in the performance evaluation coverage of large High-Performance Computing (HPC) systems. Due to its lower arithmetic intensity and higher memory pressure, HPCG is recognized as a more representative benchmark for data-center and irregular memory access pattern workloads, therefore its popularity and acceptance is raising within the HPC community. As only a small fraction of the reference version of the HPCG benchmark is parallelized with shared memory techniques (OpenMP), we introduce in this report two OpenMP parallelization methods. Due to the increasing importance of Arm architecture in the HPC scenario, we evaluate our HPCG code at scale on a state-of-the-art HPC system based on Cavium ThunderX2 SoC. We consider our work as a contribution to the Arm ecosystem: along with this technical report, we plan in fact to release our code for boosting the tuning of the HPCG benchmark within the Arm community.Postprint (author's final draft

    Privacy-Preserving Reengineering of Model-View-Controller Application Architectures Using Linked Data

    Get PDF
    When a legacy system’s software architecture cannot be redesigned, implementing additional privacy requirements is often complex, unreliable and costly to maintain. This paper presents a privacy-by-design approach to reengineer web applications as linked data-enabled and implement access control and privacy preservation properties. The method is based on the knowledge of the application architecture, which for the Web of data is commonly designed on the basis of a model-view-controller pattern. Whereas wrapping techniques commonly used to link data of web applications duplicate the security source code, the new approach allows for the controlled disclosure of an application’s data, while preserving non-functional properties such as privacy preservation. The solution has been implemented and compared with existing linked data frameworks in terms of reliability, maintainability and complexity

    Chip Interleaving and its Optimization for PAPR Reduction in MC-CDMA

    Get PDF
    This paper analyzes the usability of peak to average power ratio (PAPR) reduction in multicarrier code division multiple access (MC-CDMA) by the chip interleaving optimization. This means chip position formatting to PAPR minimization. One chip interleaving pattern is used for all users in system (all spreading sequences). Dependency on number of subcarriers and spreading sequence length is simulated. The impact on amplitude histogram is presented and relation to random interleaving pattern is shown
    corecore