5,272 research outputs found

    Complex Networks Unveiling Spatial Patterns in Turbulence

    Get PDF
    Numerical and experimental turbulence simulations are nowadays reaching the size of the so-called big data, thus requiring refined investigative tools for appropriate statistical analyses and data mining. We present a new approach based on the complex network theory, offering a powerful framework to explore complex systems with a huge number of interacting elements. Although interest on complex networks has been increasing in the last years, few recent studies have been applied to turbulence. We propose an investigation starting from a two-point correlation for the kinetic energy of a forced isotropic field numerically solved. Among all the metrics analyzed, the degree centrality is the most significant, suggesting the formation of spatial patterns which coherently move with similar vorticity over the large eddy turnover time scale. Pattern size can be quantified through a newly-introduced parameter (i.e., average physical distance) and varies from small to intermediate scales. The network analysis allows a systematic identification of different spatial regions, providing new insights into the spatial characterization of turbulent flows. Based on present findings, the application to highly inhomogeneous flows seems promising and deserves additional future investigation.Comment: 12 pages, 7 figures, 3 table

    Distributions of Human Exposure to Ozone During Commuting Hours in Connecticut using the Cellular Device Network

    Get PDF
    Epidemiologic studies have established associations between various air pollutants and adverse health outcomes for adults and children. Due to high costs of monitoring air pollutant concentrations for subjects enrolled in a study, statisticians predict exposure concentrations from spatial models that are developed using concentrations monitored at a few sites. In the absence of detailed information on when and where subjects move during the study window, researchers typically assume that the subjects spend their entire day at home, school or work. This assumption can potentially lead to large exposure assignment bias. In this study, we aim to determine the distribution of the exposure assignment bias for an air pollutant (ozone) when subjects are assumed to be static as compared to accounting for individual mobility. To achieve this goal, we use cell-phone mobility data on approximately 400,000 users in the state of Connecticut during a week in July, 2016, in conjunction with an ozone pollution model, and compare individual ozone exposure assuming static versus mobile scenarios. Our results show that exposure models not taking mobility into account often provide poor estimates of individuals commuting into and out of urban areas: the average 8-hour maximum difference between these estimates can exceed 80 parts per billion (ppb). However, for most of the population, the difference in exposure assignment between the two models is small, thereby validating many current epidemiologic studies focusing on exposure to ozone

    Unified functional network and nonlinear time series analysis for complex systems science: The pyunicorn package

    Get PDF
    We introduce the \texttt{pyunicorn} (Pythonic unified complex network and recurrence analysis toolbox) open source software package for applying and combining modern methods of data analysis and modeling from complex network theory and nonlinear time series analysis. \texttt{pyunicorn} is a fully object-oriented and easily parallelizable package written in the language Python. It allows for the construction of functional networks such as climate networks in climatology or functional brain networks in neuroscience representing the structure of statistical interrelationships in large data sets of time series and, subsequently, investigating this structure using advanced methods of complex network theory such as measures and models for spatial networks, networks of interacting networks, node-weighted statistics or network surrogates. Additionally, \texttt{pyunicorn} provides insights into the nonlinear dynamics of complex systems as recorded in uni- and multivariate time series from a non-traditional perspective by means of recurrence quantification analysis (RQA), recurrence networks, visibility graphs and construction of surrogate time series. The range of possible applications of the library is outlined, drawing on several examples mainly from the field of climatology.Comment: 28 pages, 17 figure
    • ā€¦
    corecore