160 research outputs found

    New Game-Theoretic Convolutional Neural Network Applied for the Multi-Pursuer Multi-Evader Game

    Get PDF
    Pursuit-Evasion Game (PEG) can be defined as a set of agents known as pursuers, which cooperate with the aim forming dynamic coalitions to capture dynamic evader agents, while the evaders try to avoid this capture by moving in the environment according to specific velocities. The factor of capturing time was treated by various studies before, but remain the powerful tools used to satisfy this factor object of research. To improve the capturing time factor we proposed in this work a novel online decentralized coalition formation algorithm equipped with Convolutional Neural Network (CNN) and based on the Iterated Elimination of Dominated Strategies (IEDS). The coalition is formed such that the pursuer should learn at each iteration the approximator formation achieving the capture in the shortest time. The pursuerā€™s learning process depends on the features extracted by CNN at each iteration. The proposed supervised technique is compared through simulation, with the IEDS algorithm, AGR algorithm. Simulation results show that the proposed learning technique outperform the IEDS algorithm and the AGR algorithm with respect to the learning time which represents an important factor in a chasing game

    Multi-Agent Pursuit-Evasion Game Based on Organizational Architecture

    Get PDF
    Multi-agent coordination mechanisms are frequently used in pursuit-evasion games with the aim of enabling the coalitions of the pursuers and unifying their individual skills to deal with the complex tasks encountered. In this paper, we propose a coalition formation algorithm based on organizational principles and applied to the pursuit-evasion problem. In order to allow the alliances of the pursuers in different pursuit groups, we have used the concepts forming an organizational modeling framework known as YAMAM (Yet Another Multi Agent Model). Specifically, we have used the concepts Agent, Role, Task, and Skill, proposed in this model to develop a coalition formation algorithm to allow the optimal task sharing. To control the pursuers\u27 path planning in the environment as well as their internal development during the pursuit, we have used a Reinforcement learning method (Q-learning). Computer simulations reflect the impact of the proposed techniques

    Contributions to Game Theory and Management. Vol. III. Collected papers presented on the Third International Conference Game Theory and Management.

    Get PDF
    The collection contains papers accepted for the Third International Conference Game Theory and Management (June 24-26, 2009, St. Petersburg University, St. Petersburg, Russia). The presented papers belong to the field of game theory and its applications to management. The volume may be recommended for researches and post-graduate students of management, economic and applied mathematics departments.

    On the role and opportunities in teamwork design for advanced multi-robot search systems

    Get PDF
    Intelligent robotic systems are becoming ever more present in our lives across a multitude of domains such as industry, transportation, agriculture, security, healthcare and even education. Such systems enable humans to focus on the interesting and sophisticated tasks while robots accomplish tasks that are either too tedious, routine or potentially dangerous for humans to do. Recent advances in perception technologies and accompanying hardware, mainly attributed to rapid advancements in the deep-learning ecosystem, enable the deployment of robotic systems equipped with onboard sensors as well as the computational power to perform autonomous reasoning and decision making online. While there has been significant progress in expanding the capabilities of single and multi-robot systems during the last decades across a multitude of domains and applications, there are still many promising areas for research that can advance the state of cooperative searching systems that employ multiple robots. In this article, several prospective avenues of research in teamwork cooperation with considerable potential for advancement of multi-robot search systems will be visited and discussed. In previous works we have shown that multi-agent search tasks can greatly benefit from intelligent cooperation between team members and can achieve performance close to the theoretical optimum. The techniques applied can be used in a variety of domains including planning against adversarial opponents, control of forest fires and coordinating search-and-rescue missions. The state-of-the-art on methods of multi-robot search across several selected domains of application is explained, highlighting the pros and cons of each method, providing an up-to-date view on the current state of the domains and their future challenges
    • ā€¦
    corecore