37,591 research outputs found

    Digital image correlation (DIC) analysis of the 3 December 2013 Montescaglioso landslide (Basilicata, Southern Italy). Results from a multi-dataset investigation

    Get PDF
    Image correlation remote sensing monitoring techniques are becoming key tools for providing effective qualitative and quantitative information suitable for natural hazard assessments, specifically for landslide investigation and monitoring. In recent years, these techniques have been successfully integrated and shown to be complementary and competitive with more standard remote sensing techniques, such as satellite or terrestrial Synthetic Aperture Radar interferometry. The objective of this article is to apply the proposed in-depth calibration and validation analysis, referred to as the Digital Image Correlation technique, to measure landslide displacement. The availability of a multi-dataset for the 3 December 2013 Montescaglioso landslide, characterized by different types of imagery, such as LANDSAT 8 OLI (Operational Land Imager) and TIRS (Thermal Infrared Sensor), high-resolution airborne optical orthophotos, Digital Terrain Models and COSMO-SkyMed Synthetic Aperture Radar, allows for the retrieval of the actual landslide displacement field at values ranging from a few meters (2–3 m in the north-eastern sector of the landslide) to 20–21 m (local peaks on the central body of the landslide). Furthermore, comprehensive sensitivity analyses and statistics-based processing approaches are used to identify the role of the background noise that affects the whole dataset. This noise has a directly proportional relationship to the different geometric and temporal resolutions of the processed imagery. Moreover, the accuracy of the environmental-instrumental background noise evaluation allowed the actual displacement measurements to be correctly calibrated and validated, thereby leading to a better definition of the threshold values of the maximum Digital Image Correlation sub-pixel accuracy and reliability (ranging from 1/10 to 8/10 pixel) for each processed dataset

    Predictions for the heavy-ion programme at the Large Hadron Collider

    Full text link
    I review the main predictions for the heavy-ion programme at the Large Hadron Collider (LHC) at CERN, as available in early April 2009. I begin by remembering the standard claims made in view of the experimental data measured at the Super Proton Synchrotron (SPS) at CERN and at the Relativistic Heavy Ion Collider (RHIC) at the BNL. These claims will be used for later discussion of the new opportunities at the LHC. Next I review the generic, qualitative expectations for the LHC. Then I turn to quantitative predictions: First I analyze observables which characterize directly the medium produced in the collisions - bulk observables or soft probes -: multiplicities, collective flow, hadrochemistry at low transverse momentum, correlations and fluctuations. Second, I move to calibrated probes of the medium i.e. typically those whose expectation in the absence of any medium can be described in Quantum Chromodynamics (QCD) using perturbative techniques (pQCD), usually called hard probes. I discuss particle production at large transverse momentum and jets, heavy-quark and quarkonium production, and photons and dileptons. Finally, after a brief review of pA collisions, I end with a summary and a discussion about the potentiality of the measurements at the LHC - particularly those made during the first run - to further substantiate or, on the contrary, disproof the picture of the medium that has arisen from the confrontation between the SPS and RHIC data, and theoretical models.Comment: 64 pages, 40 figures, 7 tables; invited review for "Quark-Gluon Plasma 4"; v2: small changes, some predictions and references added, final versio

    Unsupervised Diverse Colorization via Generative Adversarial Networks

    Full text link
    Colorization of grayscale images has been a hot topic in computer vision. Previous research mainly focuses on producing a colored image to match the original one. However, since many colors share the same gray value, an input grayscale image could be diversely colored while maintaining its reality. In this paper, we design a novel solution for unsupervised diverse colorization. Specifically, we leverage conditional generative adversarial networks to model the distribution of real-world item colors, in which we develop a fully convolutional generator with multi-layer noise to enhance diversity, with multi-layer condition concatenation to maintain reality, and with stride 1 to keep spatial information. With such a novel network architecture, the model yields highly competitive performance on the open LSUN bedroom dataset. The Turing test of 80 humans further indicates our generated color schemes are highly convincible

    In-Flight CCD Distortion Calibration for Pushbroom Satellites Based on Subpixel Correlation

    Get PDF
    We describe a method that allows for accurate inflight calibration of the interior orientation of any pushbroom camera and that in particular solves the problem of modeling the distortions induced by charge coupled device (CCD) misalignments. The distortion induced on the ground by each CCD is measured using subpixel correlation between the orthorectified image to be calibrated and an orthorectified reference image that is assumed distortion free. Distortions are modeled as camera defects, which are assumed constant over time. Our results show that in-flight interior orientation calibration reduces internal camera biases by one order of magnitude. In particular, we fully characterize and model the Satellite Pour l'Observation de la Terre (SPOT) 4-HRV1 sensor, and we conjecture that distortions mostly result from the mechanical strain produced when the satellite was launched rather than from effects of on-orbit thermal variations or aging. The derived calibration models have been integrated to the software package Coregistration of Optically Sensed Images and Correlation (COSI-Corr), freely available from the Caltech Tectonics Observatory website. Such calibration models are particularly useful in reducing biases in digital elevation models (DEMs) generated from stereo matching and in improving the accuracy of change detection algorithms
    • 

    corecore