156 research outputs found

    Branch-and-Prune Search Strategies for Numerical Constraint Solving

    Get PDF
    When solving numerical constraints such as nonlinear equations and inequalities, solvers often exploit pruning techniques, which remove redundant value combinations from the domains of variables, at pruning steps. To find the complete solution set, most of these solvers alternate the pruning steps with branching steps, which split each problem into subproblems. This forms the so-called branch-and-prune framework, well known among the approaches for solving numerical constraints. The basic branch-and-prune search strategy that uses domain bisections in place of the branching steps is called the bisection search. In general, the bisection search works well in case (i) the solutions are isolated, but it can be improved further in case (ii) there are continuums of solutions (this often occurs when inequalities are involved). In this paper, we propose a new branch-and-prune search strategy along with several variants, which not only allow yielding better branching decisions in the latter case, but also work as well as the bisection search does in the former case. These new search algorithms enable us to employ various pruning techniques in the construction of inner and outer approximations of the solution set. Our experiments show that these algorithms speed up the solving process often by one order of magnitude or more when solving problems with continuums of solutions, while keeping the same performance as the bisection search when the solutions are isolated.Comment: 43 pages, 11 figure

    Biased landscapes for random Constraint Satisfaction Problems

    Full text link
    The typical complexity of Constraint Satisfaction Problems (CSPs) can be investigated by means of random ensembles of instances. The latter exhibit many threshold phenomena besides their satisfiability phase transition, in particular a clustering or dynamic phase transition (related to the tree reconstruction problem) at which their typical solutions shatter into disconnected components. In this paper we study the evolution of this phenomenon under a bias that breaks the uniformity among solutions of one CSP instance, concentrating on the bicoloring of k-uniform random hypergraphs. We show that for small k the clustering transition can be delayed in this way to higher density of constraints, and that this strategy has a positive impact on the performances of Simulated Annealing algorithms. We characterize the modest gain that can be expected in the large k limit from the simple implementation of the biasing idea studied here. This paper contains also a contribution of a more methodological nature, made of a review and extension of the methods to determine numerically the discontinuous dynamic transition threshold.Comment: 32 pages, 16 figure

    The Space of Solutions of Coupled XORSAT Formulae

    Full text link
    The XOR-satisfiability (XORSAT) problem deals with a system of nn Boolean variables and mm clauses. Each clause is a linear Boolean equation (XOR) of a subset of the variables. A KK-clause is a clause involving KK distinct variables. In the random KK-XORSAT problem a formula is created by choosing mm KK-clauses uniformly at random from the set of all possible clauses on nn variables. The set of solutions of a random formula exhibits various geometrical transitions as the ratio mn\frac{m}{n} varies. We consider a {\em coupled} KK-XORSAT ensemble, consisting of a chain of random XORSAT models that are spatially coupled across a finite window along the chain direction. We observe that the threshold saturation phenomenon takes place for this ensemble and we characterize various properties of the space of solutions of such coupled formulae.Comment: Submitted to ISIT 201

    Rigorous solution techniques for numerical constraint satisfaction problems

    Get PDF
    A constraint satisfaction problem (e.g., a system of equations and inequalities) consists of a finite set of constraints specifying which value combinations from given variable domains are admitted. It is called numerical if its variable domains are continuous. Such problems arise in many applications, but form a difficult problem class since they are NP-hard. Solving a constraint satisfaction problem is to find one or more value combinations satisfying all its constraints. Numerical computations on floating-point numbers in computers often suffer from rounding errors. The rigorous control of rounding errors during numerical computations is highly desired in many applications because it would benefit the quality and reliability of the decisions based on the solutions found by the computations. Various aspects of rigorous numerical computations in solving constraint satisfaction problems are addressed in this thesis: search, constraint propagation, combination of inclusion techniques, and post-processing. The solution of a constraint satisfaction problem is essentially performed by a search. In this thesis, we propose a new complete search technique (i.e., it can find all solutions within a predetermined tolerance) for numerical constraint satisfaction problems. This technique is general and can be used in place of branching steps in most branch-and-prune methods. Moreover, this new technique speeds up the most recent general search strategy (often by an order of magnitude) and provides a concise representation of solutions. To make a constraint satisfaction problem easier to solve, a major approach, called constraint propagation, in the constraint programming1 field is often used to reduce the variable domains (by discarding redundant value combinations from the domains). Basing on directed acyclic graphs, we propose a new constraint propagation technique and a method for coordinating constraint propagation and search. More importantly, we propose a novel generic scheme for combining multiple inclusion techniques2 in numerical constraint propagation. This scheme allows bringing into the constraint propagation framework the strengths of various techniques coming from different fields. To illustrate the flexibility and efficiency of the generic scheme, we base on this scheme and devise several specific combination strategies for rigorous numerical constraint propagation using interval constraint propagation, interval arithmetic, affine arithmetic, and linear programming. Our experiments show that the new propagation techniques outperform previously available methods by 1 to 4 orders of magnitude or more in speed. We also propose several post-processing techniques for the representation of continuums of solutions. Based on connectedness, they allow grouping each cluster of connected solution subsets into a larger subset, thus allowing getting additional grouping information. Potentially, these techniques enable interval-based solution techniques to be alternatives to bounding-volume techniques in applications such as collision detection and interactive graphics. __________________________________________________ 1 Constraint programming is an approach to programming that relies on both reasoning and computing. 2 An inclusion technique is to include a set of interest into enclosures. It is also called an enclosure technique
    • 

    corecore