4,264 research outputs found

    Resource Allocation Frameworks for Network-coded Layered Multimedia Multicast Services

    Get PDF
    The explosive growth of content-on-the-move, such as video streaming to mobile devices, has propelled research on multimedia broadcast and multicast schemes. Multi-rate transmission strategies have been proposed as a means of delivering layered services to users experiencing different downlink channel conditions. In this paper, we consider Point-to-Multipoint layered service delivery across a generic cellular system and improve it by applying different random linear network coding approaches. We derive packet error probability expressions and use them as performance metrics in the formulation of resource allocation frameworks. The aim of these frameworks is both the optimization of the transmission scheme and the minimization of the number of broadcast packets on each downlink channel, while offering service guarantees to a predetermined fraction of users. As a case of study, our proposed frameworks are then adapted to the LTE-A standard and the eMBMS technology. We focus on the delivery of a video service based on the H.264/SVC standard and demonstrate the advantages of layered network coding over multi-rate transmission. Furthermore, we establish that the choice of both the network coding technique and resource allocation method play a critical role on the network footprint, and the quality of each received video layer.Comment: IEEE Journal on Selected Areas in Communications - Special Issue on Fundamental Approaches to Network Coding in Wireless Communication Systems. To appea

    On Distributed Linear Estimation With Observation Model Uncertainties

    Full text link
    We consider distributed estimation of a Gaussian source in a heterogenous bandwidth constrained sensor network, where the source is corrupted by independent multiplicative and additive observation noises, with incomplete statistical knowledge of the multiplicative noise. For multi-bit quantizers, we derive the closed-form mean-square-error (MSE) expression for the linear minimum MSE (LMMSE) estimator at the FC. For both error-free and erroneous communication channels, we propose several rate allocation methods named as longest root to leaf path, greedy and integer relaxation to (i) minimize the MSE given a network bandwidth constraint, and (ii) minimize the required network bandwidth given a target MSE. We also derive the Bayesian Cramer-Rao lower bound (CRLB) and compare the MSE performance of our proposed methods against the CRLB. Our results corroborate that, for low power multiplicative observation noises and adequate network bandwidth, the gaps between the MSE of our proposed methods and the CRLB are negligible, while the performance of other methods like individual rate allocation and uniform is not satisfactory

    Resource Allocation in a MAC with and without security via Game Theoretic Learning

    Full text link
    In this paper a KK-user fading multiple access channel with and without security constraints is studied. First we consider a F-MAC without the security constraints. Under the assumption of individual CSI of users, we propose the problem of power allocation as a stochastic game when the receiver sends an ACK or a NACK depending on whether it was able to decode the message or not. We have used Multiplicative weight no-regret algorithm to obtain a Coarse Correlated Equilibrium (CCE). Then we consider the case when the users can decode ACK/NACK of each other. In this scenario we provide an algorithm to maximize the weighted sum-utility of all the users and obtain a Pareto optimal point. PP is socially optimal but may be unfair to individual users. Next we consider the case where the users can cooperate with each other so as to disagree with the policy which will be unfair to individual user. We then obtain a Nash bargaining solution, which in addition to being Pareto optimal, is also fair to each user. Next we study a KK-user fading multiple access wiretap Channel with CSI of Eve available to the users. We use the previous algorithms to obtain a CCE, PP and a NBS. Next we consider the case where each user does not know the CSI of Eve but only its distribution. In that case we use secrecy outage as the criterion for the receiver to send an ACK or a NACK. Here also we use the previous algorithms to obtain a CCE, PP or a NBS. Finally we show that our algorithms can be extended to the case where a user can transmit at different rates. At the end we provide a few examples to compute different solutions and compare them under different CSI scenarios.Comment: 27 pages, 12 figures. Part of the paper was presented in 2016 IEEE Information theory and applicaitons (ITA) Workshop, San Diego, USA in Feb. 2016. Submitted to journa

    A Hierarchical Framework of Cloud Resource Allocation and Power Management Using Deep Reinforcement Learning

    Full text link
    Automatic decision-making approaches, such as reinforcement learning (RL), have been applied to (partially) solve the resource allocation problem adaptively in the cloud computing system. However, a complete cloud resource allocation framework exhibits high dimensions in state and action spaces, which prohibit the usefulness of traditional RL techniques. In addition, high power consumption has become one of the critical concerns in design and control of cloud computing systems, which degrades system reliability and increases cooling cost. An effective dynamic power management (DPM) policy should minimize power consumption while maintaining performance degradation within an acceptable level. Thus, a joint virtual machine (VM) resource allocation and power management framework is critical to the overall cloud computing system. Moreover, novel solution framework is necessary to address the even higher dimensions in state and action spaces. In this paper, we propose a novel hierarchical framework for solving the overall resource allocation and power management problem in cloud computing systems. The proposed hierarchical framework comprises a global tier for VM resource allocation to the servers and a local tier for distributed power management of local servers. The emerging deep reinforcement learning (DRL) technique, which can deal with complicated control problems with large state space, is adopted to solve the global tier problem. Furthermore, an autoencoder and a novel weight sharing structure are adopted to handle the high-dimensional state space and accelerate the convergence speed. On the other hand, the local tier of distributed server power managements comprises an LSTM based workload predictor and a model-free RL based power manager, operating in a distributed manner.Comment: accepted by 37th IEEE International Conference on Distributed Computing (ICDCS 2017
    corecore