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Distributions of Human Exposure to Ozone
During Commuting Hours in Connecticut

Using the Cellular Device Network
Owais Gilani , Simon Urbanek, and Michael J. Kane

Epidemiologic studies have established associations between various air pollutants
and adverse health outcomes for adults and children. Due to high costs of monitoring air
pollutant concentrations for subjects enrolled in a study, statisticians predict exposure
concentrations from spatial models that are developed using concentrations monitored
at a few sites. In the absence of detailed information on when and where subjects move
during the studywindow, researchers typically assume that the subjects spend their entire
day at home, school, or work. This assumption can potentially lead to large exposure
assignment bias. In this study, we aim to determine the distribution of the exposure
assignment bias for an air pollutant (ozone) when subjects are assumed to be static
as compared to accounting for individual mobility. To achieve this goal, we use cell-
phone mobility data on approximately 400,000 users in the state of Connecticut, USA
during a week in July 2016, in conjunction with an ozone pollution model, and compare
individual ozone exposure assuming static versus mobile scenarios. Our results show
that exposure models not taking mobility into account often provide poor estimates of
individuals commuting into and out of urban areas: the average 8-h maximum difference
between these estimates can exceed 80 parts per billion (ppb). However, for most of
the population, the difference in exposure assignment between the two models is small,
thereby validating many current epidemiologic studies focusing on exposure to ozone.
Supplementary materials accompanying this paper appear online.

KeyWords: Environmental epidemiology; Exposure assignment bias; Humanmobility;
Pollutant modeling.

1. BACKGROUND ANDMOTIVATION

Epidemiologic studies have established associations between various air pollutants and a
number of adverse health outcomes for adults and children. Air pollutants, such as ground-
level ozone (O3), particulate matter, carbon monoxide, lead, sulfur dioxide, and nitrogen
dioxide, have been shown to worsen health outcomes such as heart rate variability, cardio-
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pulmonary mortality, acute myocardial infarction, low birth weight, development and exac-
erbation of asthma, reduced lung function, and acute respiratory symptoms (Pope III et al.
2002, 2004; Peel et al. 2005; Zanobetti and Schwartz 2005; Chen et al. 2006; Brauer et al.
2007; Delamater et al. 2012; Pedersen et al. 2013; Sacks et al. 2014).

These associations between exposure to air pollutants and adverse health outcomes have
been established using various epidemiologic study designs. Some studies have been con-
ducted on an ecological scale, where the unit of analysis is at an aggregated level (such
as counties or census tracts). In these studies, an aggregate measure of a health outcome
(such as cause-specific mortality rate over time) is correlated with an aggregate measure
of pollutant exposure over the study area (Peel et al. 2005; Chen et al. 2006; Delamater
et al. 2012; Sacks et al. 2014). While these studies are useful in determining associations on
the population level, they are subject to the ecological fallacy so that conducting inference
on an individual level is problematic. Other studies have utilized case–control or cohort
designs (prospective and retrospective), that have conducted the analysis on an individual
scale (Gent et al. 2003; Brauer et al. 2007). In such studies, health data are available on
individuals (often in great detail), which are then correlated with data on individual-level
pollutant exposure. However, assigning pollutant concentration exposure to individuals is
rather challenging. Giving each study participant an air pollution monitor to carry with
them all day during the study duration is extremely expensive and impractical. Therefore,
epidemiologic studies analyzing the effects of air pollutants on adverse health outcomes at
an individual level typically estimate pollutant concentrations at subject residences or work
places using various approaches (that vary in their level of sophistication) (Pope III et al.
2002; Gent et al. 2003; Jerrett et al. 2005; Brauer et al. 2007; Pedersen et al. 2013).

A common approach to estimate pollutant concentration at an area of interest (e.g.,
subject residence) uses observed or monitored air pollutant concentration data at limited
sites and time durations to predict concentrations at unsampled sites and time durations.
This prediction may be achieved using some very simple approaches such as assigning the
same concentration as the closest monitored site or an average from a few closest sites (Rage
et al. 2009), or estimating via techniques such as inverse distance weighting (Neidell 2004).
More sophisticated approaches include land-use regression models (Turner et al. 2016) and
spatial/temporal interpolation techniques using geostatistical models of varying complexity,
e.g., universal kriging (Jerrett et al. 2005; Rage et al. 2009).

Another popular approach for assigning pollutant concentrations to subject residences
is using some deterministic computer model output that simulates either the underlying
pollutant chemistry, e.g., the CommunityMultiscaleAir Quality or CMAQmodel (Byun and
Schere 2006), or the dispersion process of air pollutants from their source(s), e.g., CALINE4
(Benson 1992). Since these simulations are computationally rather expensive, such models
provide predictions on a grid where each grid cell covers a large spatial area (e.g., CMAQ
provides predictions on grid cells of size 12 km × 12 km). Epidemiologic studies utilizing
these models determine the cell within which a subject residence or work place is located,
and assign the corresponding pollutant exposure to the subject. Some recent studies have
combined these two approaches together to develop data fusionmodels. In thesemodels, data
from both observed concentrations at limited sites and outputs from deterministic computer
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models are jointly used to provide predictions at unsampled locations at a fine spatial and
temporal resolution (Sacks et al. 2014; Turner et al. 2016).

Regardless of the sophistication of the method used to assign pollutant exposure to sub-
jects using their residential or work locations, a fundamental challenge that is not addressed
is the fact that subjects do not spend all of their time at home or at work. Humans move
around during the day, and the patterns of movement likely depend on a number of factors
such as time of day, day of week, season, and employment status. By not taking mobility
into account, current exposure models may suffer from significant bias in their estimates.

The goal of this study is to determine the distribution of exposure bias to an air pollutant
(O3) when mobility is not taken into account, and to identify groups of individuals for
which this bias is large. To achieve this goal, we require information on patterns of human
mobility. Mobility is well captured by cell-phone data; however, most available cell-phone-
based mobility studies either require users to install an “app” to capture their location (Bayir
et al. 2009) or rely on other, more opportunistic approaches (Calabrese et al. 2011). These
methods suffer from not sufficiently sampling at the population level and are likely not
robust enough to generalize.

Analyses have been performed using cell-phone infrastructure based on Call Detail
Records (CDRs), which are generated by applications or phone calls on cellular devices
(Becker et al. 2013; Lu et al. 2017; Thuillier et al. 2018; Marques-Neto et al. 2018). These
records are generated primarily for billing purposes and include information including loca-
tion (triangulated via towers), data usage, etc. These records give precise location and dura-
tion information about the device while it is in use; however, they do not provide information
at times when the device is not in use and therefore have substantial time windows with no
information. Analyzing mobility using such data likely leads to biased results, as the data
are not representative of mobility for individuals themselves and for the entire population.

The number of studies that explicitly account for human mobility when assigning expo-
sure to air pollutants is fairly small. Nyhan et al. (2018) used CDR data to incorporate a
work and home location into pollution exposure assignment, while (Özkaynak et al. 2009)
incorporated human movement indirectly through the Environmental Protection Agency’s
(EPA) Consolidated Human Activity Database. Warren et al. (2017) incorporated longer-
term movement, such as relocation to a different state, to analyze susceptibility to environ-
mental pollution during pregnancy.

This study uses AdvancedWireless Service (AWS) data, which provides themost passive
and complete data on population-level mobility. The data consist of cell devices that are
turned on, that are connected to towers, and that are serviced by at least two towers (discussed
in Sect. 2). Very few studies that quantify population-level human mobility at the census
tract-level use cell data at the infrastructure level (Becker et al. 2013), and to our knowledge,
this is thefirst study that integrates pollution informationwith humanmobility for an accurate
exposure study at this scale. Our approach uses cell-tower-level data to determine patterns of
human mobility. We assign exposure to O3 concentration to mobile devices, which are used
as proxies for individuals, in the US state of Connecticut (CT) during a week in summer
2016. Based on individuals’ mobility behavior and the tower area they are connected to
most between the hours of 8:00 PM and 6:30 AM (which we term the nighttime local area),
we are able to assess the exposure assignment bias.
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Knowledge of the distribution of O3 exposure assignment bias will be extremely benefi-
cial for environmental epidemiologists studying the effects of O3 exposure on adverse health
outcomes. Minimal exposure assignment bias due to a static pollutant concentration assign-
ment would validate the results of past studies, while a significant exposure assignment bias
would provide evidence for the need for human mobility to be explicitly accounted for in
future epidemiologic studies.

This paper proceeds as follows: In Sect. 2, we provide details of the cell-phone telemetry
data. In Sect. 3, we provide details on the data and model used to provide predictions of O3

concentrations at the cell-tower sites. In Sect. 4, we provide details on the distribution of
O3 exposure assignment bias, with concluding remarks in Sect. 5.

2. QUANTIFYING HUMANMOBILITY WITH CELL-TOWER
HAND-OFFS

2.1. CELL-TOWER DENSITY IN THE STATE OF CONNECTICUT

Cellular phone towers coordinate data movement between cell phones and other cell-
connected devices providing both phone calls and Internet connectivity. Interconnected
towers form a network capable of routing data traffic between cell devices or to Internet-
connected devices through a base station. US cell-phone networks facilitate the communi-
cation of hundreds of millions of devices, transferring vast amounts of data on any given
day. This study is restricted to the state of Connecticut (CT). Figure 1 shows the locations
of approximately 10,000 cell towers in the state, along with the locations of the primary and
secondary roads in the state, taken from the OpenCelliD Web site (https://opencellid.org).
The data traffic capacity of an individual tower is limited; to compensate for spatial areas
with higher capacity demands, more towers may be erected in those areas. As a result, the
spatial distribution of the towers matches the population distribution. This is seen in Fig. 1,
with most people residing in the southwest corner, the shoreline, and in metropolitan areas
including Hartford, Danbury, Middletown, and Waterbury.

Figure 2 shows the distribution of the distance to the closest tower from each tower.
The distribution is roughly exponential. The lower quartile, median, and upper quartile are
2.7, 68.2, and 306m, respectively. Many towers are within meters of other towers because
multiple towers are sometimes built at a single site. This is especially true in highly populated
areas, like southwestern Connecticut, where there are more constraints placed on where a
tower can be placed as well as the fact that more towers are needed to compensate for
higher traffic demands. Eastern Connecticut is generally less populated than the central and
southwestern portions of the state, and the towers in these regions may be several kilometers
away from the next closest one.

2.2. HAND-OFF TRAJECTORIES IN THE CELL-TOWER NETWORK

A single cellular device connects to the network through a tower. Devices generally
connect to the closest tower; however, this can vary due to geographic features, which
can occlude communication, and the amount of traffic being routed through the towers.

https://opencellid.org
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Figure 1. Locations of primary and secondary roads; EPA and meteorological monitors; and cell-tower locations
for the state of Connecticut (from OpenCelliD (https://opencellid.org)).

Figure 2. Distribution of Haversine distance (in meters) to the nearest cell tower.

https://opencellid.org
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Figure 3. A histogram of the log number of hand-offs.

As a phone moves through the network, it is “handed off” between towers. A hand-off is
characterized by a unique, anonymous device identifier, a date and time, and the location
of the tower to which the device was handed. Data on these hand-offs may be analyzed to
evaluate traffic load, tower placement, and connection integrity. Sequences of hand-offs in
time for a single device, which we will refer to as trajectories, can be used to locate the
device, and the humans that carry them, up to the resolution of the order 10’s to 1000’s of
meters, depend on the local cell-tower density.

This study considers devices from one major US carrier with at least one hand-off,
where all hand-offs for the device during the period of July 18–24, 2016, were within the
state of Connecticut. A total of approximately 50,000,000 hand-offs were recorded from
approximately 400,000 unique devices. Given the sensitivity of these data, several stepswere
taken to ensure the privacy of all individuals. First, personally identifying characteristics are
not included in these data. Data for the same device are linked using an anonymous unique
identifier, rather than a telephone number, and the anonymization was performed by a party
not involved in the data analysis. No demographic data are linked to any cell-phone user
or used in this study. Second, all results are presented as aggregates. That is, no individual
anonymous identifier was singled out for the study. By observing and reporting only on the
aggregates, we protect the privacy of all individuals.

A histogram of the number of hand-offs per device is shown in Fig. 3. A total of approx-
imately 25,000 devices had a single hand-off. The mode of the histogram where the log
number of counts is greater than zero is centered around 5 and implies that most devices
had approximately 150 hand-offs during the period considered.
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3. DESCRIPTION OF POLLUTION MODEL

In order to determine hourly O3 concentration exposure of users, we fitted a stationary
Gaussian spatiotemporal model (Cressie and Wikle 2011) to observed hourly O3 concen-
trations from July 6 to August 5, 2016, for the state of Connecticut, and used it to predict
O3 concentrations at approximately 10,000 cell-tower sites during the week of July 18–24,
2016.

3.1. DATA

We obtained data on observed hourly O3 concentrations (in parts per billion–ppb) from
the US Environmental Protection Agency (EPA) Air Quality System (AQS) Data Mart (US
Environmental Protection Agency 2017) from July 6 to August 5, 2016, for the state of
Connecticut. Figure 1 shows the location of the 12 O3 monitoring sites in CT; we randomly
selected 10 sites for model fitting and two sites for model validation (Stafford and Stratford).
At each site, O3 concentration data were available for 744 time points. Figure 4 shows the
observed hourly O3 concentrations at the 12 monitoring sites. The two validation sites are
displayed in the bottom two panels. The mean hourly O3 concentration over the 31days
across the 10 training sites was 35.9ppb with a standard deviation of 19.4ppb, while the
mean hourly concentration at the two validation sites was 39.0ppb with a standard deviation
of 17.9ppb.

In addition to data on the observed concentrations of O3, we collected data on traffic and
meteorological factors that could help explain the spatiotemporal variation observed in O3

concentrations. Hourly temperature (in degrees Celsius) and wind speed (in meters per sec-
ond) data were obtained from the National Oceanic and Atmospheric Administration (Qual-
ity Controlled Local Climatological Data) (USDepartment of Commerce, National Oceanic
and Atmospheric Administration, National Environmental Satellite, Data, and Information
Service, National Climatic Data Center 2017). Data were available from 12 weather stations
in Connecticut (see Fig. 1). For each O3 monitoring site, we assigned hourly temperature
and wind speed based on the measurements recorded at the closest weather station (see
supplementary material for discussion on this choice). For hours with missing data, the last
available hour for which data were available was used. Ozone concentrations tend to be
lower in urban areas as compared to their surrounding rural areas—a phenomenon known
as ozone urban decrement (Munir et al. 2012). Using data on primary and secondary roads
network in CT, available from the US Census Bureau (US Census Bureau 2017), we cal-
culated the minimum distance to primary and secondary roads (in meters). These variables
served as proxies for population density in a neighborhood of the O3 monitoring sites to
account for ozone urban decrement.

3.2. MODEL

As described by Cressie and Wikle (2011), a hierarchical spatiotemporal Gaussian pro-
cess (GP)model can be specified in three stages: the observed data stage, the true underlying
process stage, and the parameter stage. We can specify distributions for the data, process,
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Figure 4. Time-series plot of the observed O3 concentrations (ppb) at the 12 monitoring sites in CT from July 6
to August 5, 2016.

and parameters for each stage. The R package spTimer by Bakar et al. (2015) can be
used to efficiently fit GP models. Following the formulation of Bakar et al. (2015), let
Z(si , t) denote the observed O3 concentration at location si , i = 1, . . . , 10, and time point
t, t = 1, . . . , 744, and Y (si , t) denote the true underlying O3 concentration at location
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si at time t . Let Zt = (Z(s1, t), . . . , Z(s10, t))′ and Yt = (Y (s1, t), . . . ,Y (s10, t))′ be the
vectors of observed and true underlying O3 concentrations, respectively, at time t . We define
the nugget effect, or the pure error term, as εt = (ε(s1, t), . . . , ε(s10, t))′ to be independent
(across space and time) and normally distributed N (

0, σ 2
ε I10

)
, where σ 2

ε is the unknown
pure error variance, and I10 is the 10 × 10 identity matrix. Similarly, we denote the spa-
tial random effects with independent replicates in time as ηt = (η(s1, t), . . . , η(s10, t))′,
assumed to be normally distributed N

(
0, σ 2

η Sη

)
and independent of εt , where σ 2

η is the
site-invariant spatial variance (also called the sill) and Sη is the spatial correlation matrix.
We assume that the spatial correlation can be modeled by the exponential function, so that
the covariance between two locations si and s j is a function of the Euclidean distance di j
between the sites, i.e., Cov

(
η(si , t), η(s j , t)

) = σ 2
η · exp−φdi j . Further, let Xt be a 10 × 5

matrix of covariates (including a column of 1s for the intercept) and β = (β0, . . . , β4)

denote the 5 × 1 vector of unknown regression coefficients.
We can then specify the hierarchical GP model by:

Zt = Yt + εt (1)

Yt = Xtβ + ηt (2)

Details on fitting the model and obtaining parameter estimates using the package
spTimer, including the full conditional distributions of the parameters, are given in Bakar
et al. (2015). We used the default recommendations from the package spTimer for the ini-
tial values and the values of the hyper-parameters for the prior distributions. Specifically, we
assigned flat normal priors centered at 0 with large variances (1010) for the regression coef-
ficients and flat inverse-gamma priors for the variance components σ 2

ε and σ 2
η . The value for

the spatial decay parameter (φ) in the spatial covariance matrix was fixed at 3/dmax, where
dmax is the maximum distance between the ozone monitor sites. Various alternative fixed
values were tested, as well as estimating φ using a uniform prior distribution. However,
the predictive performance was best for the model that used the default fixed value of φ

(0.0186). While the model is specified in the higher language R, the package spTimer

performs calculations in the lower level language C for much faster computation. As per
default, the Markov chain Monte Carlo was run for 4000 further iterations after discarding
the first 1000 as burn-in. MCMC diagnostics were performed using package coda (Plum-
mer et al. 2006); all MCMC chains had converged during the burn-in, and auto-correlation
plots displayed independence between iterations. The residual plot also did not show any
departures from normality.

Estimated parameters from the model are given in Table 1. As expected, higher tempera-
ture is associatedwith increasedO3 concentrations, while increasedwind speed is associated
with lower O3 concentration. Minimum distance to primary and to secondary roads both
have positive slopes, indicating the expected ozone urban decrement. All coefficients are
statistically significant since none of the 95% credible intervals contain 0.

3.3. PREDICTION

Once the GP model has been fitted and posterior distributions for the unknown model
parameters have been obtained, spatial prediction at a new location s0 (and temporal pre-
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Table 1. Posterior mean, median, standard deviation, and 95% credible interval for the regression and covariance
parameters.

Parameter Mean Median SD 95% CI

β0 (Intercept) 10.68 10.66 1.27 (8.27, 13.2)
β1 (Temperature) 1.022 1.023 0.05 (0.92, 1.13)
β2 (Wind speed) −0.411 −0.410 0.10 (−0.60, −0.23)
β3 (Dist. to Prim. Rd) 0.0002 0.0002 0.0000 (0.0001, 0.0002)
β4 (Dist. to Sec. Rd) 0.0005 0.0005 0.0001 (0.0003, 0.0007)
σ 2
ε (Nugget) 13.23 13.21 0.79 (11.8, 14.8)

σ 2
η (Sill) 174.88 174.92 2.87 (169.3, 180.4)

Figure 5. Comparison of the observed (black solid) and predicted (red dashed) O3 concentrations (ppb) at the
two validation sites (Color figure online).

diction at a future time point t ′) can be obtained using the posterior predictive distribution
for Z(s0, t ′). The function predict in the package spTimer provides spatiotemporal
predictions (see Bakar et al. 2015 for technical details). We predicted hourly O3 concentra-
tions for the 31-day period from July 6 to August 5, 2016, at the two validation EPA O3

monitoring sites, as well as at the approximately 10,000 cell-tower sites.
Figure 5 shows a time-series comparison of the observed and predicted hourly O3 con-

centrations at the two validation sites. At both sites, the predicted concentrations are very
similar to the observed concentrations. The root-mean-square error at the validation sites
is 7.68, while the relative bias is −0.0461 and the relative mean separation is 0.1811. The
small values for the relative bias and relativemean separation suggest a fairly goodmodel fit.
Figure 6 shows a prediction map for hourly O3 concentrations across CT at midnight, 6 am,
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Figure 6. Prediction of ozone concentrations at midnight, 6AM, noon, and 6PM for each of the 7days in the
study (Color figure online).

noon, and 6pm on seven consecutive days from July 18–24, 2016. It shows that the distribu-
tion of O3 concentration is somewhat homogeneous across space, but changes considerably
throughout the day. There also appears to be a concentration gradient in the southwest to
northeast direction, particularly during the daytime hours, with higher concentrations in the
southwestern part of the state.

4. EXPOSURE DISTRIBUTIONS

As described in Sect. 2, a device hand-off is characterized by a unique, anonymous device
identifier, a date and time, and the location of the tower to which the device was handed.
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From sequences of hand-offs, sorted by date and time, the duration overwhich the devicewas
checked into the tower was calculated. In addition, a new feature was calculated per device
over the study duration—the tower that a device was checked into for the longest duration
during the hours of 8:00 PM and 6:30 AM. We note that this new variable is correlated with
the nighttime local area for working individuals not participating in shift work. However,
they are distinct in that, due to de-identificationwe do not know the residence or occupational
characteristics of the devices’ owners.

For each tower location, the hourlyO3 concentrationwas estimated as described inSect. 3.
The pollution estimate can be merged with the mobility data using a join over the date, time,
and cell-tower locations. The individual-level exposure estimate is then calculated as the
amount of pollution at the tower locationmultiplied by the duration at that tower’s catchment
area.

As per the standards set by the EPA,we calculated the average 8-hmaximum exposure for
each individual for each of the 7days by calculating the hourly average ozone concentration
for each 8-h window during the day and selecting the maximum of these hourly averages
for each day.

4.1. DISTRIBUTION OF THE DIFFERENCE IN THE AVERAGE 8-H MAX EXPOSURE

To assess the distribution of O3 exposure assignment bias when mobility is not taken into
account, we calculated the average 8-h max exposure for each device per day under two
scenarios: (a) using their trajectories to determine the tower catchment area visited as they
moved throughout the day (which wewill refer to as the dynamic scenario) and (b) assuming
that the individuals spent the entire day at their nighttime local area (whichwewill refer to as
the static scenario), similar to what is typically done in epidemiologic studies (see Figure S.7
for a violin plot of these distributions). The exposure assignment bias for each device per
day was then calculated as the difference between the dynamic and static average 8-h max
exposure assignment for each day. The result is shown in Fig. 7. (A similar plot showing the
distribution of average hourly difference between the dynamic and static scenarios based on a
24-h cumulative exposure—instead of the average 8-hmax exposure—is given in Figure S.8,
while Figure S.9 shows the distribution of hourly exposure assignment for the dynamic and
static scenarios.) All of the estimated differences were within 80ppb/h. As a reference,
the US EPA ozone air quality standard is set at 70ppb (averaged over an 8-h period);
concentrations consistently exceeding this level are considered harmful to human health
and welfare (US Environmental Protection Agency 2015). Since the mean and medians are
close to zero, this result validates many of the current studies of ozone exposure for a large
cross section of the population, i.e., the exposure assignment bias due to not taking mobility
into account is not too large. However, we observe that the distribution of the differences
has heavy tails and that the upper tails are longer than the lower tails. This suggests that the
static scenario underestimates the true concentration more frequently than overestimating
it. Additionally, it should be noted that differences are correlated for an individual device.
That is, devices with large differences between the models at a given hour tend to have large
differences at other hours. This implies that there are distinct subpopulations for which static
scenarios are biased. This is further explored in subsequent sections.
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Figure 7. Violin plot showing the distribution of average 8-h max ozone exposure difference (dynamic scenario
exposure minus the static scenario exposure) for each day of the study window.

4.2. WEEKEND VERSUS WEEKDAY DAILY EXPOSURE, ACCOUNTING FOR

MOBILITY

Figure 8 shows the distribution of average hourly ozone exposure for individuals for
each hour of the day for weekdays and weekends, taking mobility into account. Due to
the size of the data, the plots are based on a random sample of 10,000 devices. The plots
show that the minimum O3 exposure is higher on the weekend (for every hour) as com-
pared to the weekday, while the maximum exposure is higher on the weekdays. They also
show that the range of average hourly O3 exposure is greater on weekdays as compared to
weekends. It should be noted that these results are likely primarily driven by the variation in
O3 concentrations seen on the weekday when compared to the weekend (as seen in Fig. 6),
as opposed to the device mobility. The plots also reveal a generally unimodal exposure
distribution during the late night/early morning hours, but a bimodal exposure distribution
during the afternoon and evening hours. This again probably reflects the smaller spatial
variation in O3 concentrations during the late night and early morning hours, and greater
spatial variation during the afternoon and evening hours. (Figure S.10 shows the distribu-
tion of the cumulative exposure by hour for weekdays and weekends, while Figure S.11
shows the distribution of the cumulative exposure at the end of the day for weekdays and
weekends.)
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4.3. AREAS OF POORLY PREDICTED EXPOSURE WHEN MOBILITY IS NOT TAKEN

INTO ACCOUNT

While the bias from not taking mobility into account is close to zero for most indi-
viduals, for some it is up to 80ppb/h. While this bias may be negligible for a given day,
cumulative exposure difference may result in very different health outcomes than what is
predicted by models not taking mobility into account. In particular, individuals with an
exposure assignment bias of around 80ppb/h likely experience this assignment bias for 8–
10h per day on multiple days, resulting in vastly different cumulative exposure assignment
biases.

To understand which class of individuals are under-served by existing models, device
trajectories where the difference between exposure assessed using the dynamic versus static
scenarios was in the highest and lowest 1%, corresponding to individuals with higher and
lower exposure with respect to the static scenario, were extracted and a contour plot was
created showing their nighttime local areas.

The nighttime local area of individuals receiving more exposure when mobility is taken
into account is shown in Fig. 9a. The difference in exposure assessed based on the dynamic
and static scenarios is generally due to individuals’ mobility during daytime commut-
ing hours. O3 predictions at different times of the day given in Fig. 6 show that during
the afternoon hours, O3 concentrations are generally higher in the southwestern part of
Connecticut (likely due to higher concentrations in New York City area) and decrease
in a northeasterly direction. Comparing Fig. 9 to O3 predictions shown in Fig. 6, we
observe that many of the individuals identified as receiving a considerably larger expo-
sure when taking mobility into account are likely suburban residents commuting into the
associated urban areas (in a western or southern direction) where ozone concentrations are
higher during the daytime hours. In particular, the cluster of individuals residing north
and northeast of Hartford likely commute to Hartford during the day, while the clus-
ter identified around Waterbury are likely residents that commute to Danbury during the
day.

The nighttime local area of individuals receiving less exposurewhenmobility is taken into
account is shown in Fig. 9b. There are three distinct clusters: one is southeast ofHartford, one
is north of New Haven, and one is north of Bridgeport. Many of these individuals are likely
suburban residents commuting into the associated urban areas (in an eastern or northern
direction) where ozone concentrations are lower during the daytime hours. In particular,
the clusters southeast of Hartford and north of New Haven likely represent individuals that
commute to Hartford and Middletown during the day, while the cluster north of Bridgeport
perhaps represents individuals commuting northeast to New Haven.

These results suggest that the direction of mobility during daytime hours is an important
factor determining the adequacy of the static scenario in accurately assessing individual
exposure to O3 concentration. Movement along the pollutant concentration gradient nat-
urally results in a higher difference between actual exposure and the exposure modeled
assuming static behavior.
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Figure 9. Nighttime local areas of individuals with a higher exposure in the dynamic scenario compared to the
static scenario (top 1%) and b lower exposure in the dynamic scenario compared to the static scenario (bottom
1%).
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5. CONCLUSIONS

This paper integrates mobility data from cell-tower hand-offs with a pollution model to
more realistically estimate ozone exposure during the period of July 18–24, 2016. These
estimates were compared to those of a model where mobility data are not available, which
is commonly seen in the literature. We show that the bias introduced by not taking mobility
into account is minimal for the majority of individuals in the state of Connecticut, thereby
validating many existing epidemiological studies examining the health impacts of exposure
to O3 on various outcomes. However, we also show that existing models do a poor job
estimating exposure of individuals who routinely commute into and out of urban areas,
particularly whose daytime movements follow the pollution concentration gradient, and, in
these cases, mobility should be taken into account.

A key strength of our analysis lies in the use of mobility data on the individual level for
a very large portion of the state’s population, which allows us to more accurately capture
real mobility patterns. However, there are a few limitations to this analysis as well.

The O3 exposure model was developed using ten O3 monitoring sites for the entire state
of Connecticut. Given the spatial distribution of these sites, it is difficult to capture the small-
scale spatial variability in O3 concentrations. However, this may not be too big of a concern
in this particular analysis since O3 concentrations are known to be fairly homogeneous over
short distances.

Data on mobility in this study were captured using hand-offs at cell towers and not using
actual GPS coordinates. Therefore, the mobility trajectories provide an estimate of where
cellular devices are at any given point and not their exact location. However, most cell
towers are within 1000m of each other, and therefore, cell device areas are generally within
a 500-m buffer. This approach has the added advantage of protecting individuals’ privacy
in that their exact location is never known.

Due to practical reasons, we restricted our analysis exclusively to users who had at least
one tower check-in during the 1-week window of analysis and stayed within the boundaries
of CT during that week. This potentially has three issues related to generalizability of our
results. First, users might not represent the general US population. We are not too concerned
about this issue since given the competitive telecommunications market, there does not
appear to be any strong evidence suggesting that this cellular service provider attracts a
particular niche of customers. Additionally, an internal study found that their subscribers
were well represented geographically. Second, individuals that spend the entire week within
the state of CT do not include long-distance commuters. Long-distance commuters would
be expected to have a much larger difference in exposure assignment between the dynamic
and static scenarios, which would potentially lead to longer tails in the exposure difference
distribution. Third, this study does not capture individuals who do not move within the
1-week period. However, this population is likely small and inhabiting an indoor space for
the duration where they are not exposed to outdoor pollutants.

To our knowledge, this is the first study that compares exposure to a pollutant concen-
tration based on the assumption of static behavior versus dynamic mobility for a significant
portion (between 30 and 45%) of the domestic cell user population for an area while at the
same time avoiding the bias associated with CDR records. While the results of this study



O. Gilani et al.

strengthen our confidence in the findings of epidemiologic studies looking at the adverse
impact of O3 concentration on various health outcomes, our analysis can be extended in two
directions: looking at other states, or even the entire US, instead of just CT and over longer
time duration, and analyzing other air pollutants, such as nitrogen oxides or small particu-
late matter, which are known to disperse quickly over short distances (Baldwin et al. 2015).
For such pollutants, we expect there to be a significant difference in exposure assignment
between the dynamic and static scenarios. However, modeling concentrations for pollutants
that vary rapidly over short distances is challenging, as they require a rather dense network
of pollutant monitors, which is generally not available. While data on human mobility are
available to us in near real time, a bottleneck arises in accurate air pollutant modeling at fine
spatial and temporal scales. Additionally, extending the analysis to other states or the entire
US over longer time duration presents challenges of dealing with vast quantities of data for
both the air pollutionmodeling part and humanmobility. However, with rapid advancements
in methods dealing with the analysis of Big Data, this may not be a big challenge in the
future.
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