221,842 research outputs found

    A Fast Eigen Solution for Homogeneous Quadratic Minimization with at most Three Constraints

    Full text link
    We propose an eigenvalue based technique to solve the Homogeneous Quadratic Constrained Quadratic Programming problem (HQCQP) with at most 3 constraints which arise in many signal processing problems. Semi-Definite Relaxation (SDR) is the only known approach and is computationally intensive. We study the performance of the proposed fast eigen approach through simulations in the context of MIMO relays and show that the solution converges to the solution obtained using the SDR approach with significant reduction in complexity.Comment: 15 pages, The same content without appendices is accepted and is to be published in IEEE Signal Processing Letter

    Optimal entanglement witnesses for continuous-variable systems

    Full text link
    This paper is concerned with all tests for continuous-variable entanglement that arise from linear combinations of second moments or variances of canonical coordinates, as they are commonly used in experiments to detect entanglement. All such tests for bi-partite and multi-partite entanglement correspond to hyperplanes in the set of second moments. It is shown that all optimal tests, those that are most robust against imperfections with respect to some figure of merit for a given state, can be constructed from solutions to semi-definite optimization problems. Moreover, we show that for each such test, referred to as entanglement witness based on second moments, there is a one-to-one correspondence between the witness and a stronger product criterion, which amounts to a non-linear witness, based on the same measurements. This generalizes the known product criteria. The presented tests are all applicable also to non-Gaussian states. To provide a service to the community, we present the documentation of two numerical routines, FULLYWIT and MULTIWIT, which have been made publicly available.Comment: 14 pages LaTeX, 1 figure, presentation improved, references update

    H∞ control of nonlinear systems: a convex characterization

    Get PDF
    The nonlinear H∞-control problem is considered with an emphasis on developing machinery with promising computational properties. The solutions to H∞-control problems for a class of nonlinear systems are characterized in terms of nonlinear matrix inequalities which result in convex problems. The computational implications for the characterization are discussed

    Constraining Attacker Capabilities Through Actuator Saturation

    Full text link
    For LTI control systems, we provide mathematical tools - in terms of Linear Matrix Inequalities - for computing outer ellipsoidal bounds on the reachable sets that attacks can induce in the system when they are subject to the physical limits of the actuators. Next, for a given set of dangerous states, states that (if reached) compromise the integrity or safe operation of the system, we provide tools for designing new artificial limits on the actuators (smaller than their physical bounds) such that the new ellipsoidal bounds (and thus the new reachable sets) are as large as possible (in terms of volume) while guaranteeing that the dangerous states are not reachable. This guarantees that the new bounds cut as little as possible from the original reachable set to minimize the loss of system performance. Computer simulations using a platoon of vehicles are presented to illustrate the performance of our tools

    Generalized ℓ2 synthesis

    Get PDF
    A framework for optimal controller design with generalized ℓ2 objectives is presented. The allowable disturbances are constrained to be in a pre-specified set; the design objective is to ensure that the resulting output errors do not belong to another pre-specified set. The solution takes the form of an affine matrix inequality (AMI), which is both a necessary and sufficient condition for the posed problem to have a solution. In the simplest case, the resulting optimization reduces to standard ℋ∞ synthesis
    corecore