24,118 research outputs found

    Dirac shell quark-core model for the study of non-strange baryonic spectroscopy

    Full text link
    A Dirac shell model is developed for the study of baryon spectroscopy, taking into account the most relevant results of the quark-diquark models. The lack of translational invariance of the shell model is avoided, in the present work, by introducing a scalar-isoscalar fictitious particle that represents the origin of quark shell interaction; in this way the states of the system are eigenstates of the total momentum of the baryon. Only one-particle excitations are considered. A two-quark core takes the place of the diquark, while the third quark is excited to reproduce the baryonic resonances. For the N(939)N(939) and Δ(1232)\Delta(1232), that represent the ground states of the spectra, the three quarks are considered identical particles and the wave functions are completely antisymmetric. The model is used to calculate the spectra of the NN and Δ\Delta resonances and the nucleon magnetic moments. The results are compared to the present experimental data. Due to the presence of the core and to the one-particle excitations, the structure of the obtained spectra is analogous to that given by the quark-diquark models.Comment: To appear on Acta Physica Polonica

    Learning from Videos with Deep Convolutional LSTM Networks

    Full text link
    This paper explores the use of convolution LSTMs to simultaneously learn spatial- and temporal-information in videos. A deep network of convolutional LSTMs allows the model to access the entire range of temporal information at all spatial scales of the data. We describe our experiments involving convolution LSTMs for lipreading that demonstrate the model is capable of selectively choosing which spatiotemporal scales are most relevant for a particular dataset. The proposed deep architecture also holds promise in other applications where spatiotemporal features play a vital role without having to specifically cater the design of the network for the particular spatiotemporal features existent within the problem. For the Lip Reading in the Wild (LRW) dataset, our model slightly outperforms the previous state of the art (83.4% vs. 83.0%) and sets the new state of the art at 85.2% when the model is pretrained on the Lip Reading Sentences (LRS2) dataset

    Ultra-high energy neutrino dispersion in plasma and radiative transition νL→νR+γ\nu_L \to \nu_R + \gamma

    Full text link
    Qualitative analysis of additional energy of neutrino and antineutrino in plasma is performed. A general expression for the neutrino self-energy operator is obtained in the case of ultra-high energies when the local limit of the weak interaction is not valid. The neutrino and antineutrino additional energy in plasma is calculated using the dependence of the WW and ZZ--boson propagators on the momentum transferred. The kinematical region for the neutrino radiative transition (the so-called "neutrino spin light") is established for some important astrophysical cases. For high energy neutrino and antineutrino, dominating transition channels in plasma, νe+e+→W+\nu_e + e^+ \to W^+, νˉe+e−→W−\bar\nu_e + e^- \to W^- and νˉℓ+νℓ→Z\bar\nu_{\ell} + \nu_{\ell} \to Z, are indicated.Comment: 12 pages, LaTeX, 3 EPS figures, submitted to Int. J. Mod. Phys. A; version 2: typos corrected, presentation improved, the version to be publishe

    Evolving Indoor Navigational Strategies Using Gated Recurrent Units In NEAT

    Full text link
    Simultaneous Localisation and Mapping (SLAM) algorithms are expensive to run on smaller robotic platforms such as Micro-Aerial Vehicles. Bug algorithms are an alternative that use relatively little processing power, and avoid high memory consumption by not building an explicit map of the environment. Bug Algorithms achieve relatively good performance in simulated and robotic maze solving domains. However, because they are hand-designed, a natural question is whether they are globally optimal control policies. In this work we explore the performance of Neuroevolution - specifically NEAT - at evolving control policies for simulated differential drive robots carrying out generalised maze navigation. We extend NEAT to include Gated Recurrent Units (GRUs) to help deal with long term dependencies. We show that both NEAT and our NEAT-GRU can repeatably generate controllers that outperform I-Bug (an algorithm particularly well-suited for use in real robots) on a test set of 209 indoor maze like environments. We show that NEAT-GRU is superior to NEAT in this task but also that out of the 2 systems, only NEAT-GRU can continuously evolve successful controllers for a much harder task in which no bearing information about the target is provided to the agent

    Towards Finding Longer Proofs

    Full text link
    We present a reinforcement learning (RL) based guidance system for automated theorem proving geared towards Finding Longer Proofs (FLoP). FLoP focuses on generalizing from short proofs to longer ones of similar structure. To achieve that, FLoP uses state-of-the-art RL approaches that were previously not applied in theorem proving. In particular, we show that curriculum learning significantly outperforms previous learning-based proof guidance on a synthetic dataset of increasingly difficult arithmetic problems.Comment: 9 pages, 5 figure

    Preventing Posterior Collapse with Levenshtein Variational Autoencoder

    Full text link
    Variational autoencoders (VAEs) are a standard framework for inducing latent variable models that have been shown effective in learning text representations as well as in text generation. The key challenge with using VAEs is the {\it posterior collapse} problem: learning tends to converge to trivial solutions where the generators ignore latent variables. In our Levenstein VAE, we propose to replace the evidence lower bound (ELBO) with a new objective which is simple to optimize and prevents posterior collapse. Intuitively, it corresponds to generating a sequence from the autoencoder and encouraging the model to predict an optimal continuation according to the Levenshtein distance (LD) with the reference sentence at each time step in the generated sequence. We motivate the method from the probabilistic perspective by showing that it is closely related to optimizing a bound on the intractable Kullback-Leibler divergence of an LD-based kernel density estimator from the model distribution. With this objective, any generator disregarding latent variables will incur large penalties and hence posterior collapse does not happen. We relate our approach to policy distillation \cite{RossGB11} and dynamic oracles \cite{GoldbergN12}. By considering Yelp and SNLI benchmarks, we show that Levenstein VAE produces more informative latent representations than alternative approaches to preventing posterior collapse

    AMNet: Deep Atrous Multiscale Stereo Disparity Estimation Networks

    Full text link
    In this paper, a new deep learning architecture for stereo disparity estimation is proposed. The proposed atrous multiscale network (AMNet) adopts an efficient feature extractor with depthwise-separable convolutions and an extended cost volume that deploys novel stereo matching costs on the deep features. A stacked atrous multiscale network is proposed to aggregate rich multiscale contextual information from the cost volume which allows for estimating the disparity with high accuracy at multiple scales. AMNet can be further modified to be a foreground-background aware network, FBA-AMNet, which is capable of discriminating between the foreground and the background objects in the scene at multiple scales. An iterative multitask learning method is proposed to train FBA-AMNet end-to-end. The proposed disparity estimation networks, AMNet and FBA-AMNet, show accurate disparity estimates and advance the state of the art on the challenging Middlebury, KITTI 2012, KITTI 2015, and Sceneflow stereo disparity estimation benchmarks

    Towards Characterizing COVID-19 Awareness on Twitter

    Full text link
    The coronavirus (COVID-19) pandemic has significantly altered our lifestyles as we resort to minimize the spread through preventive measures such as social distancing and quarantine. An increasingly worrying aspect is the gap between the exponential disease spread and the delay in adopting preventive measures. This gap is attributed to the lack of awareness about the disease and its preventive measures. Nowadays, social media platforms (ie., Twitter) are frequently used to create awareness about major events, including COVID-19. In this paper, we use Twitter to characterize public awareness regarding COVID-19 by analyzing the information flow in the most affected countries. Towards that, we collect more than 46K trends and 622 Million tweets from the top twenty most affected countries to examine 1) the temporal evolution of COVID-19 related trends, 2) the volume of tweets and recurring topics in those trends, and 3) the user sentiment towards preventive measures. Our results show that countries with a lower pandemic spread generated a higher volume of trends and tweets to expedite the information flow and contribute to public awareness. We also observed that in those countries, the COVID-19 related trends were generated before the sharp increase in the number of cases, indicating a preemptive attempt to notify users about the potential threat. Finally, we noticed that in countries with a lower spread, users had a positive sentiment towards COVID-19 preventive measures. Our measurements and analysis show that effective social media usage can influence public behavior, which can be leveraged to better combat future pandemics.Comment: Figure 1 is incorrect. Will be updated in the revisio

    Scaleable input gradient regularization for adversarial robustness

    Full text link
    In this work we revisit gradient regularization for adversarial robustness with some new ingredients. First, we derive new per-image theoretical robustness bounds based on local gradient information. These bounds strongly motivate input gradient regularization. Second, we implement a scaleable version of input gradient regularization which avoids double backpropagation: adversarially robust ImageNet models are trained in 33 hours on four consumer grade GPUs. Finally, we show experimentally and through theoretical certification that input gradient regularization is competitive with adversarial training. Moreover we demonstrate that gradient regularization does not lead to gradient obfuscation or gradient masking

    3D Shape Synthesis for Conceptual Design and Optimization Using Variational Autoencoders

    Full text link
    We propose a data-driven 3D shape design method that can learn a generative model from a corpus of existing designs, and use this model to produce a wide range of new designs. The approach learns an encoding of the samples in the training corpus using an unsupervised variational autoencoder-decoder architecture, without the need for an explicit parametric representation of the original designs. To facilitate the generation of smooth final surfaces, we develop a 3D shape representation based on a distance transformation of the original 3D data, rather than using the commonly utilized binary voxel representation. Once established, the generator maps the latent space representations to the high-dimensional distance transformation fields, which are then automatically surfaced to produce 3D representations amenable to physics simulations or other objective function evaluation modules. We demonstrate our approach for the computational design of gliders that are optimized to attain prescribed performance scores. Our results show that when combined with genetic optimization, the proposed approach can generate a rich set of candidate concept designs that achieve prescribed functional goals, even when the original dataset has only a few or no solutions that achieve these goals.Comment: Preprint accepted by ASME IDETC/CIE 201
    • …
    corecore