
THÈSE NO 3155 (2005)

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

PRÉSENTÉE À LA FACULTÉ INFORMATIQUE ET COMMUNICATIONS

Institut d'informatique fondamentale

SECTION D'INFORMATIQUE

POUR L'OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCES

PAR

Engineer in informatics, Hanoi University of Technology, Viet-Nam
et de nationalité vietnamienne

acceptée sur proposition du jury:

Dr J. Sam, directrice de thèse
Prof. B. Faltings, rapporteur

Prof. A. Neumaier, rapporteur
Prof. M. Rueher, rapporteur

Prof. M. Shokrollahi, rapporteur

Lausanne, EPFL
2005

RIGOROUS SOLUTION TECHNIQUES FOR NUMERICAL
CONSTRAINT SATISFACTION PROBLEMS

Xuan-Ha VU

RIGOROUS SOLUTION TECHNIQUES FOR NUMERICAL
CONSTRAINT SATISFACTION PROBLEMS

THESIS No 3155 (2005)

SUBMITTED TO THE SCHOOL OF COMPUTER AND COMMUNICATION SCIENCES

Institute of Core Computing Science

DEPARTMENT OF COMPUTER SCIENCE

SWISS FEDERAL INSTITUTE OF TECHNOLOGY IN LAUSANNE

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

BY

Xuan-Ha VU

Engineer in Computer Science, Hanoi University of Technology, Vietnam

Vietnamese nationality

Accepted on the recommendation of the thesis committee:

Dr. Jamila Sam, advisor
Prof. Dr. Boi Faltings, examiner

Prof. Dr. Arnold Neumaier, examiner
Prof. Dr. Michel Rueher, examiner

Prof. Dr. Mohammad Amin Shokrollahi, examiner

Lausanne, EPFL

2005

Contents

Abstract vii

Résumé ix

Acknowledgements xi

List of Algorithms xiii

List of Definitions xv

List of Figures xix

List of Tables xxi

1 Introduction 1
1.1 A Preview of Constraint Programming . 1
1.2 The Goal of the Thesis . 3
1.3 Contributions of the Thesis . 5
1.4 Organization of the Thesis . 6

2 Background and Definition 9
2.1 Basic Concepts in Constraint Programming . 9

2.1.1 A Short History of Constraint Programming 9
2.1.2 Constraint Satisfaction . 10

2.1.2.1 Constraint Satisfaction Problems 10
2.1.2.2 Set Theory Concepts for Constraints 15
2.1.2.3 Basic Concepts of Problem Solving 17
2.1.2.4 Major Solution Approaches . 22

2.1.3 Numerical Constraint Satisfaction Problems 24
2.1.3.1 Numerical Constraints . 24
2.1.3.2 Problem Formulation . 25
2.1.3.3 Factorable Form . 27
2.1.3.4 Separable Form . 29
2.1.3.5 Ternary Form . 30

2.2 Common Arithmetics for Numerical Computations 30
2.2.1 Floating-Point Numbers and IEEE 754 Standard 30

2.2.1.1 Number Representation . 31
2.2.1.2 IEEE 754 Standard and Conventions 31

i

ii Contents

2.2.2 Interval Arithmetic . 32
2.2.2.1 Real Intervals . 32
2.2.2.2 Exact Interval Arithmetic . 33
2.2.2.3 Rounded Interval Arithmetic 34
2.2.2.4 Interval Functions . 35
2.2.2.5 From Closed Intervals to Open Intervals 35

2.2.3 Affine Arithmetic . 36
2.2.3.1 Affine Form . 37
2.2.3.2 Affine Operations . 37
2.2.3.3 Non-Affine Operations . 37
2.2.3.4 Variants of Affine Arithmetic 39

2.3 Fundamental Consistency Notions . 43
2.3.1 Global Consistency . 43
2.3.2 Classical Local Consistency Notions . 44

2.3.2.1 Node Consistency . 44
2.3.2.2 Arc Consistency . 44
2.3.2.3 Path Consistency . 45
2.3.2.4 k-Consistency . 47

2.3.3 Local Consistency Notions for Numerical Constraints 48
2.3.3.1 Hull Consistency . 48
2.3.3.2 kB-Consistency . 49
2.3.3.3 Box Consistency . 51

2.3.4 Extended Local Consistency Notions . 53
2.3.4.1 (i, j)-Consistency . 53
2.3.4.2 Relational Consistency . 53
2.3.4.3 Singleton Consistency . 54

3 An Overview of Solution Methods 55
3.1 Mathematical Solution Methods . 55

3.1.1 Fundamental Interval Fixed Point Methods 55
3.1.1.1 Krawczyk Iteration for Linear Equations 57
3.1.1.2 Interval Gauss-Seidel Iteration 58
3.1.1.3 Krawczyk Iteration for Nonlinear Equations 60
3.1.1.4 Hansen-Sengupta Iteration . 62
3.1.1.5 Interval Newton Iteration . 63

3.1.2 Other Interval Methods for Linear Systems 64
3.1.2.1 Interval Gauss Elimination . 65
3.1.2.2 Hull Method . 66
3.1.2.3 Linear Interval Inequalities . 67

3.1.3 Exclusion Tests . 68
3.1.3.1 Lipschitz Functions . 69
3.1.3.2 Taylor Expansion . 70

3.1.4 Exclusion Regions . 71
3.1.5 Existence and Uniqueness Tests . 73

3.1.5.1 Epsilon-Inflation . 74
3.1.6 Inclusion Tests . 75

3.2 Constraint Programming Methods . 78

March 14, 2005

Contents iii

3.2.1 Classical Complete Search Methods . 78
3.2.2 Branch-and-Prune Methods . 79

3.2.2.1 Hull Consistency by Search . 80
3.2.2.2 Hull Consistency by Propagation 81
3.2.2.3 Box Consistency by Search . 85
3.2.2.4 Box Consistency by Propagation 86
3.2.2.5 kB-Consistency by Search . 87

3.2.3 Cooperation of Solution Techniques . 88
3.2.3.1 Cooperation of Domain Reduction Techniques 88
3.2.3.2 Cooperation of Symbolic-Interval Techniques 89

3.3 Relaxation Based Methods . 90
3.3.1 Linear Relaxation with Linear Programming 90

3.3.1.1 Linear Relaxation Based on Quadratic Terms 91
3.3.1.2 More General Linear Relaxation Techniques 91

3.3.2 Exclusion Test Using Linear Programming 92
3.3.2.1 Exclusion Test Using Dual Simplex Method 92
3.3.2.2 Exclusion Test Using Taylor Expansion and Linear Programming 95

3.3.3 Linear Relaxation with Fixed Point Methods 96
3.3.3.1 Linear Relaxation of Separable Functions 96
3.3.3.2 Linear Relaxation of Factorable Systems 98

3.3.4 Convexification Based Methods . 99
3.4 Incomplete Search Methods . 100

4 Improvements to Search Strategies for Numerical CSPs 101
4.1 Introduction . 101
4.2 Motivation . 103
4.3 Representation of Non-isolated Solutions . 105

4.3.1 Inner and Outer Approximations . 105
4.3.2 Union Approximations . 105
4.3.3 Qualification of Union Approximations 107

4.4 Exhaustive Search for CSPs with Non-isolated Solutions 108
4.4.1 Domain Reduction Operators . 108
4.4.2 Complementary Boxing Operators . 109
4.4.3 Domain Splitting Operators . 113
4.4.4 Controlling the Reduction of Small Domains 114
4.4.5 Compact Representation of Solutions . 116
4.4.6 Search Algorithms . 119

4.5 Experiments . 125
4.6 Conclusion . 127

5 Modification and Abstraction of Inclusion Techniques 129
5.1 Introduction . 129
5.2 Extended Functions . 130
5.3 Modification to Interval Arithmetic . 132
5.4 Revised Affine Arithmetic . 133

5.4.1 Revised Affine Form . 133
5.4.2 Multiplication . 135

March 14, 2005

iv Contents

5.4.3 Division . 137
5.4.4 Non-Affine Unary Operations . 137

5.5 Abstraction of Inclusion Concepts . 141
5.5.1 Inclusion Representations . 141
5.5.2 Inclusion Functions . 146

5.6 Conclusion . 149

6 Numerical Constraint Propagation on Directed Acyclic Graphs 151
6.1 Introduction . 151
6.2 DAG Representations for Numerical CSPs . 152

6.2.1 Basic Concepts of Directed Acyclic Graphs 152
6.2.2 DAG Representations . 153

6.3 Forward-Backward Propagation on DAG Representations 155
6.3.1 Forward Evaluation on DAG Representations 156
6.3.2 Backward Propagation on DAG Representations 157

6.4 Partial DAG Representations for Numerical CSPs 158
6.5 Constraint Propagation on Partial DAG Representations 160
6.6 Coordinating Constraint Propagation and Search 164
6.7 Experiments . 165
6.8 Conclusion . 168

7 Combination of Inclusion Techniques in Constraint Propagation 169
7.1 Introduction . 169
7.2 A Combination Scheme for Constraint Propagation 170

7.2.1 Node Range Evaluations . 170
7.2.2 Induced Constraint Systems for Domain Reduction 173
7.2.3 CIRD – A Generic Combination Scheme 177

7.3 Specific Combination Strategies as Instances of CIRD 179
7.3.1 Step 1a: Initial Node Evaluation . 179
7.3.2 Step 1b: Initialization of Waiting Lists 180
7.3.3 Step 2a: Getting the Next Node . 180
7.3.4 Step 2b: Node Evaluation . 181
7.3.5 Step 2c: Node Pruning . 181

7.3.5.1 Backward Propagation . 182
7.3.5.2 Affine Pruning . 182

7.4 Experiments . 183
7.4.1 Comparisons with Interval Constraint Propagation Techniques 183
7.4.2 Comparisons with Linear Relaxation Based Techniques 185

7.5 Potential Directions for CIRD . 186
7.6 Conclusion . 187

8 Clustering Techniques for Disconnected Solution Sets 189
8.1 Introduction . 189
8.2 Goals of Clustering . 190

8.2.1 Basic Concepts . 190
8.2.2 Goal Setting . 191

8.3 Algorithms . 192

March 14, 2005

Contents v

8.3.1 Optimal Max-Connected Clustering . 192
8.3.2 Separator Computation . 193
8.3.3 Max-Connected Clustering . 196
8.3.4 Separator-Driven Clustering . 198
8.3.5 Combinations of Algorithms . 200

8.3.5.1 Combination of MCC and Colonization 200
8.3.5.2 Combination of SDC and Colonization 201

8.4 Experiments . 202
8.5 Conclusion . 204

9 Conclusions 205
9.1 Contributions . 205
9.2 Limitations and Challenges . 207
9.3 Further Research . 207
9.4 The Final Conclusion . 208

A Extended Concepts of Interval Arithmetic 209
A.1 A Short History of Interval Arithmetic . 209
A.2 Typical Interval Functions . 210

A.2.1 Natural Interval Form . 210
A.2.2 Centered Interval Form . 210
A.2.3 Mixed Centered Interval Form . 210
A.2.4 Taylor Interval Form . 211
A.2.5 Linear Interval Mapping . 211

A.3 Advanced Concepts on Intervals . 212
A.3.1 Interval Matrix . 212
A.3.2 Interval Matrix Inverse . 213
A.3.3 Interval Slope . 214

B Fixed Point Theory in Metric Spaces 217
B.1 Basic Concepts on Metric Spaces . 217
B.2 Fundamental Fixed Point Theorems . 219

C Numerical Benchmarks 223
C.1 Problems with Continuums of Solutions . 223
C.2 Test Case T1: Problems with Isolated Solutions 227
C.3 Test Case T2: Problems with Isolated Solutions 229
C.4 Test Case T3: Problems with Isolated Solutions 230
C.5 Test Case T4: Problems with Continuums of Solutions 232
C.6 Test Case T5: Problems with Continuums of Solutions 232

Bibliography 235

Glossary 253

Index 257

Curriculum Vitae 271

March 14, 2005

vi Contents

March 14, 2005

Abstract

A constraint satisfaction problem (e.g., a system of equations and inequalities) consists of a
finite set of constraints specifying which value combinations from given variable domains are
admitted. It is called numerical if its variable domains are continuous. Such problems arise
in many applications, but form a difficult problem class since they are NP-hard. Solving a
constraint satisfaction problem is to find one or more value combinations satisfying all its
constraints. Numerical computations on floating-point numbers in computers often suffer from
rounding errors. The rigorous control of rounding errors during numerical computations is
highly desired in many applications because it would benefit the quality and reliability of
the decisions based on the solutions found by the computations. Various aspects of rigorous
numerical computations in solving constraint satisfaction problems are addressed in this thesis:
search, constraint propagation, combination of inclusion techniques, and post-processing.

The solution of a constraint satisfaction problem is essentially performed by a search. In
this thesis, we propose a new complete search technique (i.e., it can find all solutions within
a predetermined tolerance) for numerical constraint satisfaction problems. This technique
is general and can be used in place of branching steps in most branch-and-prune methods.
Moreover, this new technique speeds up the most recent general search strategy (often by an
order of magnitude) and provides a concise representation of solutions.

To make a constraint satisfaction problem easier to solve, a major approach, called con-
straint propagation, in the constraint programming1 field is often used to reduce the variable
domains (by discarding redundant value combinations from the domains). Basing on directed
acyclic graphs, we propose a new constraint propagation technique and a method for coordinat-
ing constraint propagation and search. More importantly, we propose a novel generic scheme
for combining multiple inclusion techniques2 in numerical constraint propagation. This scheme
allows bringing into the constraint propagation framework the strengths of various techniques
coming from different fields. To illustrate the flexibility and efficiency of the generic scheme, we
base on this scheme and devise several specific combination strategies for rigorous numerical
constraint propagation using interval constraint propagation, interval arithmetic, affine arith-
metic, and linear programming. Our experiments show that the new propagation techniques
outperform previously available methods by 1 to 4 orders of magnitude or more in speed.

We also propose several post-processing techniques for the representation of continuums
of solutions. Based on connectedness, they allow grouping each cluster of connected solution
subsets into a larger subset, thus allowing getting additional grouping information. Potentially,
these techniques enable interval-based solution techniques to be alternatives to bounding-volume
techniques in applications such as collision detection and interactive graphics.

1 Constraint programming is an approach to programming that relies on both reasoning and computing.
2 An inclusion technique is to include a set of interest into enclosures. It is also called an enclosure technique.

vii

viii Abstract

March 14, 2005

Résumé

Un problème de satisfaction de contraintes se compose d’un ensemble d’énoncé de contraintes
quel tuples des valeurs dans les domaines des variables sont admis. Il s’appelle numérique
si ses domaines des variables sont continus. La résolution d’un problème de satisfaction de
contraintes est de trouver un ou plusieurs tuples des valeurs satisfaisant à toutes ses contraintes.
Les calculs numériques sur les nombres en points flottants des ordinateurs souffrent souvent
d’erreurs d’arrondis. Le contrôle rigoureux de ces erreurs d’arrondis est fortement désiré dans
de nombreuse applications, parce qu’il permet d’améliorer la qualité et la fiabilité des décisions
basées sur les solutions trouvées. Cette thèse est consacrée à divers aspects du calcul numérique
rigoureux lors de la résolution de problèmes de satisfaction de contraintes: la recherche, la
propagation de contraintes, la combinaison des techniques d’inclusion, et le post-traitement.

La résolution d’un problème de satisfaction de contraintes est habituellement exécutée par
une recherche. Nous proposons une nouvelle technique de recherche complète (c-à-d, elle peut
trouver toutes les solutions à une tolérance prédéterminée) pour des problèmes de satisfaction
de contraintes avec des domaines continues. Cette technique est générique et peut être utilisée
en guise de la technique de branchement dans la plupart des méthodes de type branch-and-
prune. De plus, cette technique accélère la technique de recherche générale la plus récente
(souvent par un ordre de magnitude) et fournit une représentation concise des solutions.

Pour faciliter un problème de satisfaction de contraintes à résoudre, une approche dans
la programmation par contrainte1, appelée la propagation de contraintes, est souvent utilisée
pour réduire les domaines des variables (en enlevant quelques tuples de valeurs redondantes des
domaines). Baser sur les graphes acycliques orientés, nous proposons une nouvelle technique de
propagation de contraintes et une méthode pour coordonner la propagation de contraintes et la
recherche. De plus, nous proposons un nouveau schéma générique pour combiner des techniques
d’inclusion2 multiples dans la propagation de contraintes numériques. Ce schéma permet de
bénéficier de la propagation de contraintes de la puissance de techniques provenant de diverses
disciplines. Pour illustrer la flexibilité et l’efficacité du schéma générique, nous imaginons du
schéma plusieurs stratégies spécifiques de combinaison impliquant la propagation de contraintes
d’intervalles, l’arithmétique d’intervalle, l’arithmétique affine, et la programmation linéaire.
Nos expériences prouvent que la nouvelle approche surpasse des techniques précédemment
disponibles par un à quatre ordres de magnitude ou plus en vitesse.

En plus, nous proposons plusieurs techniques de post-traitement pour la représentation des
continuums de solutions. Elles permettent de grouper des sous-ensembles de solutions con-
nectées dans de plus grand sous-ensembles, ameliorant ainsi la concision de la représentation.
Ceci permet potentiellement aux techniques de résolution basées sur des intervalles de se
substituer aux techniques de bounding-volume classiques dans des applications telles que la
détection de collision ou le graphisme interactif.

1 La programmation par contrainte est une approche qui combine raisonnement et calcul.
2 Une technique d’inclusion (ou technique de clôture) doit inclure un ensemble d’intérêts dans des clôtures.

ix

x Résumé

March 14, 2005

Acknowledgements

This thesis is dedicated to my advisors, Dr. Djamila Sam-Haround and Prof. Boi Faltings.
By this, I wish to express my deepest appreciation and gratitude to my advisors who have
sponsored and inspired me continuously. Without their sponsorships, this thesis would never
be completed. I am much more than thankful to them for their advices, encouragements
and assistances during my PhD career. I am much graceful to Djamila Sam-Haround for
giving me complete freedom in time management, in research direction, and even in leaning to
mathematics, the subject I love since high school time. However, she has always been there
to help me when necessary. I also thank Dr. Martin Rajman for accepting to fund me in the
last year of the thesis, the crucial year for completing the thesis. Specially, I wish to thank Vu
Duong Thang for giving me the pointer to this PhD job.

I wish to thank Dr. Hermann Schichl, Prof. Arnold Neumaier, and the other colleagues
in the COCONUT project (IST-2000-26063) for their generous help and fruitful collaborations
during the time of the project (from December 2000 to February 2004). Much experience I
have gained since that time is gracefully acknowledged to the COCONUT members. I would
like to thank ILOG for granting us a permission to use ILOG Solver and ILOG CPLEX during the
COCONUT project. I also thank the IRIN team of the University of Nantes in France for the
open source code of their HC4 algorithm in the COCONUT platform. I am graceful to Benny
Raphael for providing me the beautiful figures and detailed descriptions of civil engineering
problems in Appendix C. The precise timer used in all my implementations of the algorithms
in this thesis is owning to Nguyen Tuan Viet. I am very thankful to Bui Huu Trung, my office
mate, for helping me to print and bind many copies of this thesis at the most critical time of
the thesis submission. I also graceful to Bui Hai Thanh, Le Hung Son, Nguyen Vu Hieu, To
Huy Cuong, and Do Quang Yen for giving me their comments on this thesis.

I would like to thank Prof. Claude Petitpierre for chairing my thesis committee. I am
very thankful to Prof. Arnold Neumaier, Prof. Michel Rueher, and Prof. Mohammad Amin
Shokrollahi for being members of my thesis committee. I also thank them for their valuable
comments and discussions on my thesis.

I would never forget the friendly help received from Do Ngoc Minh, Nguyen Tuan Anh,
Cao Thanh Thuy, Luu Huong Tram Hong, and Marius-Calin Silaghi since the days I was new
to the surroundings in Switzerland. Four-year studying life at EPFL has been the source of
great pleasure for me. I wish to thank my friends and colleagues there for their friendly help
and enthusiastic collaboration, especially Omar Belakhdar, Romaric Besançon, Monique Cal-
isti, Jean-Cédric Chappelier, Cristian Ciressan, Ion Constantinescu, Santiago Macho Gonzalez,
Frédéric Goualard, Christophe Jermann, Radu Jurca, Miroslav Melichar, Adrian Petcu, David
Portabella, Antoine Rozenknop, Vincent Schickel-Zuber, Florian Seydoux, Paolo Viappiani,
Alex Trutnev, and Steven Willmott. I also would like to thank Mrs. Marie Decrauzat for her
administrative supports.

xi

xii Acknowledgements

I wish to share a big hug with my Vietnamese friends, who have discussed everyday oc-
currences with me, especially Bui Hai Thanh, Bui Huu Trung, Ho Quoc Bang, Le Dinh Duy,
Le Hung Son, Le Lam Son, Luu Vinh Toan, Mai Tuan Anh, Nguyen Ngoc Anh Vu, Nguyen
Phi Hung, Nguyen Quang Huy, Nguyen Thanh Tung, Nguyen Tuan Viet, Nguyen Vu Hieu,
Nguyen Xuan Hung, Tran Doan Binh, Tran Hien Dat, Vo Duc Duy, and Vu Le Hung. Thanks
to them, nearly one thousand stressful hours in writing up this thesis have been harmoniously
relaxed by many enjoyable hours.

I want to thank my high school mathematical teacher, Pham Ngoc Quang, for specially
inspiring me with the first motivation of my scientific life and for encouraging me throughout
the rest.

From the bottom of my heart, I am extremely thankful to my parents and my family for
so many priceless things and so much great love they have ever given to me.

March 14, 2005

List of Algorithms

2.1 The Solution algorithm – a general solving process 22
3.1 The Exclusion algorithm . 69
3.2 The Inclusion algorithm . 77
3.3 The Branch&Prune algorithm – the recursive version 80
3.4 The Branch&Prune algorithm – the loop version 80
3.5 Function Prune&Check(P, Solutions, Atoms) . 80
3.6 The F-Hull Consistency algorithm – F-hull consistency by search 81
3.7 The HC4revise algorithm – a forward-backward propagation on a tree 84
3.8 Procedure RFE(in/out: a compact tree TE ; in: x ∈ In) 84
3.9 Procedure RBP(in/out: a compact tree TE , x ∈ In) 84
3.10 The HC4 algorithm – hull consistency on primitive constraints 84
3.11 The BC3Revise algorithm – box consistency by search 85
3.12 Function SearchLowerBound(in: an interval form Γ, x ∈ In, i ∈ {1, . . . , n}) 85
3.13 Function SearchUpperBound(in: an interval form Γ, x ∈ In, i ∈ {1, . . . , n}) 85
3.14 The BC3 algorithm – box(Γ) consistency by bounds search + AC3 86
3.15 The BC4 algorithm – box(Γ) consistency by BC3 + HC4revise 87
3.16 The kB-Consistency algorithm – the function ΦFkB 88
3.17 The Fixed Point Combination algorithm . 89
3.18 The Quad algorithm – a propagation based on linear relaxations 91
4.1 The UCA6 algorithm – a slightly improved version 120
4.2 Function solveQuickly(B, C, {CBc | c ∈ C}, ε, FC, WaitingList) 120
4.3 Function isEpsilonBox(B, C, ε, FC) . 121
4.4 The UCA6+ algorithm . 122
4.5 Function solveQuickly+(B, C, {CBc | c ∈ C′}, ε, FC, WaitingList, Dstop) 123
4.6 Function isEpsilonBox+(B, C, ε, FC) . 123
5.1 The SafeChebyshevApprox↑ algorithm . 139
5.2 The SafeChebyshevApprox↓ algorithm . 140
6.1 Procedure NodeOccurrences(in: a node N; in/out: a vector Voc) 160
6.2 The FBPD algorithm – a constraint propagation on DAGs 161
6.3 Procedure ReForwardEvaluation(in: a node N; in/out: a vector Vch, a list Lb) . 162
6.4 Procedure NodeLevel(in: a node N; in/out: a vector Vlvl) 163
6.5 The BnPSearch algorithm – a generic branch-and-prune search 165
7.1 CIRD – a scheme for combining inclusion representations on DAGs 178
7.2 Procedure RecursiveNodeEvaluation(in: a node N) 179
8.1 The Colonization algorithm – a naive clustering 192
8.2 The I◦-intersect algorithm – intersection of two sets of intervals 195
8.3 Procedure BoxTreeFitting(in/out: a bounding-box tree T0) 196

xiii

xiv List of Algorithms

8.4 Procedure SeparatorPulling(in/out: a node P) 196
8.5 The max-connected clustering (MCC) algorithm 197
8.6 Function SubtreeSeparation(in: a node P, a separator S ∈ SPT(P); out: lP, uP) . 198
8.7 The separator-driven clustering (SDC) algorithm 199
8.8 Function MaxSeparation(in: a tree T ; out: a list L of trees decomposed from T) 200

March 14, 2005

List of Definitions

2.1 Variable Domain . 10
2.2 Constraint . 11
2.4 Compound Label, Instantiation . 11
2.5 Satisfiability . 11
2.7 Constraint Satisfaction Problem ≡ CSP . 12
2.10 Consistent k-Instantiation . 12
2.11 Arity . 12
2.12 Solution . 13
2.13 Solution Set . 13
2.14 Consistency . 13
2.17 Constraint Graph ≡ Constraint Network . 14
2.18 Constraint Hypergraph . 14
2.19 Binary CSP, Strictly Binary CSP . 14
2.20 Normalized CSP . 14
2.21 Standardized CSP . 14
2.22 Regular CSP . 14
2.23 Negation . 15
2.24 Projection . 15
2.27 Section, Cross Section . 15
2.30 Slice . 16
2.32 Singleton CSP ≡ Section, Cross Section . 16
2.33 Slice of CSP . 17
2.35 Compact CSP . 17
2.36 Globally Solved Form . 17
2.37 Problem Equivalence . 18
2.38 Problem Relaxation . 18
2.39 Equivalence-Preserving . 18
2.40 Consistency-Preserving . 18
2.41 Relaxing . 19
2.42 Consistency-Relaxing . 19
2.43 Domain Reduction Operator . 19
2.45 Redundant Value/Compound Label . 20
2.46 Redundant Constraint ≡ Implied Constraint . 20
2.47 Soundness . 21
2.48 Completeness, Incompleteness . 21
2.49 Asymptotical Completeness . 21
2.50 Rigor . 21

xv

xvi List of Definitions

2.51 Continuous Domain . 24
2.53 Continuous Variable . 24
2.54 Numerical Constraint . 25
2.55 Numerical CSP ≡ NCSP . 25
2.59 Constraint Range . 25
2.62 Arithmetic Expression . 27
2.63 Factorable Expression . 28
2.66 Factorable Function . 28
2.68 Factorable Constraint . 28
2.70 Factorable CSP . 29
2.71 Separable Expression . 29
2.73 Separable Function . 29
2.75 Separable Constraint . 30
2.76 Separable CSP . 30
2.78 Interval Vector, Box . 33
2.80 Interval Form of Functions . 35
2.81 Interval Form of Relations . 35
2.83 Kolev Affine Form, Kolev Interval Form . 39
2.86 Strongness . 43
2.87 Monotonicity . 43
2.89 Global Consistency . 44
2.90 Node Consistency . 44
2.93 Arc Consistency . 44
2.96 Directional Arc Consistency . 45
2.98 Hyper-Arc Consistency . 45
2.100 Path Consistency . 46
2.102 Strong Path Consistency . 46
2.105 Directional Path Consistency . 46
2.107 k-Consistency . 47
2.108 Strong k-Consistency . 47
2.114 Hull Consistency . 48
2.115 F-Hull Consistency . 48
2.119 kB-Consistency . 50
2.123 kB(F)-Consistency . 51
2.124 Box Consistency . 51
2.125 Box(Γ) Consistency . 52
2.127 Box〈±ϕ〉 Consistency . 52
2.129 (i, j)-Consistency . 53
2.130 Strong (i, j)-Consistency . 53
2.132 Relational Consistency . 53
2.134 Singleton Consistency . 54
3.3 Strong Convergence . 56
3.4 Interval Contraction ≡ Narrowing/Contracting Operator 57
3.6 Krawczyk Operator for Linear Equations . 58
3.8 Gauss-Seidel Operator . 59
3.13 Krawczyk Operator for Nonlinear Equations . 60
3.17 Hansen-Sengupta Operator . 62

March 14, 2005

List of Definitions xvii

3.20 Interval Newton Operator . 63
3.23 Gauss Inverse . 65
3.24 Exclusion Test . 68
3.29 Existence Test . 73
3.30 Uniqueness Test . 73
3.33 Generalized Inclusion Test . 76
3.43 Kolev Operator . 98
4.3 Inner Approximation . 105
4.4 Outer Approximation . 105
4.5 Inner Union Approximation, ¢I . 106
4.6 Outer Union Approximation, ¢O . 106
4.7 Boundary Union Approximation, ¢B . 106
4.9 Feasibility Checker, FC . 107
4.10 Interval-Based Precision . 108
4.11 Domain Reduction Operator, DR . 108
4.13 Complementary Boxing Operator, CB . 110
4.18 Monotonicity . 113
4.20 Dichotomous Splitting Operator, DS . 113
4.22 Box Splitting Operator, BS . 114
4.23 Active/Inactive Variable . 115
4.24 Color Function . 117
4.25 Extreme Vertex . 118
5.1 Multifunction, Values, Fibers . 130
5.2 Image, Inverse Image . 130
5.3 Extended Function . 130
5.9 Interval Form of Multifunctions . 132
5.11 Interval Division: [÷∅], [÷R], [÷?] . 132
5.22 Inclusion Representation . 141
5.23 Real Inclusion Representation, Real Representation 141
5.36 Inclusion Function of Functions . 146
5.37 Inclusion Function of Multifunctions . 146
5.38 Inclusion Relation . 146
5.41 Natural Extension . 147
5.45 Inclusion Conversion . 148
6.1 Directed Multigraph . 152
6.2 In-Edges, Out-Edges . 152
6.3 Leaf, Root . 152
6.4 Directed Path, Cycle, Directed Acyclic Multigraph 152
6.5 Parent, Child, Ancestor, Descendant . 153
6.7 Directed Multigraph with Ordered Edges . 153
6.10 Forward Evaluation Rule . 156
6.16 Backward Propagation Rule . 158
7.4 Node Evaluation, NEV . 171
7.6 Inclusion Constraint System, ICS . 173
7.9 Pruning Constraint System, PCS . 174
8.1 Separator, SPT . 193
8.2 Extension, EXT . 193

March 14, 2005

xviii List of Definitions

8.3 Separating Set, SE . 194
A.1 Natural Interval Form . 210
A.2 Centered Interval Form . 210
A.3 Mixed Centered Interval Form . 210
A.4 Taylor Interval Form . 211
A.5 Linear, Sublinear Mapping . 211
A.6 Spectral Radius . 212
A.7 Extended Matrix Inverse . 212
A.8 Interval Matrix . 212
A.9 Comparison Matrix . 212
A.10 M-Matrix . 212
A.11 H-Matrix . 213
A.12 Linear Interval Equation . 213
A.13 Linear Interval Inequalities . 213
A.14 Hull Inverse . 213
A.15 Fixed Point Inverse . 213
A.16 Regular Matrix Set . 214
A.17 Strongly Regular Interval Matrix . 214
A.18 Interval Matrix Inverse . 214
A.20 Lipschitz Set, Lipschitz Matrix . 214
A.21 Slope, Slope Matrix . 215
A.22 Slope Form . 215
A.23 Second Order Slope Matrix . 215
A.25 Slope Set, Interval Slope Matrix . 216
B.1 Metric Space . 217
B.2 Precompact Set . 217
B.3 Closed/Open Set . 217
B.4 Cover, Subcover . 217
B.5 Compact Metric Space, Compact Set . 218
B.6 Ring, Field . 218
B.7 Vector Space . 218
B.8 Norm, Normed Vector Space . 218
B.9 Convex Set . 219
B.10 Euclidean Distance, Hausdorff Distance . 219
B.11 Lipschitz/Nonexpansive/Contractive/Contraction Mapping 219
B.12 Compact Mapping . 220
B.13 Fixed Point . 220

March 14, 2005

List of Figures

3.1 The tree representation of a factorable NCSP . 83
3.2 The compact tree representation of a factorable NCSP 83

4.1 An example of NCSPs with: (a) isolated solutions; (b) continuums of solutions . . 102
4.2 An example of a poorly informative representation 104
4.3 An example of inner and outer approximations . 105
4.4 An example of inner and outer union approximations 106
4.5 An example of a domain reduction (DR) operator 109
4.6 An example of a complementary boxing (CB) operator 110
4.7 Domain reduction (DR) operators and complementary boxing (CB) operators 111
4.8 Examples of box splitting (BS) and dichotomous splitting (DS) operators 114
4.9 Normal domain reductions and restricted-dimensional domain reductions 116
4.10 Examples of a griddy polyhedron and an orthogonal polyhedron 117
4.11 A griddy polyhedron with samples of colors . 117
4.12 An example of extreme vertices of union approximations 118
4.13 Logarithmic charts for: (a) the running time; and (b) the total number of boxes . 126

6.1 A node and its computational flows in a DAG representation 154
6.2 The DAG representation of the constraint system (6.2) 155
6.3 Partial DAG representations of the problem (6.2) 159
6.4 The DAG representation of the system (6.2) after a recursive forward evaluation . 162
6.5 The node levels are updated at each call to the FBPD algorithm 163

7.1 The DAG representation: (a) before; and (b) after interval evaluations 171
7.2 A pruning constraint system . 175
7.3 The distribution of auxiliary variables (ε1, ε2) in a DAG representation 179

8.1 Examples of orthogonal-separable and non-orthogonal-separable trees 191
8.2 Examples of separators and extensions . 193
8.3 The fitting process on a bounding-box tree . 194
8.4 The separating process: constructing lower-bound and upper-bound trees 197
8.5 Max-Connected Clustering . 198
8.6 Separator-Driven Clustering . 199
8.7 Examples of the output from MCC and MCC . 201
8.8 Examples of the output from OSDC . 201
8.9 The average running times (a) in three groups; and (b) for all problems 203

C.1 The geometric design of a truss . 223

xix

xx List of Figures

C.2 The design of a column for combined axial load and moment 225

March 14, 2005

List of Tables

2.1 IEEE 754 floating-point formats . 32
2.2 IEEE 754 special quantities . 32

3.1 The general form of a basic tableau in the simplex method 92
3.2 The reduced form of a basic tableau in the simplex method 93
3.3 The optimal feasible tableau for the linear program (3.99) 94
3.4 The optimal tableau for the linear program (3.100) 95

4.1 The running time results for search algorithms. 125
4.2 The numbers of boxes in inner and boundary union approximations 125
4.3 The ratio of the inner volume to the outer volume 126

5.1 Examples of functions f ∈ C1([a, b]) satisfying the conditions of Theorem 5.19 . . . 139

6.1 A comparison of three constraint propagation techniques: FBPD, BOX, HC4 . . . 167
6.2 The averages of the relative time ratios in each test case 167
6.3 The overrun ratios for the test case T1 . 167

7.1 A comparison of three constraint propagation techniques: CIRD[ai], BOX, HC4 . 184
7.2 The averages of the relative time ratios in each test case 184
7.3 A preliminary comparison of Quad and CIRD[ai] 186

8.1 The average running times and the average number of clusters 202

xxi

xxii List of Tables

March 14, 2005

Chapter 1

Introduction

Everybody has learned, since high school time, to solve particular mathematical problems; for
example, has learned to

• solve univariate quadratic equations by using the completing the square method (an an-
cient version of the quadratic formula known to the Babylonians,1 circa 400 BC);

• solve systems of linear equations by using the Gauss elimination method;
• find local and global extrema based on the first order derivative test , second order deriv-

ative test , or extreme test .
Such theoretical methods are however too limited for practical use. They can only solve prob-
lems of specific types or of small sizes. In practice, it is, however, often required to solve larger
and more general problems. These problems remain out of the reach of those methods. Numer-
ous approaches have been developed to tackle problems of practical interest. These approaches
pertain to various disciplines including mathematical programming , logic programming , and
constraint programming .

Mathematical programming mainly focuses on mathematical computing aspects, while logic
programming leans towards logic reasoning aspects. They both have long histories with a vast
literature. Constraint programming, which has been officially studied since circa the year 1973,
involves both mathematical computing and logic reasoning.

This thesis is concerned with various aspects of the constraint programming approach for
solving numerical nonlinear problems. Before introducing the goal of the thesis, a preview of
constraint programming is given to allow better understanding the direction of the thesis.

The reader who is already familiar with basic concepts in constraint programming may skip
the next section and start with the goal of the thesis in Section 1.2.

1.1. A Preview of Constraint Programming

Constraint programming is an approach to programming that relies on a combination of reason-
ing and computing, with emphasis on the interaction among constraints. It offers a declarative
framework for implementing problem solving methods. So far, it has been successfully applied
in a number of fields including electrical engineering, design engineering, interactive graphics,
natural language processing, numerical analysis, molecular biology, and operations research.
See some applications in [Apt 2003].

1 The ancient Babylonians did not have the quadratic formula of today but they had their own ancient method.
The quadratic formula, though, is simply a formalization of this ancient method.

1

2 1. Introduction

Constraint Programming [Apt 2003]. The central concept in constraint programming is
the concept of a constraint. Mathematically, a constraint on a sequence of variables is a relation
over their domains. It can also be viewed as a requirement stating which tuple of values is
admitted. To state multiple requirements that need to be satisfied, the concept of a constraint
satisfaction problem has also been introduced. Roughly speaking, a constraint satisfaction
problem (CSP) consists of a finite set of constraints, each on a subsequence of a given sequence
of variables. These are the most fundamental concepts in constraint programming.

First, to solve a given problem with the use of constraint programming, we formulate its
requirements as a constraint satisfaction problem. This task is called problem modeling , which
consists of

• introducing some variables to represent the quantities of interest;
• associating each variable with a domain that contains values of possible interest;
• expressing some constraints on the variables to state the requirements of the problem.

The modeling phase results in a representation of the problem as a constraint satisfaction
problem. Along with representing the problem, we need to identify the target of the problem,
which often amounts to either

• determining if the representation has a solution2;
• finding one or more solutions;
• finding one or more optimal solutions w.r.t. some quality measure, which is often ex-

pressed as minimizing (or maximizing) an objective function.
While the first is casted into a satisfiability problem and the last is formulated as a constrained
optimization problem, the second defines the constraint satisfaction problem itself.

Second, to solve the chosen representation of the problem by means of constraint program-
ming, we may use general methods, domain-specific methods, or a combination of them:

• The general methods in constraint programming are concerned with reducing the search
space and with specific search methods. The algorithms that deal with the search space
reduction are usually called constraint propagation techniques. These techniques aim at
computing an equivalent, but simplified, representation of the considered problem. They
achieve various forms of local consistency , which is a state achieved by an algorithm such
that some tuples of values that do not satisfy some constraints are discarded. This notion
approximates the notion of global consistency , which is a state that each instantiation of
values to variables can be extended to a solution. The general methods often combine
various forms of constraint propagation with either the customary backtracking , branch-
and-bound , or branch-and-prune frameworks for search, depending on the target of the
considered problem.

• The domain-specific methods are usually provided in the form of special purpose algo-
rithms, such as the linear programming algorithms that only deal with linear functions.
These methods exploit the specialities of the considered problem in order to solve them
more efficiently. In general, if domain-specific methods are applicable, they should be
used in place of the general methods. For example, it is far more efficient to use linear
programming techniques, such as the Gauss-Jordan elimination method and the simplex
method , than to use the general methods when solving a system of linear equations.

2 In this thesis, each tuple of values in considered variable domains that satisfies all constraints of a problem is
called a solution of the problem.

March 14, 2005

1.2. The Goal of the Thesis 3

In fact, one of the aims of constraint programming is to look for efficient domain-specific
methods that can be used in specific circumstances instead of the general methods and to
incorporate them into a general framework seamlessly. Such a framework usually supports

• domain-specific methods, often implemented in specific constraint solvers;
• general methods, often in the form of constraint programming languages, by facilitating

the use of constraint propagation algorithms in various search methods.

Mathematical Rigor. A solution algorithm (or a solution technique, or a solution method)
for a problem is a sequence of steps for solving the problem. Following the classification in
[Neumaier 2004], the different solution methods can be classified into four classes according to
the degree of mathematical rigor3 as follows (see Section 2.1.2.3 for formal definitions):

1. Incomplete solution methods: which use heuristics to accelerate the solving process,
but do not guarantee to find all solutions;

2. Asymptotically complete solution methods: which find a solution with certainty or
at least with probability one;

3. Complete solution methods: which find a solution with certainty, assuming exact
computations and indefinitely long run time;

4. Rigorous solution methods: which find a solution within prescribed tolerances with
certainty, even in the presence of rounding errors.

For problems with discrete domains, the last two categories are identical. A complete
solution algorithm is able to compute all approximate solutions systematically. However, only
rigorous solution algorithms can be relied upon to provide all relevant solutions and guarantee
that all requirements of the problem are rigorously satisfied. The rigor would thus benefit the
quality and reliability of decisions based on the solutions found by the algorithms.

1.2. The Goal of the Thesis

Many applications involve constraints of which variable domains are continuous (that is, each
variable domain is a connected set of real numbers). In this case, the domains and variables are
said to be continuous. A constraint on continuous variables is called a numerical constraint .
A constraint satisfaction problem with numerical constraints is called a numerical constraint
satisfaction problem. In practice, numerical constraints are often expressed in the factorable
form; that is, each expression of which is recursively composed of elementary operations or
functions, such as +, −, ×, ÷, log, sin, and cos. Numerical constraints may be simple or
complex, linear or nonlinear, or even may involve logic functions (usually of first order).

A problem is said to be linear if all its constraints are linear, or to be nonlinear otherwise.
If some variable domains of a linear problem (respectively, a nonlinear problem) contain only
integers, the problem is called a mixed integer linear problem (respectively, a mixed integer
nonlinear problem). When considering constrained optimization problems, we often replace the
term problem in these concepts by the term program, hence getting the well-known concepts
of a linear program (LP), a nonlinear program (NLP), a mixed integer linear program (MILP),
and a mixed integer nonlinear program (MINLP) in mathematical programming.

3 The mathematical rigor is defined as amenability to algorithmic checking of correctness.

March 14, 2005

4 1. Introduction

Arising very early in many practical applications, constrained optimization problems have
been attracting the attention of numerous researchers around the world. Numerous techniques
have been proposed in mathematical programming to solve these problems. However, the only
class of optimization problems that can now be completely and efficiently solved for many
large scale problem instances (say, with hundred thousands of variables) is the class of MILPs.
Although sharing with MILPs the feature that fixing all integer variables may lead to a tractable
problem, MINLPs are still much more difficult to solve due to the nonlinearity. In general,
the most powerful mathematical programming techniques are usually applicable to restricted
classes of constraints only and are sometimes domain-specific.

A (numerical) constraint satisfaction problem can be viewed as a constrained optimization
problem with a constant objective function. Hence, it can be theoretically solved by using
solution algorithms for constrained optimization problems. However, most efficient solution
algorithms for constrained optimization problems are heavily based on the interaction between
objective functions and constraints. For example, the first order necessary optimality condi-
tions such as the Karush-Kuhn-Tucker conditions and the second order necessary/sufficient
optimality conditions (see [Nocedal and Wright 2000, Chapter 12], [Neumaier 2004, Section 5])
do not help reduce the search space when the objective function is constant because all so-
lutions are optimal. In this case, more intensive techniques are needed for efficiently solving
numerical constraint satisfaction problems.

Since the arising of many practical applications that involve constraint satisfaction prob-
lems, a new framework, originally called constraint satisfaction and recently called constraint
programming , emerged thirty years ago to concern with solving constraint satisfaction problems
(see Section 2.1.1). At the beginning, constraint satisfaction techniques only focused on the rea-
soning in solving constraint satisfaction problems with discrete domains. Given such a problem,
constraint satisfaction techniques often insisted on taking into account the interaction among
constraints of the problem and on exploring the search space by intelligently enumerating solu-
tions. Consequently, the constraint satisfaction techniques could deal with general constraints
and handle heterogeneous problems while maintaining the completeness and the rigor. Later
on, many techniques for continuous domains in mathematical programming were adapted to
the framework of constraint satisfaction to help solve numerical constraint satisfaction prob-
lems more efficiently. The gap between continuous and discrete domains has been bridged by
using progressive discretization or splitting techniques. Nowadays, devised techniques are often
referred to as constraint programming techniques, which imply a combination of computing and
reasoning. A side effect of the combination is that such constraint programming techniques no
longer possess the generality that holds in the original framework of constraint satisfaction.

Although the generality and completeness of constraint programming techniques are high,
their performance still does not suffice to handle problems of practical size. We have realized
that, among the reasons, the inefficiency is caused by the following limitations:

L1 Constraints have been individually represented and the interaction among them has not
been sufficiently taken into account during the solving process;

L2 The strengths of domain-specific methods have not been sufficiently explored in the gen-
eral framework;

L3 Under-constrained problems have been improperly treated as the same as well-constrained
problems (i.e., the ones with isolated solutions).

Therefore, we have set the goal for the thesis as follows.

March 14, 2005

1.3. Contributions of the Thesis 5

The goal is to develop rigorous solution algorithms for numerical constraint satisfaction
problems such that they reduce the limitations L1, L2 and L3.

This goal builds on the idea that the strengths of different domain-specific methods, such as
linear programming, interval analysis and affine arithmetic, are complementary. They can be
integrated into the general framework of constraint programming, which allows exploring the
interaction of constraints, to devise powerful solution techniques. The combination techniques
will be able to preserve the generality and flexibility of constraint programming techniques
while taking advantage of the powerful capabilities of domain-specific methods. Moreover,
when under-constrained problems are considered, better splitting strategies can be used to
avoid reconsidering some constraints in search regions that completely satisfy the constraints.
In other words, the constraints that are implied by the other constraints in subproblems should
be removed from further consideration.

1.3. Contributions of the Thesis

The detailed contributions of this thesis are presented at the end of each chapter (cf. the
chapters 4, 5, 6, 7, and 8), and are summarized in Section 9.1. The major contributions are:

C1 In Chapter 4, we propose a new complete search technique to solve numerical
constraint satisfaction problems. The proposed search technique is general and hence
applicable to most branch-and-prune based solution methods.

C2 In Chapter 5, we propose several improvements to, and an abstraction of, in-
clusion techniques4. These proposals are used in our new constraint propagation
techniques in Chapter 6 and Chapter 7.

C3 In Chapter 6, we propose a new numerical constraint propagation technique and
a method for coordinating it and search on directed acyclic graphs. Our
experiments show that the new technique outperforms previously available techniques by
1 to 2 orders of magnitude or more in speed.

C4 In Chapter 7, our contribution is twofold:

(a) We propose a novel generic scheme to combine multiple inclusion tech-
niques in numerical constraint propagation. The scheme potentially allows
bringing into the constraint propagation framework the strengths of different tech-
niques coming from different fields.

(b) We base on the generic scheme and devise several specific combination strate-
gies for numerical constraint propagation using interval constraint propaga-
tion, interval arithmetic, affine arithmetic, and linear programming . Our experi-
ments on a particular strategy show that the new approach outperforms previously
available techniques by 1 to 4 orders of magnitude or more in speed.

4 An inclusion technique is to include a set of interest into enclosures. It is also called an enclosure technique.

March 14, 2005

6 1. Introduction

C5 In Chapter 8, we propose several post-processing techniques for the represen-
tation of continuums of solutions. Based on connectedness, they allow grouping
each cluster of connected solution subsets into a larger subset. Therefore, they enable
interval-based solution techniques to be alternatives to bounding-volume techniques in
applications such as collision detection and interactive graphics.

Additional Contributions. I present the necessary background in Chapter 2 in my view
because there is no standard in numerical constraint programming. I also present in Chapter 3
an overview of major existing methods for solving numerical constraint satisfaction problems,
with emphasis on complete methods. The overview is more detailed than as usual because I see
that many techniques can be easily integrated into the generic scheme proposed in Chapter 7.
Moreover, an one-page summary of each important technique is certainly helpful to whom it
is not familiar to. In some cases, I find the original versions ambiguous or even erroneous,
hence attempting to make them clear or correct them in Chapter 3. In some other cases, I
find that the original presentations of techniques can be made much more concise and easier
to understand, hence giving alternative presentations in my view. Note that some remarks
on, and some extensions of, techniques therein are my personal opinions; hence, they do not
necessarily reflect the ideas of the original authors. It is to provide a better understanding of
different techniques in a common view and language.

1.4. Organization of the Thesis

The outline of this thesis is as follows:

• In Chapter 1, we give an introduction to the goal of the thesis, the main contributions
and the organization of the thesis.

• In Chapter 2, we present the necessary background. Section 2.1.1 presents the basic
concepts in constraint programming including the concept of a constraint satisfaction
problem. Section 2.2 presents the basic concepts involving floating-point numbers, interval
arithmetic, and affine arithmetic. Section 2.3 presents some fundamental consistency
notions, including some local consistency notions for numerical constraints.

• In Chapter 3, we present an overview of major existing methods for solving numerical con-
straint satisfaction problems, with emphasis on complete methods. Section 3.1 presents
an overview of fundamental mathematical techniques, including very recent methods.
Section 3.2 presents some recent fundamental solution techniques in constraint program-
ming. Section 3.3 is dedicated to relaxation based methods, mainly linear relaxation
based methods. One may need some concepts in Appendix A and Appendix B.

• In Chapter 4, we present a new complete search technique, called UCA6+, for solving nu-
merical constraint satisfaction problems (see Contribution C1). Section 4.3 presents the
concepts of inner/outer/boundary union approximations and the concept of a feasibility
checker. Section 4.4 presents the concepts of a domain reduction operator, a comple-
mentary boxing operator, and a splitting operator. This section also presents the details
of the UCA6+ algorithm. A summary of our contributions in this chapter, including a
conclusion, is given in Section 4.6.

March 14, 2005

1.4. Organization of the Thesis 7

• In Chapter 5, we present several new improvements to, and an abstraction of, inclusion
techniques (see Contribution C2). Section 5.2 presents the concept of an extended func-
tion – a special multifunction. Section 5.3 presents the revision of interval arithmetic.
Section 5.4 presents some improvements and proposals to affine arithmetic. Section 5.5
present the concept of an inclusion representation. A summary of our contributions in
this chapter, including a conclusion, is given in Section 5.6.

• In Chapter 6, we present a new constraint propagation technique, called FBPD, and a
method for coordinating constraint propagation and search on directed acyclic graphs
(DAGs) (see Contribution C3). Section 6.2 presents the concept of a DAG representa-
tion. Section 6.3 defines the concepts of a forward evaluation and a backward propagation
on DAGs. Section 6.4 presents the concept of a partial DAG representation. Section 6.5
presents the FBPD algorithm – a constraint propagator on the partial DAG representa-
tion. Section 6.6 presents a way to coordinate constraint propagation and search in the
branch-and-prune framework. A summary of our contributions in this chapter, including
a conclusion, is given in Section 6.8.

• In Chapter 7, we present a novel generic scheme for combining multiple inclusion tech-
niques in numerical constraint propagation. We also present several specific combina-
tion strategies for numerical constraint propagation (see Contribution C4). Section 7.2
presents a generic scheme, called CIRD, based on the concepts of a inclusion constraint
system and a pruning constraint system. Section 7.3 presents specific combination strate-
gies based on interval constraint propagation, interval arithmetic, affine arithmetic, and
linear programming. Experiments on a particular instance of these strategies, called
CIRD[ai], are presented in Section 7.4. Section 7.5 presents some potential directions
for integrating inclusion techniques into CIRD. A summary of our contributions in this
chapter, including a conclusion, is given in Section 7.6.

• In Chapter 8, we present several new post-processing techniques for the representation
of continuums of solutions (see Contribution C5). Section 8.2 presents the goals for
clustering with several definitions based on connectedness. Section 8.3 presents our new
techniques. They are called MCC, SDC, OMCC, and OSDC. A summary of our contri-
butions in this chapter, including a conclusion, is given in Section 8.5.

• In Chapter 9, we give the conclusions of the thesis, including detailed contributions,
limitations, challenges, and potential directions.

• In Appendix A, we give some definitions needed for some techniques in Chapter 3.

• In Appendix B, we give some basic concepts and results of the fixed point theory.

• In Appendix C, we give some numerical problems used in some experiments in this thesis.

March 14, 2005

8 1. Introduction

March 14, 2005

Chapter 2

Background and Definition

2.1. Basic Concepts in Constraint Programming

2.1.1. A Short History of Constraint Programming

The following history is composed from [Marriott and Stuckey 1998] and [Apt 2003]. The
concept of constraint solving has a long history in mathematics. Finding solutions to simple
equations has been considered since thousands of years ago. For example, the ancient Baby-
lonians found the completing the square method to solve univariate quadratic equations circa
the year 400 BC. They have even solved a variety of equations with two variables. Diophantus
wrote his Arithmetica around the year 250.

According to Struik [1948], the first general solution in integers to equations of the form
aX + bY = c is due to the Indian mathematician Brahmagrupta from the seventh century.
In the ninth century, the great Persian astronomer/mathematician al-Khwarizmi, believed to
have lived from the year 780 to the year 850, wrote an influential treatise on equation solving.
The term algorithm was derived from al-Khwarizmi’s latinized name.

By the end of the eighteen century, solving linear equations by variable elimination was a
common technique. A form of the popular Gauss elimination method has been used since as
early as the year 1809. The algebra of propositional logic is due to Boole [1847]. In the late
twentieth century, Frege extended Boole’s algebra by developing predicate logic. The concepts
of a term, a tree, and tree constraint solving are the cornerstone of most automated deduction.

Apart from mathematics, the two areas that have had the greatest impact on a modern the-
ory of constraints and their use in automated problem solving are operation research (OR) and
artificial intelligence (AI). Operation research is concerned with building mathematical models
of real world situations to allow the experimental analysis of problems. Artificial intelligence
is concerned with intelligently accelerating automated problem solution techniques.

The concept of solving constraints by using constraint propagation was already developed
independently by a number of researchers to solve arithmetic and Boolean constraints. The
term generally is attributed to Sussman and Steele [1980], who used constraint propagation
to solve constraints in the constraint language CONSTRAINTS, while the use of constraint
propagation can be traced back to an earlier work by Sutherland [1963] on the interactive
drawing system SKETCHPAD.

The concept of a constraint satisfaction problem was also formulated in the seventies (of
the twentieth century) by researchers in artificial intelligence. They also identified the main
forms of local consistency and the algorithms that allow us to achieve them. Independently,

9

10 2. Background and Definition

various search methods were defined. Some of them, like backtracking can be traced back to
the nineteenth century, while others, such as branch-and-bound [Land and Doig 1960; Little
et al. 1963], were defined in the context of combinatorial optimization. The contribution of
constraint programming was to identify various new forms of search that combine the known
techniques with various constraint propagation algorithms. Some specific combinations were
already studied in combinatorial optimization.

In the eighties (1980s), the most significant constraint programming languages such as
CONSTRAINTS were based on the logic programming paradigm. This led to a development
of constraint logic programming, a combination of logic programming and constraint program-
ming, arose with [Jaffar et al. 1986]. However, the first true constraint logic programming
language is PROLOG II [Colmerauer 1982], while the first constraint logic programming lan-
guage with real arithmetic is CLP(R) [Jaffar and Michaylov 1987]. Constraint propagation
and various forms of search are usually available in these languages in the form of built-ins.

In the late eighties and the nineties, a form of synthesis between the developments of logic
programming and constraint programming took place. The researchers found various new ap-
plications of constraint programming, most notably in the fields of operations research and
numerical analysis. The progress was often achieved by identifying important new types of
constraints and new constraint propagation algorithms. One also realized that further progress
might depend on a combination of techniques from artificial intelligence, operations research,
computer algebra and mathematical logic. This turned constraint programming into an in-
teresting hybrid area, in which theoretical work is often driven by applications and, in turn,
applications lead to new challenges concerning implementations of constraint programming.

2.1.2. Constraint Satisfaction

The concept of a constraint satisfaction problem is fundamental in constraint programming.
Hence, we need to give a formal definition of it. We first introduce the concepts of a variable
domain and a constraint, and then define the concept of a constraint satisfaction problem and
related concepts. The class of constraint satisfaction problems is worth studying because it
arises in a large number of applications.

2.1.2.1. Constraint Satisfaction Problems

By the term variable, we mean a quantity that can assume any of a set of values. In literature,
a variable is often represented by a symbol such as x, X, and X. Restricting the interest to a
limited set of values leads to the definition of a domain.

Definition 2.1 (Variable Domain). The domain of a variable is a set of all considered
values that can be assigned to the variable.

In practice, the domain of a variable, x, might be continuous or discrete. For instance,
the domain of a real variable x given explicitly by a right-open real interval [1, 5[is con-
nected, hence continuous. A domain given explicitly by enumerating its values, such as
{1, 9, 7, 3}, is discrete. Specially, a variable domain can be of a heterogeneous form, such
as {1.2, 1, [−1, 1],blue, table, {false, true}}.

A domain can be a disconnected set, such as the union of two intervals [−5,−2] ∪ [2, 5].
This domain can also given implicitly, such as 2 ≤ |x| ≤ 5, or even more complicated, such as

March 14, 2005

2.1. Basic Concepts in Constraint Programming 11

(x2 − 4)(x2 − 25) ≤ 0. However, in case the domain is not simply expressed, it often implies
an implicit requirement on x that needs to be explored. This is generalized to a requirement
on multiple variables, which is hereafter called a constraint – the central concept in constraint
programming.

Definition 2.2 (Constraint). A constraint , C, on a finite sequence of variables (x1, . . . , xk)
associated with respective domains (D1, . . . , Dk) is a subset of the Cartesian product D1 ×
· · · ×Dk, where k ∈ N. The variables x1, . . . , xk are called the variables of C or the variables
involving C. If C = D1 × · · · ×Dk, it is called a universal constraint .

Note 2.3. Precisely, a constraint is defined on a sequence (or an ordered set) of its variables
and not on a set of its variables [Apt 2003, p. 10].

The ordering of variables is necessary, otherwise the constraint c{x, y} ≡ (x < y) will always
be empty since the identity c{a, b} ≡ c{b, a} leads to (a < b) ≡ (b < a), where the domains of
x and y contain both a and b. Another reason is that the Cartesian product D1 × · · · ×Dk is
only defined on the sequence (D1, . . . , Dk), not on the set {D1, . . . , Dk}.

We now introduce the following concept to facilitate the presentation of more complicated
concepts in constraint programming.

Definition 2.4 (Compound Label, Instantiation). A k-compound label , also called a
compound label for short, of a sequence of variables (x1, . . . , xk) with respective domains
(D1, . . . , Dk) is a tuple of values (a1, . . . , ak) ∈ D1× · · · ×Dk. (〈x1, a1〉, . . . , 〈xk, ak〉) is called
a k-instantiation of the values (a1, . . . , ak) to the variables (x1, . . . , xk).

Here, we define the satisfiability of a constraint.

Definition 2.5 (Satisfiability). A constraint C on a sequence of variables (x1, . . . , xk)
is satisfied with a compound label l ≡ (a1, . . . , ak) of (x1, . . . , xk) (i.e., an instantiation
(〈x1, a1〉, . . . , 〈xk, ak〉)) if and only if l ∈ C. If the compound label l does not satisfy C,
we say that l violates C.

Note 2.6. Let (x1, . . . , xk) be a subsequence of a sequence of variables (v1, . . . , vn) and C a
constraint on the sequence (x1, . . . , xk). For convenience, we also say that C is satisfied with
a compound label l ≡ (a1, . . . , an) of (v1, . . . , vn) if the label lk ≡ (b1, . . . , bk) of (x1, . . . , xk)
taking respective values from (a1, . . . , an) satisfies C.

Mathematically, a constraint can be viewed as a relation on its variable domains as in
Definition 2.2. In real world applications, a constraint c on a sequence of variables (x1, . . . , xk)
with domains (D1, . . . , Dk) can also be viewed as a Boolean function

bC : D1 × · · · ×Dk → {false, true},
bC(x1, . . . , xk) = true⇔ (x1, . . . , xk) ∈ C.

March 14, 2005

12 2. Background and Definition

That is, C = b−1
C (true) ≡ {(x1, . . . , xk) ∈ D1 × · · · ×Dk | bC(x1, . . . , xk) = true}. It follows

that a label l satisfies the constraint C if and only if bC(l) holds. Consequently, one can use
the meaning of a Boolean function for a constraint instead of the meaning of a relation. This
also leads to the notation C(x1, . . . , xk), instead of C, when one wishes to emphasize that
the constraint is defined on the sequence of variables (x1, . . . , xk). Note that the domain of a
variable can always be interpreted as a special constraint.

In constraint programming, multiple requirements that need to be simultaneously satisfied
can be represented by the concept of a constraint satisfaction problem defined as follows.

Definition 2.7 (Constraint Satisfaction Problem ≡ CSP). A constraint satisfaction
problem, abbreviated to CSP , is a triple (V,D, C) in which

• V is a finite sequence of variables (v1, . . . , vn);
• D is a finite sequence of respective domains (D1, . . . , Dn) of the variables (v1, . . . , vn);
• C is a finite set of constraints, each on a subsequence of V.

Notation 2.8. For convenience, we use the notation D1 × · · · ×Dn to denote the domains D
in Definition 2.7. We can also use the notation 〈C; V ∈ D〉 to refer to the CSP (V,D, C).

Example 2.9. Consider a CSP written in the standard notation (V,D, C) with

V ≡ (x, y),
D ≡ ([−7, 7], [−3, 3]) = [−7, 7]× [−3, 3],

C ≡ {x2 + y2 = 1, x + y ≤ 1}.

It can be written shortly as

〈x2 + y2 = 1, x + y ≤ 1; (x, y) ∈ [−7, 7]× [−3, 3]〉,

or
〈x2 + y2 = 1, x + y ≤ 1; x ∈ [−7, 7], y ∈ [−3, 3]〉.

Both variable domains of this CSP are continuous. ♣

Definition 2.10 (Consistent k-Instantiation). Given a CSP P. A k-instantiation
(〈x1, a1〉, . . . , 〈xk, ak〉) is said to be consistent w.r.t. P (or the set of constraints of P) if
it satisfies all the constraints on the subsequences of x1, . . . , xk.

To measure the number of variables involving a constraint or a CSP, one may use the
following terminology.

Definition 2.11 (Arity). The arity of a constraint (respectively, the arity of a CSP) is the
number of variables of the constraint (respectively, of the CSP). A constraint of arity k is
called a k-ary constraint . A CSP of arity k is called an k-ary CSP .

March 14, 2005

2.1. Basic Concepts in Constraint Programming 13

If the arity of a constraint is one, two or three, we say that the constraint is unary , binary
or ternary , respectively. For example, the constraint x2 + y2 + z2 = 1 is a constraint of second
order and of arity three, where x, y, and z are its variables; hence, it is a ternary constraint.

The concept of a constraint satisfaction problem is one of the most important concepts in
constraint programming. Once the constraint satisfaction problem is defined, one often requires
to obtain one or more tuple of values assigned to the problem’s variables. This leads to the
concept of a solution defined as follows.

Definition 2.12 (Solution). A solution of a constraint satisfaction problem (V,D, C) is a
compound label of V (i.e., a tuple of values (d1, . . . , dn) ∈ D) that satisfies all the constraints
in C.

Definition 2.13 (Solution Set). The solution set of a constraint satisfaction problem is
the set of all solutions of the problem.

To indicate whether a CSP has a solution, we can use the following terminology.

Definition 2.14 (Consistency). If a CSP has at least one solution, we say that it is con-
sistent or satisfiable, otherwise we say that it is inconsistent .

Example 2.15. Consider a CSP with integer variables (and hence called a discrete CSP)

〈x2 + y2 = 25; x ∈ Z+, y ∈ N〉,

where Z+ is the set of all positive integers and N is the set of all natural numbers including
zero. The solution set of this CSP is the set {(5, 0), (4, 3), (3, 4)} 6= ∅. Hence, this CSP is
consistent. If we add a constraint x + y < 5, the problem becomes inconsistent. ♣

Example 2.16. Consider the problem

〈x = y, x
... 3 ⇒ y

... 2; x ∈ {1, 2, 3}, y ∈ {1, 2, 3}〉;

where the notation a
... b means that b divides a. The solution set is {(1, 1), (2, 2)}; hence, this

problem is consistent. ♣

According to Definition 2.7, the problem in Example 2.16 is a CSP. However, it belongs to
a class of special CSPs, called the constraint logic problems, because it also contains logic con-
straints. The field that focuses on this class of problems is called constraint logic programming
(see [Marriott and Stuckey 1998]). The CSPs that contain only logic predications belong to a
class of special problems called logic problems, which are studied in logic programming . The
variables in a logic problem only take Boolean values.

When a problem is modeled as a CSP, one may only require to check if the CSP has at least
a solution, not to find solutions explicitly. This requirement belongs to a class of satisfiability
problems, also called decision problems. It is known that the class of general satisfiability
problems is NP-complete, but the class of general CSPs NP-hard. This suggests that problem
modeling is important for efficiency. For clarity, we assume that when a CSP is referred to

March 14, 2005

14 2. Background and Definition

without explicitly stating the need for solutions, it will be interpreted as finding one or more
solutions of the problem.

The relation among the constraints and variables of a CSP can be partially represented by
a graph, which is called the constraint graph.

Definition 2.17 (Constraint Graph ≡ Constraint Network). The constraint graph,
also called the constraint network , of a CSP P is the graph in which each variable of P
is represented by a node and in which every two nodes are connected by a unique arc if the
variables represented by them involves a binary constraint of P. All binary constraints on
the same two variables are represented by only one arc.

Many types of graphs have been proposed to represent the relation among the constraints
and variables of general CSPs (see [Silaghi 2002, Chapter 5]). The most common one is the
constraint hypergraph defined as follows.

Definition 2.18 (Constraint Hypergraph). The constraint hypergraph of a CSP P is the
graph in which each variable of P is represented by a node and each constraint of P is
represented by a hyper-arc connecting the variables involving the constraint.

Several reduced forms of CSPs have been introduced, including the following forms.

Definition 2.19 (Binary CSP, Strictly Binary CSP). If the arity of each constraint in
a CSP is at most two then this CSP is called a binary CSP . If it only contains binary
constraints, then it is called a strictly binary CSP .

Definition 2.20 (Normalized CSP). A CSP is said to be normalized if, for each subse-
quence (x, y) of the sequence of its variables, there is at most one constraint on the subsequence
(x, y).

Definition 2.21 (Standardized CSP). A CSP is said to be standardized if, for each sub-
sequence (x, y) of the sequence of its variables, there exists a unique constraint on the subse-
quence (x, y).

Definition 2.22 (Regular CSP). A CSP is said to be regular if, for each subsequence X
of the sequence of its variables, there exists a unique constraint on the subsequence X.

The constraint graphs of standardized binary CSPs and regular CSPs are complete graphs.
Note that every CSP can always be made normalized, standardized, or regular by adding
universal constraints and/or replacing multiple constraints on the same set of variables with
their intersection. The reader can find more examples and concepts in the books on constraints,
such as [Tsang 1993], [Marriott and Stuckey 1998], [Dechter 2003], and [Apt 2003].

March 14, 2005

2.1. Basic Concepts in Constraint Programming 15

2.1.2.2. Set Theory Concepts for Constraints

The negation of a constraint is an extension of the negation of a logic term.

Definition 2.23 (Negation). Let D ≡ D1 × · · · × Dn be the domains of a sequence X ≡
(x1, . . . , xn) of variables, respectively. The negation of a constraint C on the sequence X is
defined and denoted by ¬C ≡ D \ C. The negation of a set C of constraints on the sequence
X is the negation of the intersection of its constraints and is denoted by ¬C.

For convenience, we recall the definitions of projection, section, cross section, and slice with
their notations adopted in relation to the concept of a constraint.

Definition 2.24 (Projection). Let D ≡ D1 × · · · ×Dn be the domains of a sequence X ≡
(x1, . . . , xn) of variables, respectively.

• Take a compound label d ≡ (d1, . . . , dn) ∈ D of X and a subsequence Y ≡ (xi1 , . . . , xik)
of X. The sequence (di1 , . . . , dik) is called the projection of d on Y , denoted by d[Y].

• For any constraint C on X or any subset C ⊆ D, the set {d[Y] | d ∈ C} is called the
projection of C on Y and is denoted by C[Y].

Example 2.25. Consider the sequence V ≡ (x, y, z) of variables associated with respective
domains Dx ≡ {1, 2, 3}, Dy ≡ {4, 5, 6}, Dz ≡ {7, 8, 9}, the compound label l ≡ (1, 4, 7), and the
constraint C(x, y, z) ≡ {(1, 4, 7), (1, 5, 8), (3, 4, 9)}. We have

l[(x, z)] = (1, 7),
C[y] = {4, 5},

C[(x, y)] = {(1, 4), (1, 5), (3, 4)}. ♣

Example 2.26. Consider the sequence V ≡ (x, y, z) of real variables associated with
respective domains Dx = Dy = Dz ≡ [−2, 2] and the constraint C(x, y, z) ≡
{(a, b, c) ∈ R3 | a2 + b2 + c2 = 1}. We have

C[x] = C[y] = C[z] = [−1, 1],

C[(x, y)] = C[(x, z)] = C[(y, z)] = {(a, b) ∈ R2 | a2 + b2 ≤ 1}.

The projection of a continuum set is often a continuum set in a lower-dimensional space. ♣

Definition 2.27 (Section, Cross Section). Let X ≡ (x1, . . . , xn) be a sequence of vari-
ables, C a constraint on X, and C a finite set of constraints on X. For all i ∈ {1, . . . , n}, an
arbitrary value p of xi. We define that

• The set C|xi=p ≡ {(c1, . . . , cn) ∈ C | ci = p} is called the section of C at xi = p;
• The set C|xi=p ≡ {S|xi=p | S ∈ C} is called the section of C at xi = p;
• The set C|∗xi=p ≡ {(c1, . . . , ci−1, ci+1, . . . , cn) | (c1, . . . , ci−1, p, ci+1, . . . , cn) ∈ C} is called

the cross section of C at xi = p;
• The set C|∗xi=p ≡ {S|∗xi=p | S ∈ C} is called the cross section of C at xi = p.

March 14, 2005

16 2. Background and Definition

Example 2.28. Consider the sequence V and the constraint C in Example 2.25. We have

C|x=1 = {(1, 4, 7), (1, 5, 8)},
C|∗x=1 = {(4, 7), (5, 8)}.

C|x=2 = C|x=2004 = ∅. ♣

Example 2.29. Consider the sequence V and the constraint C in Example 2.26. We have

C|x=0 = {(0, a, b) | a2 + b2 = 1},
C|y=0 = {(a, 0, b) | a2 + b2 = 1},
C|z=1 = {(0, 0, 1)},

C|∗x=1 = C|∗y=1 = C|∗z=1 = {(a, b) | a2 + b2 = 1}.
The section of a constraint might be empty, a singleton, or even a continuum. ♣

Definition 2.30 (Slice). Let X ≡ (x1, . . . , xn) be a sequence of variables, C a constraint on
X, and C a finite set of constraints on X. For all i ∈ {1, . . . , n}, an arbitrary set S of values
of xi. We define that

• The set C|xi∈S ≡ {(c1, . . . , cn) ∈ C | ci ∈ S} is called the slice of C in the slot xi ∈ S;
• The set C|xi∈S ≡ {A|xi∈S | A ∈ C} is called the slice of C in the slot xi ∈ S.

Example 2.31. Consider the sequence V and the constraint C in Example 2.25. We have

C|x∈[1,2] = C|x∈{1,2} = {(1, 4, 7), (1, 5, 8)},
C|x∈[0,5] = C|x∈{0,5} = {(1, 4, 7), (1, 5, 8), (3, 4, 9)},
C|x∈∅ = C|x={4,5,6} = ∅.

Note that a slice of a constraint can be empty. ♣

Inspired by the concepts of a section and a cross section (Definition 2.27), and the ap-
proaches of singleton consistency (Section 2.3.4.3) and kB-consistency (Section 2.3.3.2), we
define the following notation for an existing concept.1

Definition 2.32 (Singleton CSP ≡ Section, Cross Section). Consider a CSP P ≡
(V,D, C). Let Dx be the domain of a variable x in V. The singleton CSP of P w.r.t. x = a,
also called the section of P at x = a, is defined as

P|x=a ≡ (V, D|x=a, C|x=a). (2.1)

The cross section of P at x = a is defined as

P|∗x=a ≡ (V \ {x}, D \ {Dx}, C|∗x=a), (2.2)

where D \ {Dx} denotes the sequence of domains obtained from D by removing Dx.

1 It is only for convenience because there has been no standard terminology for this concept so far.

March 14, 2005

2.1. Basic Concepts in Constraint Programming 17

Definition 2.33 (Slice of CSP). Consider a CSP P ≡ (V,D, C). Let Dx be the domain of
a variable x in V. The slice of P in the slot x ∈ S, where S is an arbitrary set of values of x,
is defined as

P|x∈S ≡ (V, D|x∈S , C|x∈S). (2.3)

Example 2.34. Consider the CSP P ≡ 〈x2 + y2 + z2 = 1; (x, y, z) ∈ [−2, 2]3〉. We have

P|x=0 = 〈y2 + z2 = 1; x ∈ {0}, (y, z) ∈ [−2, 2]× [−2, 2]〉,
P|∗x=0 = 〈y2 + z2 = 1; (y, z) ∈ [−2, 2]× [−2, 2]〉,

P|x∈[0,1] = 〈x2 + y2 + z2 = 1; x ∈ [0, 1], (y, z) ∈ [−2, 2]× [−2, 2]〉,
P|x∈{0,1,3} = 〈x2 + y2 + z2 = 1; x ∈ {0, 1}, (y, z) ∈ [−2, 2]× [−2, 2]〉,
P|x∈{0,3} = 〈y2 + z2 = 1; x ∈ {0}, (y, z) ∈ [−2, 2]× [−2, 2]〉.

Note that the number of variables of a CSP is constant under slicing. ♣

We also define the concept of a compact CSP.

Definition 2.35 (Compact CSP). A CSP P is said to be compact if every constraint and
every domain of P is a compact set (see Definition B.5).

2.1.2.3. Basic Concepts of Problem Solving

In Section 1.1, we have already got a general feeling about what constraint programming is.
In the previous section, we have also studied some formal definitions of constraints, constraint
satisfaction problems and related basic concepts. This section presents an introduction to basic
concepts of CSP solving in constraint programming, where solving a CSP means finding one
ore more solutions of the CSP. To be precise, here we recall the definition of when a CSP is
said to be globally solved [Dechter and van Beek 1997].

Definition 2.36 (Globally Solved Form). A CSP is said to be in globally solved form if
either it has been proved to be inconsistent or there is a known ordering of the variables along
which solutions can be assembled without encountering deadends.

A globally solved form of a CSP is a useful representation of all solutions whenever such
a representation is more compact than the explicit representation of set of all solutions. For
example, CSPs with inequality constraints on continuous domains often have continuums of
solutions. Therefore, finding a globally solved form is more practical than representing the
whole solution set explicitly.

To solve CSPs, one often transforms them in some way until one or more solutions have
been found or it has been proved that no solution exists. Ideally, the transformations of CSPs
need to preserve the equivalence of CSPs in some sense. This leads to the following formal
definition of the equivalence.

March 14, 2005

18 2. Background and Definition

Definition 2.37 (Problem Equivalence). A CSP P0 and the union of k CSPs P1, . . . ,Pk

are said to be equivalent w.r.t. a sequence X of variables if
(i) for every i ∈ {0, 1, . . . , k}, X is a subsequence of the sequence of variables of Pi;

(ii) for every solution s of P0, there exists a solution s′ of some Pi, where i ∈ {1, . . . , k},
such that s[X] = s′[X];

(iii) for every solution s′ of every Pi, where i ∈ {1, . . . , k}, there exists a solution s of P0

such that s[X] = s′[X].
In addition to that, if the sequence of variables of Pi is equal to X for all i ∈ {0, 1, . . . , k}, we
just say that P0 and the union of P1, . . . ,Pk are equivalent.

If the problem equivalence is difficult to achieve, one may also relax the problem to get
problems that have all solutions of the initial one and that are hopefully easier to solve. The
following property defines this concept.

Definition 2.38 (Problem Relaxation). We say that a CSP P0 is relaxed to the union of
k CSPs P1, . . . ,Pk or that the union of k CSPs P1, . . . ,Pk is a relaxation system (hence, each
constraint in it is called a relaxation) of P0 w.r.t. a sequence X of variables, if

(i) for every i ∈ {0, 1, . . . , k}, X is a subsequence of the sequence of variables of Pi;
(ii) for every solution s of P0, there exists a solution s′ of some Pi, where i ∈ {1, . . . , k},

such that s[X] = s′[X].
In addition to that, if the sequence of variables of Pi is equal to X for all i ∈ {0, 1, . . . , k},
we just say that P0 is relaxed to the union of P1, . . . ,Pk or that the union of P1, . . . ,Pk is a
relaxation system of P0.

A transformation of a CSP P0 into the union of k CSPs P1, . . . ,Pk written as

P0 7→ P1 ∪ · · · ∪ Pk. (2.4)

Definition 2.39 (Equivalence-Preserving). Consider the transformation (2.4). It is said
to be equivalence-preserving (respectively, equivalence-preserving w.r.t. a sequence X of the
variables) if P0 and the union of P1, . . . ,Pk are equivalent (respectively, equivalent w.r.t. X).

The equivalence-preserving property is desired for finding solutions of CSPs. It is easy to
see that if a transformation is equivalence-preserving w.r.t. a sequence X of variables then it is
also equivalence-preserving w.r.t. any subsequence of X. In some solving processes, one may
only need to verify if CSPs are consistent, not to find solutions explicitly. For this purpose,
the equivalence-preserving property relaxes to the following.

Definition 2.40 (Consistency-Preserving). Consider the transformation in (2.4). It is
said to be consistency-preserving if the following holds

P0 is consistent ⇔ ∃i ∈ {1, . . . , k} : Pi is consistent.

March 14, 2005

2.1. Basic Concepts in Constraint Programming 19

The equivalence-preserving property clearly implies the consistency-preserving property.
If preserving the equivalence or consistency is difficult to be obtained, one may consider the
following properties, respectively.

Definition 2.41 (Relaxing). Consider the transformation in (2.4). It is said to be relax-
ing (respectively, relaxing w.r.t. a sequence X of variables) if the union of P1, . . . ,Pk is a
relaxation system of P0 (respectively, w.r.t. X).

Definition 2.42 (Consistency-Relaxing). Consider the transformation in (2.4). It is said
to be consistency-relaxing (respectively, consistency-relaxing w.r.t. a sequence X of variables)
if the following holds

P0 is consistent ⇒ ∃i ∈ {1, . . . , k} : Pi is consistent.

During solving a CSP, one may also need to eliminate a singleton variable or a value or
a variable by substituting the variable with its value. We formalize the variable elimination
under the transformation notation

P ≡ 〈C; V ∈ D〉 7→ P|∗x=a ≡ 〈C|∗x=a; V \ {x} ∈ D \ {Dx}〉, (2.5)

where P|∗x=a denotes the cross section of P at x = a (see Definition 2.32). The variable
elimination (2.5) is equivalence-preserving w.r.t. the sequence of variables V \ {x}, provided
that the domain of x is {a}. We can also see that the singleton CSP P|x=a and the cross
section P|∗x=a are equivalent w.r.t. V \ {x}.

One of the most fundamental techniques is called the domain reduction. With the trans-
formation notation, the domain reduction can be written as

〈C; V ∈ D〉 7→ 〈C; V ∈ D′〉, (2.6)

where D′ ⊆ D. This transformation is equivalence-preserving if no compound label of V in
D \ D′ satisfies C. Let denote C∩ =

⋂
C∈C C, then it is the solution set of P.

Definition 2.43 (Domain Reduction Operator). Let φ be the function that maps D to
D′ = φ(D) in (2.6), then it is called a domain reduction operator .

Property 2.44. Four properties are often desired for a domain reduction operator φ:

(contractiveness) φ(D) ⊆ D,

(correctness) φ(D) ⊇ D ∩ C∩ ,

(monotonicity) D1 ⊆ D2 ⇒ φ(D1) ⊆ φ(D2),
(idempotence) φ(φ(D)) = φ(D). z

The correctness is sometimes called the completeness. Here we give a simple example on the
domain reduction rules for inequality constraints on real numbers:

〈x ≤ y; x ∈ [x, x], y ∈ [y, y]〉 7→ 〈x ≤ y; x ∈ [x,min{x, y}], y ∈ [max{y, x}, y]〉.

March 14, 2005

20 2. Background and Definition

In general, domain reduction techniques attempt to remove redundant values. More generally,
problem reduction techniques attempt to remove compound labels from variable domains.
Where values or compound labels are considered redundant if they conform to the following.

Definition 2.45 (Redundant Value/Compound Label). A value in a variable domain
of a CSP is said to be redundant if it is not the projection of any solution of the CSP. Similarly,
a compound label of a subset of variables is said to be redundant if it is not the projection of
any solution of the CSP.

The solving process, especially in the domain reduction techniques, may also leads to the
case that some constraints are always satisfied with all combinations of values remaining in
variable domains. In this case, it is not necessary to take these constraints into account. In
other words, they are redundant in the following sense.

Definition 2.46 (Redundant Constraint ≡ Implied Constraint). A constraint C of a
CSP P is said to be redundant w.r.t. (or implied by) the other constraints of P if the CSP
obtained from P by removing C is equivalent to P.

One may introduce auxiliary variables to simplify the form of constraints. This transfor-
mation is called a variable introduction. For example,

〈C, e1 ¦ e2; V ∈ D〉 7→ 〈C, xnew = e1, xnew ¦ e2; V ∈ D, xnew ∈ Dx〉, (2.7)

where ¦ can be any relation (e.g., <, ≤, >, ≥, =, 6=); e1 and e2 are suitable expressions; xnew

is an introduced variable that differs to any variable in D; and the domain Dx of xnew is a set
containing all possible values of e1. This variable introduction is equivalence-preserving w.r.t.
V, provided that xnew ¦ e2 is defined for all xnew ∈ Dx. Many variable introductions can also
be defined in a similar way. For example, adding a slack variable converts a real inequality
constraint into a real equality constraint with the equivalence-preserving property:

〈C, e1 ≤ e2; V ∈ D〉 7→ 〈C, e1 + xnew = e2; V ∈ D, xnew ∈ [0, +∞]〉. (2.8)

In this thesis, the rule (2.7) is used to construct DAG representations of CSPs (see Section 6.2).
The rule (2.8) is used to convert between several forms of CSPs (see Section 2.1.3.2).

One may also add relaxations to a CSP to obtain an equivalent CSP. For example,

P ≡ 〈C; V ∈ D〉 7→ 〈C, C′; (V,V ′) ∈ (D,D′)〉, (2.9)

where R ≡ 〈C′; (V,V ′) ∈ (D,D′)〉 is a relaxation system of P. One often aims at producing C′
such that it is as simple as possible and the solution set of R is close to that of P, and then
applies efficient techniques to R in order to get a hopefully tight enclosure of the solution set
of P. See Section 3.3 for more details on relaxation methods.

To measure the power of solution algorithms, it is helpful to give formal definitions on the
rigor of solution algorithms.

March 14, 2005

2.1. Basic Concepts in Constraint Programming 21

Definition 2.47 (Soundness). A solution algorithm is called sound if every result returned
by it is a solution. In this case, the returned solution is said to be sound .

Intuitively, an algorithm is said to be complete if it can find every solution [Tsang 1993,
Definition 2.2]. Apt [2003, p. 82] pointed out that this definition is imprecise and gave a defin-
ition based on the proof theory, which depends on type of constraints. His definition is based
on globally solved forms (Definition 2.36). For simplicity, we accept the following definition on
the completeness of algorithms for solving CSPs, including the ones with continuous domains
(see also [Neumaier 2004, p. 5]).

Definition 2.48 (Completeness, Incompleteness). An algorithm is said to be complete
if every solution can be found by it in the infinite time and approximated by it within an
arbitrarily small positive tolerance after a finite time, provided that the underlying arithmetic
is exact. An algorithm is said to be incomplete if it is not complete.

Nearly complete algorithms are also of interest; hence, this leads to the following definition.

Definition 2.49 (Asymptotical Completeness). An algorithm is said to be asymptoti-
cally complete if it is not complete and every solution can be found by it with certainty or
probability one in the infinity time, provided that the underlying arithmetic is exact.

The arithmetics implemented in present computers are finite precision and their arithmetic
results are rounded, and hence are not as exact as expected in the theory. Therefore, it is
useful to take this fact into account. That leads to the definition of rigorous algorithms.

Definition 2.50 (Rigor). An algorithm is said to be rigorous if it is complete and every
solution can be approximated, after a finite time, by it within the smallest computer-
representable positive tolerance containing the exact solution, provided that the underlying
arithmetic is finite precision and allows controlling rounding errors.

For CSPs with integer domains, the tolerances and rounding errors are usually not allowed;
therefore, the rigor resembles to the completeness. In general, the algorithms can be catego-
rized into four classes with increasing degrees of mathematical rigor: incomplete algorithms,
asymptotical complete algorithms, complete algorithms, and rigorous algorithms.

The Solving Process. Apt [2003] described a generic process of problem solving as depicted
in Algorithm 2.1, where a solution algorithm contains five elementary procedures:

1. Preprocess: This is to transform the considered CSP into a desired syntactic form. The
transformation should be equivalence-preserving w.r.t. the initial sequence of variables.
Usually, this process is applied only once, at the top level of the solving process.

2. Happy: This means the goal set for initial CSP has been achieved. For example, that
often holds when:

March 14, 2005

22 2. Background and Definition

Algorithm 2.1: The Solution algorithm – a general solving process
Continue := true;
while Continue and not Happy do

Preprocess;
Problem Reduction;
if not Happy then

if Atomic then
Continue := false;

else
Split;
Proceed by Cases;

end
end

end

• a solution has been found;
• all solutions have been found;
• a globally solved form has been obtained;
• the inconsistency has been detected.

3. Atomic: This procedure checks if it is amenable for splitting the current CSP into smaller
CSPs, often amounting to checking the sizes of domains.

4. Split: This procedure transforms the current CSP P into multiple CSPs. The equivalence-
preserving property is required for completeness. In practice, it often amounts to splitting
a domain or a constraint. Some typical instances of Split are as follows:

• Enumeration: a value of a variable is taken into account. That is, the domain of
the considered variable is split in two parts. The first considered part contains only
one value. This procedure is often used for discrete domains.

• Labeling : multiple values are taken into account at the same time. This procedure
is often used for discrete domains.

• Bisection: a domain is split into two subdomains. This is often used for continuous
domains. Multiple bisections can be sequenced into a more complicated split.

• Cell subdivision: every domain is split into subdomains simultaneously. This is
equivalent to multiple bisections.

5. Proceed by Cases: Since Split yields multiple CSPs, we have to select each yielded CSP
for further considerations.

This framework for solving CSPs is not the only one, but the most typical one, especially
for complete algorithms. See [Apt 2003, Section 3.2] for more details.

2.1.2.4. Major Solution Approaches

There are several general approaches to solve CSPs, including two major ones: problem reduc-
tion and search. Although the problem reduction techniques alone do not produce solutions,
in general, it can be extremely useful when used together with other methods, such as search
techniques. The reader can find in [Tsang 1993] more approaches, such as solution synthesis.

March 14, 2005

2.1. Basic Concepts in Constraint Programming 23

Problem Reduction. Problem reduction plays a very significant role in CSP solving. Basi-
cally, it transforms a CSP P into CSPs, of which the union is equivalent to P and hopefully
easier to process, by reducing the size of domains and by changing the set of constraints.
The most popular class of problem reduction techniques is domain reduction, which can be
represented by a transformation (2.6). Removing redundant compound labels or redundant
constraints is called redundant constraint elimination or redundant constraint removal . It is
often done by constraint propagation, which is to propagate the impact of constraints through
some structure representing the considered problem, for reducing the problem. Upon termina-
tion, a constraint propagation technique usually achieves a property called a local consistency
(see Section 2.3.2). Constraint propagation plays a central role in constraint programming.

Note that problem reduction does not necessarily reduce the number of constraints (as in
Chapter 4) because adding relaxations sometimes leads to a significant reduction of domains
after resorting to specialized techniques for relaxations. See Chapter 6 and Chapter 7 for
new methods for interval relaxations and mixed interval/linear relaxations, respectively; see
also Section 3.3 for other relaxation methods. All the above mentioned transformations can
be combined to make a better effect of problem reduction. There has also been a numerous
number of problem reduction techniques devised in other fields (see Section 3.1).

For more details on domain reduction methods for CSPs, see the sections 2.3, 3.2.2.2,
3.2.2.5, 3.2.2.4, 3.2.2.3. See also the chapters 4–7 in [Tsang 1993] and [Apt 2003, Chapter 7]
for problem reduction methods, including redundant constraint removal. The reader can also
find in [Neumaier 2002] a much more comprehensive survey on the use of Taylor’s formula for
reducing the domains of optimization problems and CSPs with continuous domains.

Complete Search. Probably, complete search is the general approach that attracts most
attentions in constraint programming. Traditionally, complete search algorithms often attempt,
in some sense, to enumerate combinations of compound labels to find solutions. It often used in
combination with other methods such as problem reduction techniques. In general, a complete
search algorithm repeatedly generates several cases and then consider each case, one by one,
until the requirement is satisfied. Hence, a tree structure is generated. This tree is called the
search tree, each node is called a search node. The set of all states at which a search algorithm
could possibly arrive is called the search space.

Essentially, most complete search techniques for solving CSPs are backtracking . A back-
tracking search starts with the original CSP (corresponding to the root of the search tree),
and repeatedly proceeds by descending to a child of the current node of the search tree. This
process continues as long as a node is not a leaf. If a leaf is encountered, the search proceeds
by moving back to the parent of the leaf. Then the next child, if any, of this parent is selected.
If we are interested in finding just one solution, the backtracking search terminates as soon
as a solution is found; hence, a leaf is generated. To find all solutions, this process continues
until the control is back at the root node and all of its children have been processed. Note
that the search tree to be traversed is not given in advance, but it is generated on the fly.
A search algorithm is said to be backtrack-free if it can always find a solution or prove the
inconsistence of the problem without encountering deadends (i.e., without the need for moving
back to ancestors) during the search.

The reader can find complete search methods in Section 3.2.1 (for both CSPs with discrete
and continuous domains), and in Section 3.1.3 and Section 3.1.6 (for CSPs with continuous
domains). The reader can also find in [Neumaier 2004] a comprehensive survey on complete
search methods for optimization problems and CSPs with continuous domains.

March 14, 2005

24 2. Background and Definition

Incomplete Search. The soundness and completeness are desirable properties of algorithms.
However, some real life problems are intractable and cannot be solved by existing complete
algorithms in due time. If the response time is crucial, then one may be willing to sacrifice
completeness for speed. When this is the case, incomplete search algorithms such as stochastic
search could be useful. Stochastic search is a class of the incomplete search methods, which
includes heuristics and an element of nondeterminism in traversing the search space (i.e., the set
of states at which it could possibly arrive). Unlike the complete search algorithms, a stochastic
search algorithm moves from one point to another in the search space in a nondeterministic
manner, guided by heuristics. The next move is partly determined by the outcome of the
previous one. In general, stochastic search algorithms are incomplete.

Another important class of the incomplete search methods is local search, including popu-
lar methods such as Newton-like methods and homotopy/continuation methods. Local search
is more deterministic than stochastic search. In most cases, there is a determined formula
to generate the next move in the search space. It is however not complete because it cannot
guarantee to find a solution in the general case. Unlike stochastic search, local search may be
complete under some assumptions, such as the convexity and monotonicity. In many applica-
tions, these assumptions are acceptable; hence, the local search is the best choice. For more
details on incomplete search methods, see Section 3.4.

2.1.3. Numerical Constraint Satisfaction Problems

CSPs with continuous domains (e.g., systems of equations and inequalities) are ubiquitous
in real world applications. However, most classical methods for solving CSPs with discrete
domains (see Section 3.2.1) are not efficient for solving CSPs with continuous domains. There-
fore, the class of CSPs with continuous domains needs specialized algorithms. In this thesis,
we study solution algorithms for the class of CSPs with continuous domains in the framework
of constraint programming, that is, the algorithms that take the interaction of constraints into
account explicitly.

2.1.3.1. Numerical Constraints

To be precise, we give some formal definitions related to the class of CSPs with continuous
domains (they can be extended to other sets than R).

Definition 2.51 (Continuous Domain). A continuous domain is a connected set of real
numbers. In other words, a continuous domain is a real interval.

Example 2.52. The domain D1 ≡ {1, 3, 5, 7} is a discrete domain, hence not a continuous
one. The domains D2 ≡ [−10, 20], D3 ≡]3, 25[, D3 ≡]−∞, 10], D4 ≡ [10, +∞[are connected
sets of real numbers, hence continuous domains. Conversely, the domain D5 ≡ [2, 4] ∪ [5, 7] is
not a connected set of real numbers, hence not a continuous domain. However, it is the union
of two continuous domains. ♣

Next, we present the concepts of a variable and a numerical constraint.

Definition 2.53 (Continuous Variable). A continuous variable is a variable that is asso-
ciated with a continuous domain.

March 14, 2005

2.1. Basic Concepts in Constraint Programming 25

Definition 2.54 (Numerical Constraint). A numerical constraint is a constraint on a
sequence of continuous variables.

In literature, numerical constraints are sometimes referred to as continuous constraints.
We avoid using this term since it may be confused with a constraint that is defined by using
a continuous function. We also use the term numerical constraint satisfaction problem defined
in the next definition, instead of the term continuous constraint satisfaction problem.

Definition 2.55 (Numerical CSP ≡ NCSP). A numerical constraint satisfaction prob-
lem, abbreviated to NCSP or numerical CSP , is a constraint satisfaction problem (V,D, C)
where all domains in D are continuous.

Example 2.56. Consider the CSP 〈x2 + y2 ≤ 1; x ∈ [−2, 4], y ∈ [−4, 2]〉. It is a numerical
CSP. Its solution set is the unit circle centered at the origin of the coordinate system, including
the interior. ♣

Example 2.57. Consider the CSP 〈x2 + y2 = 1; x ∈ [−2, 4], y ∈ [−4, 2]〉. It is a numerical
CSP. Its solution set is the unit circle centered at the origin of the coordinate system, without
the interior. ♣

Example 2.58. Consider the CSP 〈x2 + y2 = 1, y + a = x2; x ∈ [−2, 4], y ∈ [−4, 2]〉. It is a
numerical CSP. If a = 1, the solution set is the set of three points (−1, 0), (0,−1), and (1, 0).
If a = 4, the solution set is empty. ♣

The above examples show that, in general, the solution set of a numerical CSP can be
empty, isolated points, a surface, a shape with a nonzero (full rank) volume, or even more
complicated. We study the representation of the solution set of a numerical CSP in Chapter 4.
Since the variable domains in numerical CSPs are continuums, the classic techniques for solving
CSPs with discrete domains cannot apply to numerical CSPs directly, in general. Solving a
numerical CSP by simply discretizing its variable domains and then using classic techniques
for CSPs with discrete domains are usually inefficient.

2.1.3.2. Problem Formulation

In practice, a numerical constraint satisfaction problem (NCSP) can often be represented in
the form

f(x) ∈ b, (2.10)

where x is a vector of n real variables in x ∈ In, b ≡ (b1,b2, . . . ,bm)T is an interval vector in
Im, and f = (f1, f2, . . . , fm)T is a function from D ⊆ Rn to Rm. In practice, each component
function fj is often expressed in factorable form (see Section 2.1.3.3).

Definition 2.59 (Constraint Range). Considered the constraint system of the form
(2.10). We call bj the constraint range of the j-th constraint (i.e., the constraint fj(x) ∈ bj)
for j ∈ {1, . . . , m}, and b the vector of constraint ranges.

March 14, 2005

26 2. Background and Definition

Let bj = [bj , bj] (j = 1, . . . , m). The constraint system (2.10) consists of m constraints of
the form

fj(x) ∈ [bj , bj]. (2.11)

There are four possible cases for such a constraint:

1. If bj is thin (i.e., bj = bj = bj) for some j ∈ {1, . . . , m}, the constraint (2.11) is indeed
an equality constraint (also called an equation) of the form

fj(x) = bj ; (2.12)

2. If bj = −∞ for some j ∈ {1, . . . , m}, the constraint (2.11) is indeed an inequality con-
straint (also called an inequality) of the form

fj(x) ≥ bj ; (2.13)

3. If bj = +∞ for some j ∈ {1, . . . , m}, the constraint (2.11) is indeed an inequality con-
straint (also called an inequality) of the form

fj(x) ≤ bj ; (2.14)

4. If −∞ < bj < bj < +∞, the constraint (2.11) is a two-sided inequality constraint (also
called a two-sided inequality) of the form

bj ≤ fj(x) ≤ bj . (2.15)

Example 2.60. Consider the parametric constraint system

〈√x1 + 2
√

x1x2 + 2
√

x2 ≤ 7, p ≤ x2
1

√
x2 − 2x1x2 + 3

√
x2 ≤ q; x1 ∈ [1, 16], x2 ∈ [1, 16]〉.

The first constraint is an inequality with the constraint range [−∞, 7]. The second constraint
can be either an equality or an inequality, with the constraint range [p, q], depending on the
parameters (p, q). For instance, the second constraint is an equality if (p, q) = (0, 0), and it is
a two-sided inequality if (p, q) = (0, 2). This CSP can be written as follows

{ √
x1 + 2

√
x1x2 + 2

√
x2 ∈ [−∞, 7],

x2
1
√

x2 − 2x1x2 + 3
√

x2 ∈ [p, q],

where x ≡ (x1, x2) ∈ x = ([1, 16], [1, 16]) ∈ I× I. ♣

It easy to see that the form (2.12) can be rewritten as

gj(x) = 0 (2.16)

by defining gj(x) = fj(x)− bj . Analogously, the forms (2.13) and (2.14) can also be rewritten
in the form

gj(x) ≤ 0. (2.17)

Moreover, the inequality form (2.17) can be converted into the equality form (2.16) by adding
a new slack variable sj ∈ [0,+∞]:

gj(x) + sj = 0. (2.18)

March 14, 2005

2.1. Basic Concepts in Constraint Programming 27

Inversely, the equality form (2.16) can also be converted into the inequality form (2.17) by
replacing it with two inequalities

{
gj(x) ≤ 0,

−gj(x) ≤ 0.
(2.19)

Consequently, we can assume, without loss of generality, that the input problem has either the
equality form

f(x) = 0 (2.20)

or the inequality form
f(x) ≤ 0, (2.21)

where f is a function from D ⊆ Rn to Rm and x is a vector of n real variables.
Although the equality form (2.20) and the inequality form (2.21) are equivalent in theory,

they usually have different meanings in practice. A system of equations of the form (2.20)
arising in real world applications usually has, but not always, isolated solutions if n = m. A
system of the form (2.21) or of the form (2.20) with m < n often has continuums of solutions,
in practice. The former are called a well-constrained problem and the latter are called an
under-constrained problem.

2.1.3.3. Factorable Form

In practice, most explicit functions used for modeling real world applications can be composed
of elementary operations/functions such as +, −, ∗, /, sqr, exp, ln, and sin. These function
are called factorable functions. They play a very significant role in algorithms for solving not
only numerical CSPs but also other numerical problems, such as optimization problems and
automatic differentiation computations. For this reason, we recall in this section the concepts
of factorability . For convenience, we define two sets of standard elementary operations.

Notation 2.61 (Elementary Operations). Denote by E1 the set of standard elementary
unary functions, namely, E1 = {abs, sqr, sqrt, exp, ln, sin, cos, arctan}. Denote by E2 the set of
standard elementary binary operation, namely, E2 = {+,−, ∗, /,ˆ}.

If an expression is recursively composed of the standard elementary operations and func-
tions, it is called an arithmetic expression [Neumaier 1990, p. 13] (it is originally called a
factorable expression in [McCormick 1976, 1983]).

Definition 2.62 (Arithmetic Expression). Let E1 be the set of standard elementary
unary functions and E2 the set of standard elementary binary operations. An arithmetic
expression in the (formal) variables x1, . . . , xn is a member of the set E ≡ E(x1, . . . , xn)
satisfying the composition rules:

(i) R ⊆ E ;
(ii) xi ∈ E for i = 1, . . . , n;

(iii) e1, e2 ∈ E ⇒ e1 ¦ e2 ∈ E for all ¦ ∈ E2;
(iv) e ∈ E ⇒ f(e) ∈ E for all f ∈ E1.

We extend the concept of an arithmetic expression to include other elementary operations.

March 14, 2005

28 2. Background and Definition

Definition 2.63 (Factorable Expression). Let R be a nonempty set; x1, . . . , xn the vari-
ables taking values in R; F a finite set of elementary operations of the form f : Rk → R. An
expression is said to be factorable in the (formal) variables x1, . . . , xn by using operations in
F if it is a member of the set F ≡ F(R,F ; x1, . . . , xn) satisfying the composition rules:

(i) R ⊆ F ;
(ii) xi ∈ F for i = 1, . . . , n;

(iii) If f : Rk → R is an operation in F and e1, . . . , ek ∈ F ; then f(e1, . . . , ek) ∈ F .

We have that E(x1, . . . , xn) ≡ F(R,E1 ∪ E2; x1, . . . , xn), where E1 and E2 are the sets of
standard elementary operations as defined in Notation 2.61.

Note 2.64. If an expression E is factorable in the variables X ≡ {x1, . . . , xn} by using
operations in F as defined in Definition 2.63 and if either F = E1 ∪ E2 ∧R = R holds or we
do not care about F for the moment, then we say that E is factorable (in X), for short.

Example 2.65. The expression given by f(x, y) = 2xy+sinx is factorable by using elementary
operations in {+, ∗,ˆ, sin}. The recursive composition is given as follows:

f1 ≡ xˆy (≡ xy),
f2 ≡ 2 ∗ f1,

f3 ≡ sin(x),
f ≡ f2 + f3.

The expression f(x, y) is also an arithmetic expression, namely, in E(x, y). ♣

Definition 2.66 (Factorable Function). A function f is said to be factorable in the vari-
ables x1, . . . , xn by using the operations in a finite set F of elementary operations if it can be
expressed by an expression that is factorable in the variables x1, . . . , xn by using elementary
operations in F . If F = E1 ∪ E2 or we do not care about F for the moment, we just say f is
factorable, for short.

Example 2.67. The function given by the expression f(x, y) = 2xy + sinx is factorable using
operations in {+, ∗,ˆ, sin}. In other words, the function f : R2 → R given by the rule (x, y) 7→
2xy + sin x is factorable (in the variables x, y) by using operations in {+, ∗,ˆ, sin}. However,
this function is not factorable by using only the operations in {+, ∗,ˆ}. ♣

For convenience, we also define the concept of a factorable constraint in a similar way. In
the next definition, we only consider the standard relations ≤, <,≥, >, =, 6=, its spirit be easily
extended to other relations under

Definition 2.68 (Factorable Constraint). A constraint is said to be factorable in the vari-
ables x1, . . . , xn by using a finite set F of elementary operations if it can be expressed by a
standard relation in {≤, <,≥, >, =, 6=} of two expressions each of which is factorable in the
variables x1, . . . , xn by using operations in F . In the composition of a factorable constraint,
each constraint representing an elementary operation is called a primitive constraint .

March 14, 2005

2.1. Basic Concepts in Constraint Programming 29

Example 2.69. The constraint 2xy + sinx ≤ 0 is factorable (in the variables x, y) by using
operations in {+, ∗,ˆ, sin}. Its primitive constraints are

f1 = xˆy (≡ xy),
f2 = 2 ∗ f1,

f3 = sin(x),
f2 + f3 ≤ 0.

Similarly, the constraint 2xy + sinx ≤ 2yx + cos z is also factorable (in the variables x, y, z) by
using operations in {+, ∗,ˆ, sin, cos}. ♣

Finally, we define the concept of a factorable CSP for convenience in terminology.

Definition 2.70 (Factorable CSP). A CSP is said to be factorable (by using a set F of
elementary operations) if all its constraints are factorable (by using operations in F).

2.1.3.4. Separable Form

Many techniques have been developed for functions that can be expressed as a sum of univari-
ate functions. These functions, called separable functions, play an important role in numerical
algorithms because the computational complexity of the algorithms which require the separa-
bility is often better than that of the general algorithms which require the factorability only.
Kolmogorov [1963] proved a theorem, which is well-known as a complete solution to the thir-
teen problem of Hilbert, stating that any function can be represented by a superposition of
functions of one variable and addition. This proof is however non-constructive. Recently, Ya-
mamura [1993, 1996] proposed a practical way to transform factorable functions into equivalent
separable functions by introducing new auxiliary variables when composing the functions. This
makes it possible to solve factorable systems by resorting to specialized techniques for separable
functions (see some examples in [Kolev 1998, 1999, 2001, 2002] or in Section 3.3.3). For this
reason, we recall hereafter the concepts of separability.

Definition 2.71 (Separable Expression). An expression f in the (formal) variable
x1, . . . , xn is said to be separable if it can be expressed as f =

∑n
k=1 fk, where fk is an

expression in the only variable xk, for k = 1, . . . , n.

Example 2.72. The expression (x− y)2 + ey + (x + y)2 + sin x is separable because it can be
expressed by the sum of two univariate expressions: 2x2 + sinx, 2y2 + ey. ♣

The concept of a separable function is defined similarly to that of a separable expression.

Definition 2.73 (Separable Function). A function f in the (formal) variable x1, . . . , xn

is said to be separable if it can be expressed as f(x1, . . . , xn) =
∑n

k=1 fk(xk), where fk is a
function in the only variable xk, for k = 1, . . . , n.

Example 2.74. The function (x, y) 7→ (x− y)2 + ey + (x + y)2 + sinx is separable because it
can be expressed by the sum of two univariate functions: x 7→ 2x2 + sinx and y 7→ 2y2 + ey.♣

March 14, 2005

30 2. Background and Definition

For convenience, we also define the concepts of a separable constraint and a separable CSP
in a similar way. In this thesis, we only consider the standard relations in {≤, <,≥, >, =, 6=}.
However, these two concepts can be easily extended for other relations.

Definition 2.75 (Separable Constraint). A constraint is said to be separable if it can be
expressed by a standard relation in {≤, <,≥, >, =, 6=} of two separable expressions.

Definition 2.76 (Separable CSP). A CSP is said to be separable if all its constraint is
factorable.

2.1.3.5. Ternary Form

Every factorable expression can be converted into ternary expressions by repeatedly replacing
each binary arithmetic subexpression with an auxiliary variable until the arity of all the result-
ing expressions is at most three. An expression of arity less than three are made ternary by
adding one or two dummy variables, if needed.

Example 2.77. The expression E = (x5 + xy3)/y2√z can be converted into the ternary form
as follows:

u = xy3, v = y2√z,

t = x5 + u, E = t/v.

The resulting system contains four new expressions on three original variables (x, y, z) and
three auxiliary variables (u, v, t). ♣

The domains of auxiliary variables can be obtained by evaluating the ranges of expressions
defining the variables. Each resulting expression in the ternarization can be made simpler by
introducing more auxiliary variables. The worse case is to factorize an expression into primitive
operations that define the factorable form, as shown in Example 2.65. Since factorable con-
straints are made of factorable expressions, every factorable CSPs can be converted into ternary
factorable CSPs by introducing some auxiliary variables. The generated ternary constraints
are often small in the number of elementary operations.

Decomposing general factorable constraints into constraints of the ternary form makes
it possible to represent the continuum solution set of an NCSP concisely, provided that the
ternarized constraints are convex (see Section 2.3.4.2). The reader can find more details of
ternarization-based methods in [Sam-Haroud 1995, Chapter 5], [Sam-Haroud and Faltings
1996], [Faltings and Gelle 1997; Gelle 1998; Gelle and Faltings 2001], [Lottaz 1999, 2000].

2.2. Common Arithmetics for Numerical Computations

2.2.1. Floating-Point Numbers and IEEE 754 Standard

In this section, we only give a few important properties of the floating-point number system.
The reader can find much more details in [Goldberg 1991] and references therein.

March 14, 2005

2.2. Common Arithmetics for Numerical Computations 31

2.2.1.1. Number Representation

The floating-point representation is the most widely used among the representations proposed
so far in order to represent real numbers on computers approximately. Some among the rep-
resentations of the real numbers are: the signed-digit number system [Avizienis 1961], the
sign/logarithm number system [Swartzlander and Alexopoulos 1975], and the slash number
system [Matula and Kornerup 1985]. The last one was recently improved by several variants
of rational arithmetic [Mencer 2000].

A number in the floating-point representation, which has a base β and a precision p, can
be written as

±d0.d1d2 . . . dp−1 × βe, (2.22)

where 0 ≤ di < β (for i = 0, . . . , p − 1) and e is an integer within some interval [emin, emax].
This is called a floating-point number, which exactly represents the real number

±
(
d0 + d1β

−1 + d2β
−2 + · · ·+ dp−1β

−(p−1)
)

βe.

The part d0.d1d2 . . . dp−1 is called the significand (which was previously called the mantissa)
and e is called the exponent . Throughout this thesis, the term floating-point number is used
to mean a real number that can be exactly represented in the format under discussion. A
floating-point number can be encoded in dlog2(emax − emin + 1)e+ dp log2 βe+ 1 bits, where a
bit is dedicated to the sign.

The floating-point representation is not necessarily unique. For example, both 0.1 × 10−1

and 1.0× 10−2 represent the same real number 0.01. Therefore, the practical implementations
often require the leading digit being nonzero, that is, d0 6= 0 in the form (2.22). If this is the
case, the representation is said to be normalized . Requiring that a floating-point representation
be normalized makes the representation unique, but makes it impossible to represent zero.
Alternatively, zero can be naturally represented by 1.0 × βemin−1 because this preserves the
fact that the numerical ordering of nonnegative real numbers corresponds to the lexicographic
ordering of their floating-point representations. When using k bits to store the exponent,
only 2k − 1 values are available for use as exponents because one bit must be reserved to
represent zero. The smallest (respectively, the greatest) floating-point number greater than x
(respectively, less than x) is denoted by denoted by x+ (respectively, x−).

2.2.1.2. IEEE 754 Standard and Conventions

There are two different IEEE standards for floating-point computation: IEEE 754 and IEEE
854. IEEE 754 (1985) governs binary floating-point arithmetic. It specifies number formats,
basic operations, conversions, and exceptional conditions. The related standard IEEE 854
(1987) generalizes IEEE 754 to cover decimal arithmetic as well as binary. Unlike IEEE 745,
it does not specify how floating-point numbers are encoded into bits. It also does not require a
particular value for p, but instead it specifies constraints on the allowable values of p for single
and double precisions. Characteristics of IEEE 754 is given in Table 2.1.

Special quantities have been defined in IEEE 754 to allow correct handling of exceptional
situations, such as a division by zero or an evaluation of the square root of a negative number.
Table 2.2 gives those special quantities. Unlike the real zero, the floating-point zeros have a
sign. Since the leading digit in the significand of a normalized binary floating-point number is
equal to 1, the representation of 0 is problematic, as described in Section 2.2.1.1. IEEE 754
defines that +0 = 1.0 × βemin−1 and −0 = −1.0 × βemin−1. The standard imposes that any

March 14, 2005

32 2. Background and Definition

Table 2.1. IEEE 754 floating-point formats

Precision p emin emax Exponent width Format width
single 24 −126 127 8 32
single ext. 32 ≤ −1022 ≥ 1023 ≥ 11 ≥ 43
double 53 −1022 1023 11 43
double ext. 64 ≤ −16382 ≥ 16383 ≥ 15 ≥ 79

Table 2.2. IEEE 754 special quantities

Number Sign Exponent Significand
±∞ ± emax + 1 1.00 . . . 0
±0 ± emin − 1 1.00 . . . 0

denormalized ± emin − 1 6= 1.00 . . . 0
NaN any emax + 1 6= 1.00 . . . 0

check on −0 = +0 returns true. However, these two zeros are distinct. denormalized numbers
are introduced to allow the representation of smaller numbers than possible with normalized
representation at the cost of a reduction in the number of significand digits. For denormalized
numbers, the leading digit is assumed to be 0. NaN stands for Not a Number . It is used to
indicate that a result is invalid. For example, the operations 1/0,

√−2, 0.0/0.0, 0 ∗ ∞, and
((−∞) + (+∞)) are invalid. Any operation involving NaN will produce NaN.

2.2.2. Interval Arithmetic

In this section, we give a very short introduction to interval arithmetic. The reader can find
much more details in Appendix A, especially in the following fundamental books: introduction
[Alefeld and Herzberger 1983; Moore 1966, 1979], fundamental interval methods for systems
of equations [Neumaier 1990], some recently added applications [Jaulin et al. 2001], extended
interval methods for optimization problems [Hansen and Walster 2004].

2.2.2.1. Real Intervals

A real interval is a connected subset of R.2 For simplicity, we will call it an interval when no
confusion may arise. For convenience, we consider the empty set as a special interval, called
the empty interval . It is to sure that the set of intervals is closed under the set intersection.

Let R∞ ≡ R∪{−∞, +∞}. The lower bound of an interval x is defined as inf(x). Similarly,
the upper bound of x is defined as sup(x). Let denote x = inf(x) ∈ R∞ and x = sup(x) ∈ R∞.
There are four possible intervals x with these bounds:

• the closed interval defined as x ≡ [x, x] ≡ {x ∈ R | x ≤ x ≤ x};
• the open interval defined as x ≡]x, x[≡ {x ∈ R | x < x < x};
• the left-open interval defined as x ≡]x, x] ≡ {x ∈ R | x < x ≤ x};
• the right-open interval defined as x ≡ [x, x[≡ {x ∈ R | x ≤ x < x}.

2 A set is said to be disconnected if it can be partitioned into two nonempty subsets such that each subset has no
points in common with the set closure of the other, otherwise it is called a connected set .

March 14, 2005

2.2. Common Arithmetics for Numerical Computations 33

The set of all closed intervals is denoted by I and the set of all intervals is denoted by I◦. The
interval hull of a subset S of R, denoted by utS, is the smallest interval (w.r.t. the set inclusion)
that contains S. For example, ut(]1, 3] ∪ {2, 4}) =]1, 4]. Given a nonempty interval x, we can
define that

• the midpoint of x is mid(x) ≡ (inf(x) + sup(x))/2;
• the radius of x is rad(x) ≡ (sup(x)− inf(x))/2;
• the width of x is w(x) ≡ sup(x)− inf(x).

For convenience, we define that rad(∅) = w(∅) = 0 and mid(∅) = ∅. The set I◦ of all intervals,
and hence also the set I, admits the usual partial orders (also called partial ordering) ¦ ∈
{<,≤, >,≥} in the set theory; namely, for every x,y ∈ I◦, we define that

x ¦ y ⇔ ∀x ∈ x, y ∈ y : x ¦ y.

Definition 2.78 (Interval Vector, Box). An interval vector is a vector of intervals.
Equivalently, an interval box (or a box for short) is the Cartesian product of intervals.

If not specified, a vector will be interpreted as a column vector . The concept of an interval
box is important in interval analysis. The above concepts (e.g., the midpoint, radius, and
width) are extended to interval vectors/matrices in a componentwise manner.

2.2.2.2. Exact Interval Arithmetic

Fundamental Operations. Fundamentally, if x and y are two real intervals, then the four
elementary operations for idealized interval arithmetic obey the rule

x ¦ y = {x ¦ y | x ∈ x, y ∈ y}, ∀¦ ∈ {+,−, ∗,÷}. (2.23)

Thus, the results of the four elementary interval arithmetic operations are exactly the ranges
of their real-valued counterparts. This is the spirit of interval arithmetic. Although the rule
(2.23) characterizes these operations mathematically, the usefulness of interval arithmetic is
due to the operational definitions based on interval bounds (a short description can be found
in [Hickey et al. 2001]). For example, let x = [x, x] and y = [y, y] be two closed intervals,
(standard) interval arithmetic shows that

x + y ≡ [x + y, x + y]; (2.24a)
x− y ≡ [x− y, x− y]; (2.24b)
x ∗ y ≡ [min{xy, xy, xy, xy},max{xy, xy, xy, xy}]; (2.24c)
x÷ y ≡ x ∗ 1/y if 0 /∈ y, where 1/y ≡ [1/y, 1/y]. (2.24d)

Note that the division is not defined in standard interval arithmetic when denominator con-
tains zero. In this case, one often assumes the result is the universal interval [−∞, +∞], for
convenience and safety. Simple arithmetic expressions are composed of these four fundamental
operations. Every operation with an empty set should return an empty set. Note that inter-
val arithmetic suffers from the problem of dependency ; for example, we have x − x 6≡ [0, 0].
Moreover, it has only the subdistributivity property: (x + y) ∗ z ⊆ x ∗ z + y ∗ z.

March 14, 2005

34 2. Background and Definition

Example 2.79. If given a real-valued function/expression, f(x) ≡ x ∗ (x − 1). The natural
extension of this function to interval arithmetic is f(x) = x ∗ (x− 1), where 1 ≡ [1, 1] = 1. For
example, this expression can be evaluated at [0, 1] as follows

f([0, 1]) = [0, 1] ∗ ([0, 1]− 1) = [0, 1] ∗ [−1, 0] = [−1, 0].

Note that this results contains the exact range f([0, 1]) = [−0.25, 0]. ♣

Unary Operations. Other elementary operations of the form ψ : D ⊆ R → R can also
be extended to intervals. This is usually done by attempting to follow the spirit of interval
arithmetic. Namely, it would be ideal if we could define

ψ(x) ≡ ut{ψ(x) | x ∈ x},
whenever x = [x, x] ⊆ D. For example, following the spirit of interval arithmetic, we can define
the square operation in interval arithmetic:

sqr(x) ≡ x2 ≡
{

[min{x2, x2}, max{x2, x2}] if 0 /∈ [x, x];
[0, max{x2, x2}] otherwise.

(2.25)

Similarly, the square root operation in interval arithmetic is defined as

sqrt(x) ≡ √
x ≡

{ ∅ if x < 0;
[
√

max{x, 0},√x] otherwise.
(2.26)

For a deeper discussion of elementary functions defined on subset of R, see Chapter 5.

2.2.2.3. Rounded Interval Arithmetic

The finite nature of computers precludes an exact representation of the real numbers. In
practice, the real set, R, is therefore approximated by a finite set F∞ ≡ F∪{−∞,+∞}, where
F is the set of floating-point numbers (see Section 2.2.1). The set of real intervals is then
approximated by the set, I¦, of closed floating-point intervals with bounds in F∞. The concept
of an interval hull is extend to that of an F-hull, the smallest interval box in In¦ containing S ⊆
Rn, and is denoted by utFS. The other concepts are also extended w.r.t. the inclusion property.
For example, in I¦, we do not have the identity x = [mid(x)− rad(x),mid(x) + rad(x)] but
only maintain the inclusion x ⊆ [mid(x)− rad(x), mid(x) + rad(x)]. The power of interval
arithmetic lies in its implementation on computers. In particular, outwardly rounded interval
arithmetic allows computing rigorous enclosures for the ranges of operations/functions. For
example, the operation (2.24) can be made rigorous by adding suitable rounding controls:

x + y ≡ [bx + yc, dx + ye]; (2.27a)
x− y ≡ [bx− yc, dx− ye]; (2.27b)
x ∗ y ≡ [min{bxyc, bxyc, bxyc, bxyc}, max{dxye, dxye, dxye, dxye}]; (2.27c)
x÷ y ≡ x ∗ 1/y if 0 /∈ y, where 1/y ≡ [b1/yc, d1/ye]. (2.27d)

This makes a qualitative difference in scientific computations because the results are now
intervals in which the exact result must lie. Interval arithmetic can be carried out for virtually
any arithmetic expression that can be evaluated with floating-point arithmetic. However,
expressions that are equivalent in real arithmetic differ in interval arithmetic because interval
arithmetic is only subdistributive. Therefore, computations should be arranged so that the
overestimation of the ranges of functions is minimized.

March 14, 2005

2.2. Common Arithmetics for Numerical Computations 35

2.2.2.4. Interval Functions

An interval function is a function from In to Im (or from In◦ to Im◦ , if we want to extend to
include open intervals). There are guidelines to follow when defining interval functions for
practical use. It is desirable to follow the spirit of interval arithmetic:

• An interval represents any real number in its range;
• The result of an interval function represents all possible real results over an interval.

The inclusion property formally states this spirit for two cases: functions and relations.

Definition 2.80 (Interval Form of Functions). Let f : D ⊆ Rn → Rm be a function.
Any interval function [f] : In → Im satisfying the inclusion property

∀x ∈ D,∀x ∈ In : x ∈ x ⇒ f(x) ∈ [f](x) (2.28)

is called an interval form of f (or for f).

Definition 2.81 (Interval Form of Relations). Let R ⊆ Rn be a relation. An interval
relation [R] ⊆ In is called an interval form of R (or for R) if it satisfies the inclusion property :

∀r ∈ R, ∀x ∈ In : r ∈ x ⇒ x ∈ [R]. (2.29)

An interval form [f] of f on a box x of maximum width ε is said to have the approximation
property of order k if [f](x) ⊆ (1 + const.εk)utf(x).

An interval form of a function is also referred to as an inclusion function in [Jaulin et al.
2001, p. 27]. It is also called an interval extension in literature. In Section 5.3, we study
the concept of an interval form of a multifunction. In Section 5.5.2, we also study about an
abstraction of the interval form concept. Hereafter we give a relationship between the concept
of an interval form of a function and that of an interval form of a relation.

Theorem 2.82. Let f : D ⊆ Rn → Rm be a function and b ∈ Im. If [f] is an interval form
of f . Then interval relation [R] ≡ {x ∈ In | [f](x) ∩ b 6= ∅} is an interval form of the real
relation R ≡ {x ∈ D | f(x) ∈ b}.

Proof. For all r ∈ R and x ∈ In, if r ∈ x then f(r) ∈ b, thus [f](x) ∩ b 3 f(r). That is,
x ∈ [R]. The proof is hence completed. ¥

2.2.2.5. From Closed Intervals to Open Intervals

Notations for Algorithms. Precisely, a general real interval is not only represented by the
values of its bounds, but also the openness/closedness of the two bounds. In Section 2.2.2.1,
the openness and closedness of bounds are represented by bracket symbols: ‘]’ ≡ 3 and ‘[’ ≡ 1
are for lower bounds, and ‘[’ ≡ 2 and ‘]’ ≡ 0 are for upper bounds.

In some cases (see Chapter 8 for an example), accessing the meaning of the above bracket
symbols in algorithms is needed. Hence, we define here another syntax for general real intervals.
The lower and upper brackets of intervals are taken in L = {1, 3} and U = {0, 2}, respectively.

March 14, 2005

36 2. Background and Definition

The set of (symbolic) bounds is R¦ = R/ ∪ R., where R/ = R × L ∪ {(−∞, 3)} and R. =
R×U ∪{(+∞, 2)}. The set R¦ of (symbolic) bounds is totally ordered by the ordering relation
≤ defined as follows: for every two bounds β1 ≡ (x1, b1) and β2 ≡ (x2, b2) in R¦, we have

β1 = β2 ⇔ x1 = x2 ∧ b1 = b2, (2.30a)
β1 ≤ β2 ⇔ x1 < x2 ∨ (x1 = x2 ∧ b1 ≤ b2). (2.30b)

If β1 6= β2 holds in addition to (2.30), we write β1 < β2. The reverse relations, such as β2 > β1

and β1 ≥ β2, can also defined as usual. The bounds in R¦ are used to construct the set of
(general) intervals:

I◦ ≡ {〈β1, β2〉 | β1 < β2, β1 ∈ R/, β2 ∈ R.} ∪ {∅}.

The relation between the usual notations of intervals and the new notations is:

[x, y] ≡ 〈(x, 1), (y, 0)〉 ≡ {r ∈ R | x ≤ r ≤ y};
]x, y] ≡ 〈(x, 3), (y, 0)〉 ≡ {r ∈ R | x < r ≤ y};
[x, y[≡ 〈(x, 1), (y, 2)〉 ≡ {r ∈ R | x ≤ r < y};
]x, y[≡ 〈(x, 3), (y, 2)〉 ≡ {r ∈ R | x < r < y}.

For convenience, we define, for each bound β = (x, b) ∈ R¦, the negation of β as ¬β = (x, 3−b).
Thus, ¬(¬β) = β holds and if β ∈ R. then ¬β ∈ R/, and vice versa, if β ∈ R/ then ¬β ∈ R..

Computations with Open/Closed Intervals. Most interval arithmetic libraries have been
implemented only for closed intervals. One might use these libraries to perform computations
on open/closed intervals. Indeed, every general interval (vector) β ≡ 〈(x, b), (x, b)〉 ∈ I◦ is
contained in the respective closed interval (vector) x ≡ [x, x] ∈ I. Therefore, the computations
can be performed on x, in place of β, to get an enclosure of the result. If the computations are
domain reduction techniques, we can perform them on respective closed intervals, and then take
the set intersection of the computed intervals with the initial general intervals. For example,
after performing a domain reduction technique on the closed interval [x, x], we get a closed
interval [y, y] ⊆ [x, x]. The result to be obtained is thus the set intersection β ∩ [y, y].

The above procedure is useful in the context that we have only interval arithmetic libraries
for closed intervals, but the solving process needs to perform computations on open/closed
intervals, for example, when performing a bisection that requires two resulting boxes to be
disjoint (hence, they are in I◦). Two boxes resulting from a bisection of a box are required
to be disjoint in some cases, for example, as in Chapter 8. If the two resulting boxes are not
disjoint, this may contribute to the cluster effect [Kearfott and Du 1992, 1994; Van Hentenryck
et al. 1997b], because both boxes may contain the same solutions on their common facets.

2.2.3. Affine Arithmetic

Affine arithmetic [Comba and Stolfi 1993] is an extension of interval arithmetic that keeps
track of correlations between input and computed quantities. Therefore, it is resistant to the
catastrophic loss of accuracy often observed in long-running interval computations.

Affine arithmetic is somewhat similar to Hansen’s generalized interval arithmetic [Hansen
1975], but differs in several important details. For example, in Hansen’s model the internal
approximation errors are combined with the input uncertainties, whereas in affine arithmetic
they are represented separately, which makes it possible for the approximation error introduced

March 14, 2005

2.2. Common Arithmetics for Numerical Computations 37

at one step to be canceled out at a later step. Furthermore, in Hansen’s model, but not in
affine arithmetic, the joint range of two variables may be a nonconvex region.

The ranges of functions obtained with affine arithmetic may be substantially more accurate
than those obtained with interval arithmetic. However, the operations of affine arithmetic are
often more expensive than those of interval arithmetic. Some comparisons on interval methods
and affine arithmetic methods can be found in [Stolfi and de Figueiredo 1997], [Messine 2002],
and [Martin et al. 2002].

2.2.3.1. Affine Form

In particular, a real-valued quantity x is represented by an affine form defined as follows

x̂ ≡ x0 + x1ε1 + · · ·+ xnεn, (2.31)

where x0, . . . , xn are real coefficients and ε1, . . . , εn are noise variables (originally called noise
symbols) taking values in [−1, 1]. Similarly to interval arithmetic, affine arithmetic also al-
lows using rounded floating-point arithmetic to construct rigorous enclosures for the ranges of
operations and functions [Stolfi and de Figueiredo 1997]. In long-running computations, the
number of noise variables may be very high, but their distribution is often sparse. Therefore,
we only need to store the nonzero coefficients and the indices of the respective noise variables
of the considered affine form (2.31).

2.2.3.2. Affine Operations

In affine arithmetic, a general affine operation of the form αx̂ + βŷ + γ (α, β, γ ∈ R) can be
obtained exactly, except the rounding errors, by the following formula:

αx̂ + βŷ + γ ≡ (αx0 + βy0 + γ) +
n∑

i=1

(αxi + βyi)εi. (2.32)

In the computations on floating-point arithmetic, if the rounding error is enclosed by [−c, c], a
new term znewεnew is added to represent this error, where znew = c. The rigorous result is

αx̂ + βŷ + γ ≡ (αx0 + βy0 + γ) +
n∑

i=1

(αxi + βyi)εi + znewεnew. (2.33)

Note that the length of the result (2.33) is increased by one.

2.2.3.3. Non-Affine Operations

Unlike the affine operations, non-affine operations such as f(x̂, ŷ) can only be computed by
approximations. In general, the exact result of a non-affine operation has form f∗(ε1, . . . , εn),
where f∗ is a nonlinear function corresponding to f . In general, this result is then approximated
by an affine function fa(ε1, . . . , εn) = z0 + z1ε1 + · · · + znεn. A new term znewεnew is used to
represent the difference between f∗ and fa, namely

znewεnew = f∗(ε1, . . . , εn)− fa(ε1, . . . , εn). (2.34)

Hence, the result is an affine form

z ≡ z0 + z1ε1 + · · ·+ znεn + znewεnew, (2.35)

March 14, 2005

38 2. Background and Definition

where εnew ∈ [−1, 1] and znew must not be less than the maximum absolute error ; that is,

znew ≥ sup{|f∗(ε1, . . . , εn)− fa(ε1, . . . , εn)| : ∀(ε1, . . . , εn) ∈ [−1, 1]n}.
An important goal is to find fa such that the maximum absolute error is as small as

possible or can be bounded by a value znew that is as small as possible. This is a subject of
Chebyshev approximation theory, which is a well-developed field with a vast literature. In fact,
a sub-theory of affine approximations is enough for affine arithmetic because we only need to
construct the elementary operations in affine arithmetic. Factorable expressions/functions can
be recursively composed of these elementary operations.

The reader can find in [Stolfi and de Figueiredo 1997] some detailed rigorous procedures for
constructing elementary operations, such as 1/x̂, x̂/ŷ, x̂2,

√
x̂, ex̂ and ln x̂, in affine arithmetic.

Hereafter, we recall briefly two most special operations: the multiplication and the division.

Multiplication. In affine arithmetic, the multiplication of two affine forms x̂ = x0+
∑n

i=1 xiεi

and ŷ = y0 +
∑n

i=1 yiεi is another affine form ẑ = z0 +
∑n

i=1 ziεi + znewεnew defined as

z0 ≡ x0y0, (2.36a)
zi ≡ x0yi + y0xi (for i = 1, . . . , n), (2.36b)

znew ≡
(

n∑

i=1

|xi|
)(

n∑

i=1

|yi|
)

. (2.36c)

The number of real additions in (2.36) is 3n − 2. The number of real multiplications (2.36)
is 2n + 2. Hence, the total number of real operations for the multiplication defined by (2.36)
is 5n. The multiplication defined by (2.36) is however not tight. Therefore, we can use the
following tighter one at higher cost (it can be viewed as a special case of (2.43)):

z0 ≡ x0y0 +
1
2

n∑

i=1

xiyi, (2.37a)

zi ≡ x0yi + y0xi (for i = 1, . . . , n), (2.37b)

znew ≡ 1
2

n∑

i=1

|xiyi|+
∑

1≤i,j≤n; i 6=j

|xiyj |. (2.37c)

The number of real additions in (2.37) is n2 + 2n − 1. The number of real multiplications in
(2.37) is n2 + 2n + 3. Hence, the total number of real operations for the multiplication defined
by (2.37) is 2(n + 1)2. This cost is much higher than the cost, 5n, of (2.36). Proving the
inclusion property of the multiplications (2.36) and (2.37) is easy, and hence is omitted.

Miyajima [2000, p. 22] proposed to replace the multiplication (2.37) with the following:

z0 ≡ x0y0 +
1
2

n∑

i=1

xiyi, (2.38a)

zi ≡ x0yi + y0xi (for i = 1, . . . , n), (2.38b)

znew ≡ 1
2

n∑

i=1

|xiyi|+
∑

1≤i<j≤n

|xiyj + xjyi|. (2.38c)

The multiplication (2.38) provides a tighter enclosure than the multiplication (2.37) does. They
both have a number of similar real operations. However, the cost of each term |xiyj + xjyi| is
more expensive than the cost of |xiyj |+ |xjyi| when they need to be rounded upwards.

March 14, 2005

2.2. Common Arithmetics for Numerical Computations 39

Division. The division x̂/ŷ can be written as x̂ ∗ (1/ŷ); hence it can be computed by one
reciprocal and one multiplication. Kolev [2002] proposed an improvement for computing the
reciprocal 1/ŷ, hence for computing x̂/ŷ := x̂ ∗ (1/ŷ). This has an interesting property that
x̂/x̂ = 1, which does not hold for interval arithmetic. Miyajima et al. [2003] also proposed new
methods to compute x̂/ŷ. However, these methods are too complicated to be presented here.
Hence, the reader should find the details in [Kolev 2002; Miyajima et al. 2003].

2.2.3.4. Variants of Affine Arithmetic

Kolev [1998] showed that, under some assumptions, it is possible to enclose a (piecewise)
continuously differentiable separable function f : x ∈ In → Rm in a linear enclosure (see
Section 3.3.3.1). Namely, let

f(x) =
n∑

j=1

fj(xj),

where x ≡ (x1, . . . , xn)T is a vector of n real variables. It is possible to compute a linear
enclosure of f of the form

f(x) ∈
n∑

j=1

ajxj + dj , (2.39)

where dj ∈ Im and aj ∈ Rm. Probably inspired by the similarity between (2.39) and Hansen’s
generalized interval [Hansen 1975], Kolev [2001] proposed a modified form of Hansen interval.
However, Kolev’s arithmetic, which is defined on Kolev’s forms, is much similar to affine arith-
metic (see Section 2.2.3), but not similar to Hansen interval arithmetic. We recall here the
formal definition of Kolev’s form.

Definition 2.83 (Kolev Affine Form, Kolev Interval Form). A Kolev affine form is a
semi-affine function on n noise variables κ1, . . . , κn of the form

x̃ = cx +
n∑

i=1

xiκi + vx, κi ∈ vi, (2.40)

where vi ≡ [−vi, vi] (for i = 1, . . . , n) and vx ≡ [−vx, vx] are symmetric intervals; x1, . . . , xn

are real coefficients; and cx ∈ R. It can also be written in the interval form:

x̃ = cx +
n∑

i=1

xivi + vx, (2.41)

which is called a Kolev generalized interval associated with the above Kolev affine form.

A Kolev affine form (and also its associated generalized interval) was originally called a
generalized interval or a G interval by Kolev [2001]. The arithmetic that is defined on Kolev
generalized intervals follows the spirit of affine arithmetic rather than the spirit of interval
arithmetic; thus, we call it Kolev generalized affine arithmetic. Indeed, one can see hereafter
that it can be viewed as a generalization of (standard) affine arithmetic.

March 14, 2005

40 2. Background and Definition

Kolev Generalized Affine Arithmetic. An affine operation αx+βy+γ, where α, β, γ ∈ R,
of two Kolev affine forms, x̃ ≡ cx +

∑n
i=1 xiκi + vx and ỹ ≡ cy +

∑n
i=1 yiκi + vy, is another

Kolev affine form z̃ ≡ cz +
∑n

i=1 ziκi + vz, where

cz ≡ αcx + βcy + γ, (2.42a)
zi ≡ αxi + βyi (for i = 1, . . . , n), (2.42b)
vz ≡ |α|vx + |β|vy. (2.42c)

The product z̃ of two Kolev affine forms, x̃ ≡ cx +
∑n

i=1 xiκi +vx and ỹ ≡ cy +
∑n

i=1 yiκi +vy,
is another Kolev affine form z̃ ≡ cz +

∑n
i=1 ziκi + vz defined as follows:

cz ≡ cxcy +
1
2

n∑

i=1

xiyiv
2
i , (2.43a)

zi ≡ cxyi + cyxi (for i = 1, . . . , n), (2.43b)

vz ≡ vxvy + |cx|vy + |cy|vx +
∑

1≤i,j≤n; i6=j

|xiyj |vivj +

vx

n∑

i=1

|yi|vi + vy

n∑

i=1

|xi|vi +
1
2

n∑

i=1

|xiyi|v2
i . (2.43c)

The number of real additions in (2.43) is n2 + 4n + 2. The number of real multiplications in
these formulas is 3n2 + 4n + 8. In present computers, the cost of a floating-point addition
is quite the same as that of a floating-point multiplication, then the complexity of (2.43) is
4n2 + 8n + 10 real operations.

Kolev [2001] also extended the above arithmetic for continuously differentiable elementary
operations ψ : D ⊆ R→ R (on which (3.105) is defined) by using the linear relaxation technique
in Section 3.3.3.1. In particular, given an interval x ⊆ D, for all x ∈ x we have

ψ(x) ∈ ax + d,

where a ∈ R, d ∈ I. Now let consider a Kolev affine form x̃ ≡ cx +
∑n

i=1 xiκi + vx such that
x̃ ⊆ x, we then have

ψ(x̃) ⊆ a

(
cx +

n∑

i=1

xiκi + vx

)
+ d.

Hence, a Kolev affine form z̃ ≡ cz +
∑n

i=1 ziκi+vz can be obtained for ψ(x̃), w.r.t. the inclusion
property, by defining that

d′ ≡ d + a

(
n∑

i=1

vx

)
, (2.44a)

cz ≡ acx + mid(d′), (2.44b)
zi ≡ axi (for i = 1, . . . , n), (2.44c)
vz ≡ rad(d′). (2.44d)

We can obtain a Kolev affine form (and its associated Kolev generalized interval) for any
factorable expression/function, with respect to the inclusion property, by composing the expres-
sion/function using the above-defined elementary operations. Since most elementary operations
are continuously differentiable and (3.105) is defined, a Kolev affine form can be obtained for
any factorable expression built on these elementary operations.

March 14, 2005

2.2. Common Arithmetics for Numerical Computations 41

Messine Affine Arithmetic. Historically, Messine [1999] proposed a simpler version of
Kolev affine form/arithmetic before Kolev [2001] did propose the above generalized version.
Affine forms of Messine [1999, 2000, 2002] nearly resemble to Kolev affine forms in Defini-
tion 2.83 when fixing vi = 1 for all i, and the idea of Messine affine arithmetic is similar to
that of Kolev affine arithmetic in (2.42) and (2.43). In particular, a Messine affine form has
the form

x̆ ≡ x0 +
n∑

i=1

xiεi + xn+1[−1, 1] + xn+2[0, 1] + xn+3[−1, 0], (2.45)

where εi, . . . , εn are the noise variables taking values in the interval [−1, 1], as in affine forms,
and the coefficients xn+1, xn+2 and xn+3 are nonnegative. Suppose the Messine affine form
of y̆ written similarly to that of x̆. For all real numbers α = −β ≥ 0 and γ, Messine affine
arithmetic defines that

x̆ + y̆ ≡ (x0 + y0) +
n∑

i=1

(xi + yi)εi + (xn+1 + yn+1)[−1, 1] +

(xn+2 + yn+2)[0, 1] + (xn+3 + yn+3)[−1, 0]; (2.46)

x̆− y̆ ≡ (x0 − y0) +
n∑

i=1

(xi − yi)εi + (xn+1 + yn+1)[−1, 1] +

(xn+2 + yn+3)[0, 1] + (xn+3 + yn+2)[−1, 0]; (2.47)

α ∗ x̆ ≡ αx0 +
n∑

i=1

αxiεi + αxn+1[−1, 1] + αxn+2[0, 1] + αxn+3[−1, 0]; (2.48)

β ∗ x̆ ≡ βx0 +
n∑

i=1

βxiεi + αxn+1[−1, 1] + αxn+3[0, 1] + αxn+2[−1, 0]; (2.49)

γ + x̆ ≡ (γ + x0) +
n∑

i=1

xiεi + xn+1[−1, 1] + xn+2[0, 1] + xn+3[−1, 0]. (2.50)

The multiplication in Messine affine arithmetic is defined as follows:

x̆ ∗ y̆ ≡ x0y0 +
n∑

i=1

(x0yi + xiy0)εi + K1[−1, 1] + K2[0, 1] + K3[−1, 0], (2.51)

where K1, K2, and K3 are computed by:3

K1 ≡ |x0|yn+1 + |y0|xn+1 + xn+1yn+1 +
∑

1≤i,j≤n+3; i6=j

|xiyj |, (2.52a)

K2 ≡ K
〈0〉
2 + xn+2yn+2 + xn+3yn+3 +

n∑

i=1; xiyi>0

xiyi, (2.52b)

K3 ≡ K
〈0〉
3 +

n∑

i=1; xiyi<0

|xiyi|, (2.52c)

3 There is a minor error in the multiplication of Messine affine arithmetic in [Messine 1999, 2000, 2002]. To be
correct, a term xn+1yn+1 must be added to K1 and removed from K2 therein. We correct this error in the
version presented here.

March 14, 2005

42 2. Background and Definition

where K
〈0〉
2 and K

〈0〉
3 are, in turn, defined as follows:

K
〈0〉
2 =





x0yn+2 + y0xn+2 if x0 ≥ 0 and y0 ≥ 0,
x0yn+2 − y0xn+3 if x0 ≥ 0 and y0 < 0,
−x0yn+3 + y0xn+2 if x0 < 0 and y0 ≥ 0,
−x0yn+3 − y0xn+3 if x0 < 0 and y0 < 0;

(2.53a)

K
〈0〉
3 =





x0yn+3 + y0xn+3 if x0 ≥ 0 and y0 ≥ 0,
x0yn+3 − y0xn+2 if x0 ≥ 0 and y0 < 0,
−x0yn+2 + y0xn+3 if x0 < 0 and y0 ≥ 0,
−x0yn+2 − y0xn+2 if x0 < 0 and y0 < 0.

(2.53b)

The numbers of real additions and multiplications are n2+7n+13 and n2+8n+16, respectively.
Hence, the total is 2n2 +15n+29. One can easily see that Messine’s multiplication is a special
case of Kolev’s definition in (2.43). Notice that this multiplication is not as tight as the one in
(2.38) when adapted to Messine affine forms or vice versa.

Kolev Affine Arithmetic. Fortunately, Kolev [2002] improved the multiplication in affine
arithmetic by revising the formulas in (2.43) and (2.51) for computing an affine form of the
product.

ẑ ≡ cz +
n∑

i=1

ziκi + znewκnew, (2.54)

where κnew is a new noise variable taking its value in [−1, 1], and all the other noise variables
are also in [−1, 1]. The new formulas are:

Sx ≡
n∑

i=1

|xi|, Sy ≡
n∑

i=1

|yi|, P ≡ 1
2

n∑

i=1

xiyi, (2.55a)

cz ≡ cxcy + P, (2.55b)
zi ≡ cxyi + cyxi (for i = 1, . . . , n), (2.55c)

znew ≡ vxvy + vy(|cx|+ Sx) + vx(|cy|+ Sy) + SxSy − |P |. (2.55d)

In computations with rigorous rounding controls, I propose to replace P in (2.55a) with 〈P 〉±eP ,
where 〈Z〉± z denotes some floating-point number such that 〈Z〉− z ≤ Z ≤ 〈Z〉+ z and z ∈ F,
and then replace (2.55d) with znew ≡ dvxvy + vy(|cx|+Sx)+ vx(|cy|+Sy)+SxSy +2eP −〈P 〉e.
By this way, we avoid computing P and |P | as if they were completely different expressions
in order to reduce the computation cost. The other parts of (2.55) are rounded in the same
way. In (2.55), the number of real additions is 4n + 5 and the number of real multiplications
is 3n + 7. The total number of real operations is 7n + 12. Therefore, the new multiplication
(2.55) is much faster than the previous multiplication in (2.37) and (2.43), when n is big.

Note 2.84. By substituting the term znewκnew in the (standard) affine form ẑ in (2.54) with
vz ≡ [−znew, znew], we get a Kolev affine form z̃′ ≡ cz +

∑n
i=1 ziκi + vz, which is equivalent

to ẑ. However, it is not tighter than the Kolev affine form z̃ obtained by (2.43), namely,

z̃′ ≡ {ẑ | κnew ∈ [−1, 1]} ⊇ z̃. (2.56)

March 14, 2005

2.3. Fundamental Consistency Notions 43

Remark 2.85. All affine forms presented here easily converted to (standard) affine form by
replacing each interval of them with a new noise variable. All the above improvements to
variants of affine arithmetic can also be easily adapted to (standard) affine arithmetic.

2.3. Fundamental Consistency Notions

In this section and its subsections, we recall some fundamental consistency notions for a quick
reference. The reader can find algorithms for achieving local consistency states of CSPs in
the books on foundations of constraint satisfaction [Tsang 1993], on principles of constraint
programming [Apt 2003], and the references mentioned in this section.

To compare the consistency notions, one often uses the strongness that is defined as follows.

Definition 2.86 (Strongness). We define a partial order on consistency notions:
• X-consistency is said to be stronger than Y -consistency if X-consistency implies Y -

consistency. In this case, with respect to the strongness, we write:

X-consistency ≥ Y -consistency and Y -consistency ≤ X-consistency.

• X-consistency is said to be strictly stronger than Y -consistency if X-consistency implies
Y -consistency but Y -consistency does not implies X-consistency. In this case, with
respect to the strongness, we write:

X-consistency > Y -consistency and Y -consistency < X-consistency.

The following is a property that is often enjoyed by consistency notions.

Definition 2.87 (Monotonicity). A ANY-consistency is said to be monotonic if, for every
CSP P on which ANY-consistency is defined, every singleton CSP of P is ANY-consistent
provided that P is ANY-consistent.

Notation 2.88. Consider a CSP P ≡ (V,D, C). Let X be a subset of V. Throughout this
section, we use the notation CX (called the conjunction constraint) to denote either

• the intersection of all the constraints on all the variables X (sorted in the order in the
sequence of variables of P), if they exist; or

• the Cartesian product of the domains of all the variables in X (sorted in the order in the
sequence of variables of P), otherwise.

2.3.1. Global Consistency

It is well-known that the global consistency is a sufficient condition for backtrack-free search;
that is, any instantiation of a subsequence of variables can be extended to a solution without
any backtracking in search. Here is the definition.

March 14, 2005

44 2. Background and Definition

Definition 2.89 (Global Consistency). A CSP is said to be globally consistent if every
instantiation of subsequences of variables can be extended to a solution without backtracking.
Equivalently, a CSP with n variables is said to be globally consistent if it is strongly n-
consistent (see Definition 2.108),

Global consistency is very difficult to be obtained, in general, but still weaker than the
requirement of globally solved form (Definition 2.36). Obtaining global consistency is usually
restricted to some special types of constraints and/or special structures of problems. The
reader can find a survey on conditions for guaranteeing global consistency in [van Beek 1992],
with updates in [van Beek and Dechter 1995] and [Sam-Haroud 1995, Chapter 5].

2.3.2. Classical Local Consistency Notions

In this section and its subsections, we recall the most common local consistency notions with
illustration examples, as described in [Apt 2003, Chapter 5].

2.3.2.1. Node Consistency

A form of node consistency was first studied by Montanari [1974]. The version presented here
is due to Mackworth [1977].

Definition 2.90 (Node Consistency). A CSP is said to be node consistent if, for every
variable x, every unary constraint on x coincides with the domain of x.

Note 2.91. Note that node consistency imposes no condition on non-unary constraints and
that node consistency neither implies nor is implied by the consistency (Definition 2.14).
Note also that a CSP with all empty domains is node consistent.

Example 2.92. Consider the CSP 〈x = 0, y = 0; x ∈ N, y ∈ N〉. This CSP is clearly consis-
tent, but not node consistent. ♣

2.3.2.2. Arc Consistency

A form of arc consistency was first studied independently by Waltz [1972, 1975] and Montanari
[1974]. The version presented here is due to Mackworth [1977].

Definition 2.93 (Arc Consistency). A binary constraint C on the variables (x, y); which
are associated with the domains (Dx, Dy), respectively; is called arc consistent if

(i) ∀a ∈ Dx, ∃b ∈ Dy : (a, b) ∈ C,

(ii) ∀b ∈ Dy, ∃a ∈ Dy : (a, b) ∈ C.

A CSP is said to be arc consistent if all its binary constraint are arc consistent.

March 14, 2005

2.3. Fundamental Consistency Notions 45

Note 2.94. Note that a CSP with no binary constraints is arc consistent and that arc
consistency does not imply the consistency of the CSP. Note also that a CSP with all empty
domains is arc consistent.

Example 2.95. The CSP 〈x = y, x 6= y; x ∈ {0, 1}, y ∈ {0, 1}〉 is obviously arc consistent
and also inconsistent. ♣

Arc consistency and its variants constitute a class of important consistency notations.
Faltings [1994] showed that arc consistency can be efficiently achieved for binary NCSPs by
exploring only extreme points of constraints. A variant of arc consistency is directional arc
consistency which is devised for directed network of constraints. The idea of maintaining
directional arc consistency has long been proposed and studied in search (see [Haralick and
Elliot 1980]), the terminology was never formally defined until Dechter and Pearl [1988] did.

Definition 2.96 (Directional Arc Consistency). Consider a total order ≺ on the con-
sidered variables. A binary constraint C on the variables (x, y); which are associated with
the domains (Dx, Dy), respectively; is called directionally arc consistent w.r.t ≺ if

(i) x ≺ y ⇒ (∀a ∈ Dx,∃b ∈ Dy : (a, b) ∈ C) ,

(ii) y ≺ x ⇒ (∀b ∈ Dy,∃a ∈ Dy : (a, b) ∈ C) .

A CSP is said to be directionally arc consistent w.r.t. ≺ if all its binary constraint are
directionally arc consistent w.r.t. ≺.

Example 2.97. The CSP 〈x < y; x ∈ {1, 2, 3}, y ∈ {2, 3}〉 is not arc consistent but direction-
ally arc consistent w.r.t. the ordering y ≺ x. ♣

The concept of hyper-arc consistency was introduced by Mohr and Masini [1988] under the
name arc consistency. A similar concept also implicitly appears in [Davis 1987]. The adopted
terminology follows Marriott and Stuckey [1998].

Definition 2.98 (Hyper-Arc Consistency). A k-ary constraint C on the variables
x1, . . . , xk; which are associated with the domains D1, . . . , Dk, respectively; is called hyper-arc
consistent if each domain Di is the projection of C on xi; that is,

∀i ∈ {1, . . . , k} : Di = C[xi].

A CSP is said to be hyper-arc consistent if all its constraint are hyper-arc consistent.

Example 2.99. The CSP 〈x ∧ y = z; x ∈ {1}, y ∈ {0, 1}, z ∈ {0, 1}〉 is hyper-arc consistent.
The CSP 〈x ∧ y = z; x ∈ {0, 1}, y ∈ {0, 1}, z ∈ {1}〉 is not hyper-arc consistent because there
are no values for x and z when y = 0. ♣

2.3.2.3. Path Consistency

A form of path consistency was first studied by Montanari [1974]. The version presented here
is due to Mackworth [1977].

March 14, 2005

46 2. Background and Definition

Definition 2.100 (Path Consistency). A CSP is said to be path consistent if, for each
subset {x, y, z} of its variables, we have

∀(a, c) ∈ C{x,z}, ∃b : (a, b) ∈ C{x,y} ∧ (b, c) ∈ C{y,z}.

Note 2.101. Note that a CSP with nonempty domains and with no binary constraints is
path consistent. Note also that a CSP with all empty domains is path consistent.

Definition 2.102 (Strong Path Consistency). A CSP is said to be strongly path consis-
tent if it is arc and path consistent.

A trivial variant of path consistency is k-path consistency, where every path connecting
two nodes is considered. However, this variant is equivalent to the above definition of path
consistency, that result is due to Montanari [1974].

Theorem 2.103 (k-Path Consistency). Let 1 < k ∈ N. Then a CSP is path consistent if
and only if, for each subset {x0, . . . , xk} of its variables, we have

∀(a0, ak) ∈ C{x0,xk}, ∃a1, . . . , ak−1 :
(∀i ∈ {0, . . . , k − 1} : (ai, ai+1) ∈ C{xi,xi+1}

)
.

Proof. See the proof of Theorem 5.23 in [Apt 2003, p. 154]. ¥

Example 2.104. The CSP 〈x < y, y < z; x ∈ {0, 1}, y ∈ {1, 2}, z ∈ {3, 4}〉 is path consis-
tency. The CSP 〈x < y, y < z; x ∈ {0, 1}, y ∈ {1, 2}, z ∈ {2, 3, 4}〉 is not path consistent be-
cause there is no value for y when (x, z) = (1, 2). ♣

Theorem 2.103 says, in other words, that path consistent is equivalent to k-path consistency
for the completion of constraint graphs4. Bliek and Sam-Haroud [1999] found that this result
also holds for triangulated graphs. Moreover, they proved that strong path consistency on the
completion of a constraint graph is equivalent to strong path consistency on the triangulation
of a constraint graph5 for convex CSPs. Their empirical results show that there is only a little
difference between two cases for nonconvex CSPs.

Another variant of path consistency is directional arc consistency, which is devised for
directed network of constraints. It is due to Dechter and Pearl [1988].

Definition 2.105 (Directional Path Consistency). Consider a total order ≺ on the con-
sidered variables. A CSP is said to be directionally path consistent if for each subset {x, y, z}
of its variables, we have

x ≺ y ∧ z ≺ y ⇒ (∀(a, c) ∈ C{x,z},∃b : (a, b) ∈ C{x,y} ∧ (b, c) ∈ C{y,z}
)
.

4 The completion of a constraint graph is to make it complete by adding a universal arc in place of a missing arc.
5 The triangulation of a constraint graph is to make the graph triangulated by adding a universal arc in place of

each missing arc.

March 14, 2005

2.3. Fundamental Consistency Notions 47

Example 2.106. The CSP 〈x < y, y < z; x ∈ {0, 1}, y ∈ {1, 2}, z ∈ {2, 3, 4}〉 is not path
consistent but directionally path consistent w.r.t. the ordering x ≺ y ≺ z. It is not direc-
tionally arc consistent w.r.t. the ordering x ≺ z ≺ y because there is no value for y when
(x, z) = (1, 2). ♣

2.3.2.4. k-Consistency

The concepts of k-consistency and strong k-consistency were first introduced by Freuder [1978].

Definition 2.107 (k-Consistency). A CSP is said to be 1-consistent if it is node consistent.
A CSP P ≡ (V,D, C) is said to be k-consistent, where 1 < k ∈ N, if

(i) for every consistent (k − 1)-instantiation l of any subsequence X of V;
(ii) for every variable x in V \X;

there exists a value v in the domain of x such that the k-instantiation composed of l and
〈x, v〉 is consistent w.r.t. P (see Definition 2.10).

Definition 2.108 (Strong k-Consistency). A CSP is said to be strong k-consistent, where
k ∈ Z+, if it is i-consistent for i = 1, . . . , k.

Note 2.109. If the assumption (i) in Definition 2.107 does not hold (that is, there is no
consistent (k − 1)-instantiation), then the CSP is k-consistent.

Note 2.110. Note that every CSP with all empty domains is k-consistent. If a CSP with n
variables is n-consistent, then it is k-consistent for all k ≥ n, because the assumption (ii) in
Definition 2.107 does not hold.

Example 2.111. The CSP 〈x < y, x + y = z; x ∈ {0, 1}, y ∈ {1, 2}, z ∈ {2, 3, 4}〉 is 1-
consistent and 2-consistent. Hence, it is strong 2-consistent. It is however neither 3-consistent
nor strong 3-consistent because the 2-compound label (1, 4) of (x, z) cannot be extended. ♣

Theorem 2.112. If a CSP with n variables, where n ≥ 1, is strong n-consistent and at least
one domain is nonempty, then it is consistent.

Proof. See the proof of Theorem 5.38 in [Apt 2003, p. 165]. ¥

The concept of k-consistency generalizes the concepts of node, arc, and path consistency
in the following sense.

Theorem 2.113. We have that
• 1-consistency is equivalent to node consistency;
• 2-consistency is equivalent to arc consistency;
• 3-consistency is equivalent to path consistency, for binary CSPs;
• k-consistency implies (k − 1)-consistency.

March 14, 2005

48 2. Background and Definition

2.3.3. Local Consistency Notions for Numerical Constraints

In general, we cannot achieve arc/hyper-arc consistency exactly for numerical constraints under
a finite number system such as the floating-point number system. As mentioned in [Granvilliers
1998], for a constraint C on a sequence of variables (x1, . . . , xk) associated with the domains
(D1, . . . , Dk), it would be ideal if each domain Di can be reduced to the smallest (w.r.t. the
point set inclusion) union of intervals that covers the projection of C on xi instead of being
reduced to the exact projection itself (as required by hyper-arc consistency). The property that
Di is the smallest union Ui of a finite number of intervals containing the projection C[xi] can
be called interval hyper-arc consistency or interval consistency for short. However, interval
hyper-arc consistency is still intractable, in general. Therefore, one often replaces it by a
weaker property, for example, that Di is an interval containing C[xi]. Two fundamental local
consistency notions for numerical constraints follow this approach. They are hull consistency
and box consistency. Other local consistency notions are more complicated. However, they still
attempt to approximate the projection of a constraint coarsely by an interval at each step. For
this purpose, mathematical tools such as interval arithmetic and its variants (see Section 2.2)
are very useful in providing cheap estimations of the ranges of functions, hence in providing
cheap estimations of the projections of constraints.

2.3.3.1. Hull Consistency

Instead of achieving interval (arc/hyper-arc) consistency, one may just wish to reduce a domain
to the smallest interval contains the projection of constraints. This is the idea introduced by
Benhamou and Older [1992, 1997], and called hull consistency afterwards. The concept of hull
consistency is defined as follows (see Definition 2.24 for related notations).

Definition 2.114 (Hull Consistency). Let P ≡ (V,D, C) be a CSP, where V ≡
(x1, . . . , xn) and D ⊆ Rn; D′ ≡ D1 × · · · × Dn ⊆ Rn a subset of D; and C a constraint
on V. We define that

• C is said to be hull consistent in D′ on xi if Di = ut(Di ∩ C[xi]);
• C is said to be hull consistent in D′ if it is hull consistent in D′ on xi for all i = 1, . . . , n;
• P is said to be hull consistent in D′ if all its constraints are hull consistent in D′;
• P is said to be globally hull consistent in D′ if the intersection of all its constraints is

hull consistent in D′.

In general, we cannot compute the real interval hull of a subset of R exactly, especially
on computers. In the floating-point number system F, one can replace the real interval hull
consistency by the following variant.

Definition 2.115 (F-Hull Consistency). Using the same notations as in Definition 2.114,
we define that

• C is said to be F-hull consistent in D′ on xi if Di = utF(Di ∩ C[xi]);
• C is said to be F-hull consistent in D′ if it is F-hull consistent in D′ on xi for all

i = 1, . . . , n;
• P is said to be F-hull consistent in D′ if all its constraints are F-hull consistent in D′;
• P is said to be globally F-hull consistent in D′ if the intersection of all its constraints is
F-hull consistent in D′.

March 14, 2005

2.3. Fundamental Consistency Notions 49

Note 2.116. In Definition 2.114 and Definition 2.115, the suffix “. . . hull consistent in D′”
can be reduced to “. . . hull consistent” when D′ = D, provided that the context is clear.

Remark 2.117. In practice, when referring to the concept of hull consistency, one often
refers to the F-hull consistency. However, in numerical analysis, one often refers to the real
hull consistency.

Since the F-interval hull of a real set is a closed connected set, every variable domain of an
F-hull consistent constraint is also a closed connected set. In contrast, the variable domains
of a hull consistent constraint are connected, but not necessarily closed. Let us take some
examples to distinguish hull consistency and F-hull consistency.

Example 2.118. It is easy to verify that

• The CSP 〈x2 + y2 = 1; x ∈ [−2, 2], y ∈ [−1, 1]〉 is neither hull consistent nor F-hull con-
sistent because its unique constraint is neither hull nor F-hull consistent on x;

• The CSP 〈x2 + y2 ≤ 1; x ∈ [−1, 1], y ∈ [−1, 1]〉 is both hull consistent and F-hull consis-
tent;

• The CSP 〈x2 + y2 < 1; x ∈ [−1, 1], y ∈ [−1, 1]〉 is F-hull consistent, but not hull consis-
tent;

• The CSP 〈x2 + y2 < 1; x ∈]−1, 1[, y ∈]−1, 1[〉 is hull consistent, but not F-hull con-
sistent. Note that one cannot reduce the domains of this problem to achieve F-hull
consistency without loss of solutions. ♣

From these examples, We see that hull consistency neither implies nor is implied by F-hull
consistency. They are however nearly resemble.

In practice, the simplest way of achieving F-hull consistency for a constraint C is to use a bi-
section search for the outermost canonical intervals of the projection C[xi] (see Section 3.2.2.1).
More efficient solution techniques do not enforce hull consistency on initial (supposed to be
factorable) constraints but often decompose factorable constraints into primitive constraints
by introducing auxiliary variables, and then enforces F-hull consistency on obtained primitive
constraints rather than directly on initial constraints. Since the primitive constraints are very
simple, it is possible to obtain F-hull consistency for them. Later, a constraint propagation
procedure is performed on a virtual network connecting all primitive constraints in order to
propagate the effect of domain reduction. See Section 3.2.2.2 for a recent method of achiev-
ing hull consistency on the system of primitive constraints. The reader can find in [Cruz and
Barahona 2003] a complicated search method for achieving global F-hull consistency, that is,
for computing the F-interval hull of the solution set of an NCSP.

2.3.3.2. kB-Consistency

When solving numerical CSPs by using domain reduction techniques adapted from interval
arc/hyper-arc consistency, the early quiescence problem [Davis 1987] may occurs. In order
to tackle this problem, Lhomme [1993] introduced the concept of consistency, called kB-
consistency. It is stronger than hull consistency. 2B-consistency is called arc-B consistency

March 14, 2005

50 2. Background and Definition

[Lhomme 1993]. The idea of kB-consistency is to recursively reduce the domains of a CSP.
Ideally, a domain of a CSP P is wished to be gradually reduced to the smallest interval con-
taining the solution set of P. In practice, a facet σ of the box x ∈ In defining the domains of
a CSP of n variables should be inwardly moved whenever it has been certified that σ contains
no solution. Checking if σ contains a solution is a hard work. Alternatively, every facet σ′ of
σ is inwardly moved whenever it has been certified that σ′ contains no solution. Checking if σ′

contain a solution is hard too; therefore, it is replaced by an inward movement, and so forth.
Here is the formal definition of kB-consistency.

Definition 2.119 (kB-Consistency). Recursively, we define that
• An NCSP P ≡ (V,D, C) is said to be 2B-consistent in D′, where D′ ⊆ D, if, for every

variable x in V and every C ∈ C, the domain Dx of x in D′ is a closed interval [l, u] ∈ I
such that l, u ∈ C[x]. In addition, if D = D′ we just say that P is 2B-consistent .

• For 2 ≤ k ∈ N, let ΦkB be a function that maps every NCSP P = (V,D, C) to a
kB-consistent NCSP P∗ = (V,D∗, C) which is equivalent to P such that D∗ ⊆ D and
that there is no kB-consistent NCSP P ′ = (V,D′, C) which is equivalent to P with
D∗ D′ ⊆ D. In case there is no such P∗, we just let P∗ = ∅.

• An NCSP P ≡ (V,D, C) is said to be kB-consistent, where 3 ≤ k ∈ N, if, for every
variable x in V, the domain Dx of x is a closed interval [l, u] satisfying

Φ(k−1)B(P|x=l) 6= ∅ ∧ Φ(k−1)B(P|x=u) 6= ∅. (2.57)

Similarly, P is said to be kB-consistent in D′, where D′ ⊆ D, if the CSP (V,D′, C) is
kB-consistent.

Note 2.120. For a compact NCSP P = (V,D, C) (i.e., D and C consist of compact sets),
there always exists a unique compact kB-consistent NCSP P∗ = (V,D∗, C) as described in
Definition 2.119. That is, the function ΦkB is uniquely defined.

Example 2.121. Consider three compact NCSPs:

P1 = 〈x + y = 1, y ≤ x + 1, y ≥ x; x ∈ [0, 10], y ∈ [0, 10]〉,
P2 = 〈x + y = 1, y ≤ x + 1, y ≥ x; x ∈ [0, 2], y ∈ [0, 2]〉,
P3 = 〈x + y = 1, y ≤ x + 1, y ≥ x; x ∈ [0.5, 1], y ∈ [1, 1.5]〉.

One can check that P1 is not 2B-consistency, that P2 is not 2B-consistency but not 3B-
consistency, and that P3 is 3B-consistency. Moreover, P3 = Φ2B(P2). ♣

Example 2.122. Consider the CSP

P = 〈x2 + y2 < 1; x ∈ [−1, 1], y ∈ [−1, 1]〉.
The problem P is neither 2B-consistency nor 3B-consistency because C[x] = C[y] =]−1, 1[.
Note that we cannot reduce its domains without loss of solutions. ♣

One can replace the condition (2.57) by an equivalent condition:

Φ(k−1)B(P|∗x=l) 6= ∅ ∧ Φ(k−1)B(P|∗x=u) 6= ∅, (2.58)

March 14, 2005

2.3. Fundamental Consistency Notions 51

where the notation P|∗x=a denotes the cross section of P (see Definition 2.32); hence, it has
less variables than the singleton CSP P|x=a. They are however defined on real numbers, not
on floating-point numbers. For practical use, one may replace the 2B-consistency with F-hull
consistency and (2.57) with the following

Φ(k−1)B(P|x=l+) 6= ∅ ∧ Φ(k−1)B(P|x=u−) 6= ∅, (2.59)

or more precisely, we define a variant of kB-consistency as follows.

Definition 2.123 (kB(F)-Consistency). Recursively, we define that
• An NCSP P ≡ (V,D, C) is said to be 2B(F)-consistent in D′, where D′ ⊆ D, if it is
F-hull consistent in D′. In addition, if D = D′ we just say that P is 2B(F)-consistent .

• For 2 ≤ k ∈ N, let ΦFkB be an function that maps an NCSP P = (V,D, C) to a kB(F)-
consistent NCSP P∗ = (V,D∗, C) which is equivalent to P such that D∗ ⊆ D and
that there is no kB(F)-consistent NCSP P ′ = (V,D′, C) which is equivalent to P with
D∗ D′ ⊆ D. In case there is no such P∗, we just let P∗ = ∅.

• An NCSP P ≡ (V,D, C) is said to be kB(F)-consistent, where 3 ≤ k ∈ N, if, for every
variable x in V, the domain Dx of x is a closed interval [l, u] satisfying

ΦF(k−1)B(P|x∈[l,l+]) 6= ∅ ∧ ΦF(k−1)B(P|x∈[u−,u]) 6= ∅. (2.60)

Similarly, P is said to be kB(F)-consistent in D′, where D′ ⊆ D, if the CSP (V,D′, C)
is kB(F)-consistent.

The notation P|x∈[a,b] in (2.60) denotes the slice of P in the slot x ∈ [a, b] (see Defini-
tion 2.33). The reader can find in Section 3.2.2.5 a short description of a very recent method
for maintaining kB(F)-consistency.

2.3.3.3. Box Consistency

The concept of box consistency was first introduced by Benhamou et al. [1994] to address the
problem that multiple occurrences of a variables in an expression may lead to unacceptable
overestimates of the ranges of functions. Here is the formal definition. (See Definition 2.81 for
the concept of an interval form of a relation.)

Definition 2.124 (Box Consistency). Let P ≡ (V,D, C) be a CSP, where V ≡
(x1, . . . , xn) and D ⊆ Rn; x ≡ (x1, . . . ,xn) ∈ In a subset of D; C a constraint on V; [C]
an interval form of C; and [P] an interval form of all the constraints of P. We define that

• C is said to be box consistent in x on xi w.r.t. [C], where i ∈ {1, . . . , n}, if

xi = ut{a ∈ xi | (x1, . . . ,xi−1,ut{a},xi+1, . . . ,xk) ∈ [C]}; (2.61)

• C is said to be box consistent in x w.r.t. [C] if it is box consistent in x on xi w.r.t. [C]
for all i = 1, . . . , n;

• P is said to be box consistent in x w.r.t. [P] if every constraint of P is box consistent
in x w.r.t. [P]; in addition, if D = x we just say that P is box consistent w.r.t. [P].

March 14, 2005

52 2. Background and Definition

Let denotes xi = [xi, xi], where i = 1, . . . , k. The condition (2.61) can be replaced by an
equivalent condition:

(x1, . . . ,xi−1,xi ∩ [xi, x
+
i],xi+1, . . . ,xk) ∈ [C] (2.62a)

∧ (x1, . . . ,xi−1,xi ∩ [x−i , xi],xi+1, . . . ,xk) ∈ [C]. (2.62b)

Benhamou et al. [1999]; Granvilliers et al. [1999] introduced two variants of box consistency:
box(Γ) consistency and box〈±ϕ〉 consistency, which can be viewed as an extended version and
a weak version of box consistency, respectively. Hereafter, we recall these concepts.

Definition 2.125 (Box(Γ) Consistency). Let P ≡ (V,D, C) be a CSP, where V ≡
(x1, . . . , xn) and D ⊆ Rn; x ≡ (x1, . . . ,xn) ∈ In a subset of D; C a constraint in C; and
Γ = (Γ1, . . . ,Γn) be a sequence of interval forms of all the constraints of P. We define that

• C is said to be box(Γ) consistent in x on xi, where i ∈ {1, . . . , n}, if

xi = ut{a ∈ xi | (x1, . . . ,xi−1,ut{a},xi+1, . . . ,xk) ∈ Γi}; (2.63)

• C is said to be box(Γ) consistent in x if it is box(Γ) consistent in x on xi for all
i = 1, . . . , n;

• P is said to be box(Γ) consistent in x if every constraint of P is box(Γ) consistent in x;
in addition, if D = x we just say that P is box(Γ) consistent.

If Γ = ([C], . . . , [C]), then box(Γ) consistency is equivalent to box consistency w.r.t. [C].

Notation 2.126. We can replace the notation “box(([C]1, . . . , [C]n)) consistent” with
“box([C]1, . . . , [C]n) consistent” for short, also with “box consistent w.r.t. ([C]1, . . . , [C]n)”.

Definition 2.127 (Box〈±ϕ〉 Consistency). Let ϕ be a positive parameter. Using the
same notations as in Definition 2.124. We define that

• C is said to be box〈±ϕ〉 consistent in x on xi w.r.t. [C], where i ∈ {1, . . . , n}, if

xi = ut{a ∈ xi | (x1, . . . ,xi−1,ut{a− ϕ, a + ϕ},xi+1, . . . ,xk) ∈ [C]}; (2.64)

• C is said to be box〈±ϕ〉 consistent in x w.r.t. [C] if it is box〈±ϕ〉 consistent in x on xi

w.r.t. [C] for all i = 1, . . . , n;
• P is said to be box〈±ϕ〉 consistent in x w.r.t. [P] if every constraint of P is box〈±ϕ〉

consistent in x w.r.t. [P]; in addition, if D = x we just say that P is box〈±ϕ〉 consistent
w.r.t. [P].

Note 2.128. In the original definition in [Granvilliers et al. 1999] the term ut{a− ϕ, a + ϕ}
in (2.64) is replaced with ut{a, a + ϕ}. We use ut{a− ϕ, a + ϕ} since it is symmetric.

When maintained on the same constraint C, box consistency and its variants differ from
hull consistency on the fact that

March 14, 2005

2.3. Fundamental Consistency Notions 53

• box consistency and its variants are implied by hull consistency;
• box consistency and its variants depend on interval forms of constraints, while hull con-

sistency does not.
To achieve box consistency for a constraint C, one often performs a bisection search until the
outermost thick canonical intervals that are not excluded by [C] are found. The reader can
find in Section 3.2.2.3 and Section 3.2.2.4 two typical methods for achieving box consistency
by search and propagation, respectively.

2.3.4. Extended Local Consistency Notions

2.3.4.1. (i, j)-Consistency

Freuder [1985] generalized the concepts of k-consistency and strong k-consistency (see Sec-
tion 2.3.2.4) to the concepts of (i, j)-consistency and strong (i, j)-consistency, respectively.

Definition 2.129 ((i, j)-Consistency). A CSP P ≡ (V,D, C) is (i, j)-consistent iff
(i) for every consistent i-instantiation lX of any subsequence X of V; and

(ii) for every subsequence Y of at most j variables of V such that X ∩ Y = ∅;
there exists an instantiation lY of Y such that the combination of lX and lY (sorted in the
order of V) is consistent w.r.t. P.

Definition 2.130 (Strong (i, j)-Consistency). A CSP is said to be strong (i, j)-
consistent ; where i, j ∈ Z+; if it is (k, j)-consistent for k = 1, . . . , i.

The concepts of (i, j)-consistency and strong (i, j)-consistency generalize the concepts of
k-consistency and strong k-consistency, respectively, in the following sense.

Theorem 2.131. We have that
• (k − 1, 1)-consistency is equivalent to k-consistency;
• (k − 1, j)-consistency implies k-consistency for j > 1;
• strong (k − 1, 1)-consistency is equivalent to strong k-consistency;
• strong (k − 1, 1)-consistency implies strong k-consistency for j > 1;
• strong (i, j)-consistency implies strong (i′, j)-consistency for i > i′.

2.3.4.2. Relational Consistency

Dechter and van Beek [1995, 1997] introduced the concept of relational (nv, nc)-consistency,
which is a reminiscence of the (i, j)-consistency. Here is the formal definition.

Definition 2.132 (Relational Consistency). A CSP P is said to be relationally (nv, nc)-
consistent if, for every subset C of size nc of its constraints and every subsequence X of length
nv of the variables involving C, we have that every consistent (w.r.t. P) nv-instantiation of X
can be extended to a solution of the CSP obtained from P by removing all constraints that
are not in C and removing all domains and variables not involving in any constraint in C.

March 14, 2005

54 2. Background and Definition

To characterize the relation between the relational consistency notion and other local con-
sistency notions, we recall here some straightforward properties [Apt 2003, Note 5.41].

Theorem 2.133. We have that
• A node consistent binary CSP is arc consistent iff it is relationally (1, 1)-consistent;
• A node consistent CSP is hyper-arc consistent iff it is relationally (1, 1)-consistent;
• Every node consistent normalized relationally (2, 3)-consistent CSP is path consistent;
• Every strictly binary relationally (k − 1, k)-consistent CSP is k-consistent;
• A CSP with m constraints is consistent if and only if it is relationally (0,m)-consistent.

Relational (k, k − 1)-Consistency for NCSPs. Sam-Haroud and Faltings [1996] found
that relational (3, 2)-consistency on convex ternary NCSPs is a sufficient condition for obtaining
global consistency. The result is based on Helly’s theorem (see [Eckhoff 1993]). This also holds
for relational (k, k − 1)-consistency for k-ary numerical constraints. It is however not efficient
to maintain (k, k − 1)-consistency on numerical constraints of high arity because the time
complexity is O(n2k−1), where n is the number of variables of the problem. Note that every
factorable NCSP can be easily made ternary by repeatedly replacing each binary arithmetic
subexpression in constraints with an auxiliary variable until the arity of every constraint is at
most three (see Section 2.1.3.5). The above sufficient condition also holds for convex 2k-tree
representation of numerical constraints. The reader can find more details on ternarization-
based methods in [Sam-Haroud 1995; Sam-Haroud and Faltings 1996], [Faltings and Gelle
1997; Gelle 1998; Gelle and Faltings 2001], and [Lottaz 1999, 2000].

2.3.4.3. Singleton Consistency

The singleton consistency introduced by Prosser et al. [2000] can be viewed as an extension of
the approach of kB-consistency (see Section 2.3.3.2) to CSPs with discrete domains.

Definition 2.134 (Singleton Consistency). Consider an arbitrary ANY-consistency. A
CSP P is said to be singleton ANY-consistent if, for every value a in the domain of each
variable x, the singleton CSP P|x=a is ANY-consistent.

Theoretically, this concept can apply to any consistency notion, including the consistency
notions in Section 2.3. However, it might be not relevant for CSPs with continuous domains.
The following theorem, which is due to Prosser et al. [2000], characterizes some properties of
singleton consistency.

Theorem 2.135. With respect to the strongness, we have
• X-consistency is monotonic ⇒ singleton X-consistency ≥ X-consistency;
• X-consistency ≥ Y -consistency ⇒ singleton X-consistency ≥ singleton Y -consistency;
• strong (i + 1, j)-consistency > singleton (i, j)-consistency > (i, j + 1)-consistency.

The reader can find in [Prosser et al. 2000] some empirical comparisons.

March 14, 2005

Chapter 3

An Overview of Solution Methods

As mentioned in the previous chapter, there are some alternative approaches for solving a
problem, including, but not limited to, the followings:

1. The domain-specific methods;
2. The stochastic and genetic methods;
3. The homotopy/continuation methods;
4. The local methods;
5. The complete methods, also called the global methods.

This chapter almost only focuses on complete methods for solving numerical CSPs. However, in
Section 3.2.1 and Section 3.4, for completeness, we also provides pointers to classical complete
methods for solving classic CSPs (with discrete domains) and incomplete methods for solving
CSPs (including numerical CSPs), respectively.

Notation 3.1. Throughout this chapter, we use the notation I to denote the identity matrix
of suitable size, when no confusion may arise.

3.1. Mathematical Solution Methods

The mathematical methods for solving constraint satisfaction problems are ubiquitous and
plentiful (see a list of methods in [McNamee 1993, 1997, 1999, 2002, 2003]). Therefore, a
detailed overview of them is certainly far out of the scope of a PhD thesis chapter, even a
handbook. Alternatively, we present an overview with a search-based categorization of the
most fundamental methods and some recent methods. A solution method will be classified into
a category to which it closely relates. In case a solution method relates to several categories,
it will be described in the most related category and is also linked to others.

3.1.1. Fundamental Interval Fixed Point Methods

Without loss of generality, we now consider the problem of the form (2.10):

f(x) ∈ b, x ∈ x, (3.1)

where f is a function from D ⊆ Rn to Rm, b ∈ Im, and x ∈ In. Basically, classic iterative meth-
ods, such as the standard Newton iteration and hundreds of Newton-like methods [McNamee

55

56 3. An Overview of Solution Methods

1993, 2002], aim at constructing a sequence (x〈k〉)k≥0 that locally converges to a solution of
(3.1). Inspired by this idea, (global) fixed point methods aim at constructing a sequence of
boxes (x〈k〉)k≥0, where x〈0〉 ≡ x, that enjoys two desirable properties:1

∀k ∈ Z+ : x〈k−1〉 ⊇ x〈k〉, (3.2)
x ∈ x, f(x) ∈ b ⇒ ∀k ≥ 0 : x ∈ x〈k〉. (3.3)

If the condition (3.2) holds, then the sequence (x〈k〉)k≥0 converges to a box x〈∞〉 that is con-
tained in all boxes x〈k〉. In addition to that, if the condition (3.3) also holds, then the box x〈∞〉

contains all solutions of (3.1); that is,

x ∩ f−1(b) ⊆ x〈∞〉. (3.4)

In practice, one often aims at constructing a function [g] : In → In that satisfies the following
condition:

x ∈ x, f(x) ∈ b ⇒ x ∈ [g](x), (3.5)

and then define a sequence

x〈0〉 ≡ x, x〈k〉 ≡ [g](x〈k−1〉) (k = 1, 2, 3, . . .). (3.6)

For convenience, we use the notation

[g]〈k〉(x) ≡ x〈k〉 (3.7)

for the sequence in (3.6). If the condition (3.2) holds for the sequence (3.6), then the condition
(3.3) also holds.

Example 3.2. For any interval form [f] of f , the interval function

[g](x) ≡ x ∩ ([f](x) + x− b)

satisfies both (3.2) and (3.5). Indeed, the condition (3.2) is directly implied by the definition
of [g]. If x ∈ x, f(x) ∈ b, then

x ∈ f(x) + x− b ⊆ f(x) + x− b ⊆ [f](x) + x− b = [g](x).

Therefore, the condition (3.5) follows this. ♣

Definition 3.3 (Strong Convergence). A sequence (x〈k〉)k≥0 of boxes satisfying (3.2) and
(3.3) is said to be strongly convergent if one of the followings holds:

• f has a unique zero x∗ ∈ x and x∗ = limk→∞ x〈k〉;
• f has no zero in x and x〈k〉 = ∅ for some k ∈ N.

(Recall that a zero of a function f is a point z such that f(z) = 0.)

The following property implies the condition (3.2) for the sequence defined by (3.6):

∀y ∈ In : y ⊆ x ⇒ [g](y) ⊆ y. (3.8)

This leads to the following concept.

1 For simplicity, we restrict the presentation to boxes but other compact convex enclosures are possible.

March 14, 2005

3.1. Mathematical Solution Methods 57

Definition 3.4 (Interval Contraction ≡ Narrowing/Contracting Operator). A
function [g] satisfying (3.8) is called an interval contraction [Moore 1966, p. 58]. An interval
contraction is also called a contractor , narrowing operator and contracting operator in
literature. If there exists, in addition to (3.8), a positive number α < 1 such that

w([g](x)) ≤ α.w(x), (3.9)

then [g] is called a strong interval contraction with a contractivity factor α.

If [g] is a continuous interval contraction, then the sequence (3.6) converges to a box x〈∞〉

which is a fixed point of [g]; that is, x〈∞〉 = [g](x〈∞〉). The sequence defined by (3.6) is therefore
called a fixed point iteration. If [g] is a strong interval contraction, then the sequence converges
to a real number x0, which is a fixed point of the function g(x) ≡ [g]([x, x]). Therefore, the
considered problem has at most one solution, x0, provided that the condition (3.5) holds.

In Section 3.1.1.1 and Section 3.1.1.2, we recall two fundamental fixed-point methods for
enclosing the solution set of a linear interval equation (see Definition A.12):

Ax = b, (3.10)

where A ∈ A ∈ Im×n, b ∈ b ∈ Im, and x ∈ x ∈ In. It was shown in [Heindl et al. 1998] that
even the simpler problem of computing the hull of the solution set of (3.10) is NP-hard.

In Section 3.1.1.3, 3.1.1.4 and 3.1.1.5, we recall three families of fundamental fixed-point
methods for enclosing the solution set of a nonlinear equation system of the form (2.20):

f(x) = 0, x ∈ x, (3.11)

where f : D ⊆ Rn → Rm is a possibly nonlinear function and x ∈ In is a box contained in D.
We recall that the forms (2.10), (2.20) and (2.21) are mathematically equivalent. Therefore,
the fixed point methods that apply to the form (2.20) also apply to the other forms. For these
methods, note that if f is continuously differentiable on x, then for any interval form [f ′] of
the derivative f ′ of f on x, the interval Jacobian matrix [f ′](x) is a Lipschitz matrix for f on
x (see Corollary 5.1.5 and the discussion in [Neumaier 1990, p. 174–175]).

Throughout this section, we use the following notations for matrices and vectors concerning
their components.

Notation 3.5. Denote A ≡ (Aij)m×n, A ≡ (Aij)m×n, b ≡ (b1, . . . , bm)T, b ≡ (b1, . . . ,bm)T,
x ≡ (x1, . . . , xn)T, and x ≡ (x1, . . . ,xn)T.

3.1.1.1. Krawczyk Iteration for Linear Equations

In this section we recall in brief the Krawczyk iteration for enclosing the solution set of the
linear interval equation (3.10). It is a specialization of an iterative method for nonlinear
systems originated by Krawczyk [1969] and described in detail in [Neumaier 1990, Section 4.2].
See Section 3.1.1.3 for a brief description of the Krawczyk iteration for nonlinear problems.

If x ∈ x is a solution of (3.10), then, for all preconditioning matrix C ∈ Rn×m, we have

x = Cb− (CA− I)x ∈ Cb− (CA− I)x.

March 14, 2005

58 3. An Overview of Solution Methods

Hence, for all x ∈ In, we have

x ∩ Σ(A,b) ⊆ x ∩ (Cb− (CA− I)x), (3.12)

where Σ(A,b) denotes the solution set of (3.10), as defined in Definition A.14. This leads to
the following concepts.

Definition 3.6 (Krawczyk Operator for Linear Equations). The Krawczyk operator
for the linear interval equation (3.10) is defined as

OK(A,b, C,x) ≡ Cb− (CA− I)x, (3.13)

and the Krawczyk iteration for the linear interval equation (3.10) is defined as

x〈0〉 ≡ x, x〈k〉 ≡ x〈k−1〉 ∩OK(A,b, C,x〈k−1〉) (k ∈ Z+), (3.14)

where C is a preconditioning matrix .

The Krawczyk iteration (3.14) enjoys the following property:

∀k ∈ Z+ : x ∩ Σ(A,b) ⊆ x〈k〉 ⊆ x〈k−1〉. (3.15)

Other properties of the Krawczyk iteration can be found in Section 4.2 in [Neumaier 1990].
The width of the fixed point of the Krawczyk iteration is bounded as follows (originated by
Neumaier [1987b], see Theorem 4.2.3 and Proposition 4.2.4 in [Neumaier 1990]).

Proposition 3.7. Let A ∈ In×n, b,x ∈ In, and (x〈k〉)k≥0 the Krawczyk iteration in (3.14).

(i) If A is regular, then, for every enclosure x ∈ In of Σ(A,b), we have

utΣ(A,b) ⊆ x〈k〉 ⊆ utΣ(A,b) + (CA− I)(x〈k−1〉 − x〈k−1〉), (3.16)
δH(x〈k〉,utΣ(A,b)) ≤ 2 |CA− I| rad(x〈k−1〉). (3.17)

(ii) If the conditioning matrix C ∈ Rn×n is chosen such that ‖C‖u ≤ β < 1 for some vector
u ∈ Rn : u > 0, then

‖rad(utΣ(A,b))‖u ≤ ‖rad(lim
k→∞

x〈k〉)‖u ≤ 1 + β

1− β
‖rad(utΣ(A,b))‖u. (3.18)

If A and b are thin, then it is possible to obtain optimal enclosures of A−1b (see [Ris 1972],
[Rump and Kaucher 1980], and [Rump 1984]).

3.1.1.2. Interval Gauss-Seidel Iteration

In this section, we recall in brief the interval Gauss-Seidel elimination for enclosing the solution
set of the linear interval equation (3.10). It is believed that this method was first studied by
Alefeld and Herzberger [1970], and then by Ris [1972]. The version presented in this section is
a brief of the one in [Neumaier 1990, Section 4.3].

March 14, 2005

3.1. Mathematical Solution Methods 59

Let choose m∗ arbitrary equations and m∗ arbitrary variables of the system (3.10), where
m∗ = min{m,n}. Without loss of generality, we assume that the chosen equations and variables
are the first ones. The chosen equations can be explicitly rewritten as

Aiixi = bi −
n∑

j=1; j 6=i

Aijxj (i = 1, . . . , m∗). (3.19)

Let define a function Γ : I3 → I such that, for any c,d,y ∈ I,
Γ(c,d,y) ≡ ut{y ∈ y | cy = d, c ∈ c, d ∈ d}. (3.20)

In practice, we can use Γ(c,d,y) = y ∩ d/c. It follows from (3.19) that

xi ∈ Γ(Aii, bi −
n∑

j=1; j 6=i

Aijxj , xi) (i = 1, . . . , m∗). (3.21)

This leads to defining that x〈0〉 ≡ x and that, for all k > 0,

x〈k〉i ≡ Γ(Aii, bi −
∑

j<i

Aijx
〈k〉
j −

∑

j>i

Aijx
〈k−1〉
j , x〈k−1〉

i) (for i = 1, . . . , m∗), (3.22a)

x〈k〉i ≡ x〈k−1〉
i (i = m∗ + 1, . . . , n) (3.22b)

Definition 3.8 (Gauss-Seidel Operator). The rule (3.22) is called the interval Gauss-
Seidel iteration. It defines a mapping OGS : Im×n × Im × In → In, called the interval
Gauss-Seidel operator , which in turn defines a sequence of boxes:

x〈0〉 = x, x〈k−1〉 7→ x〈k〉 ≡ OGS(A,b,x〈k−1〉). (3.23)

In practice, the iteration (3.22) is applied in conjunction with preconditioning, which results
in the so-called preconditioned interval Gauss-Seidel iteration/operator :

x〈k〉 ≡ OGS(CA, Cb,x〈k−1〉) (k ∈ Z+), (3.24)

where C ∈ Rn×m is a preconditioning matrix .

Remark 3.9. The rule (3.22) can be analogously extended to the case m∗ ≤ min{m,n}.

The Gauss-Seidel iteration has the next properties ([Neumaier 1990, Proposition 4.3.4]).

Proposition 3.10. Let A,A′,A′′ ∈ Im×n; C ∈ Rn×m; b,b′ ∈ Im; and x,x′ ∈ In. Then

x ∩ Σ(A,b) ⊆ OGS(A,b,x) ⊆ x; (3.25)
OGS(I, Cb,x) = Cb ∩ x; (3.26)
Ax ∩ b = ∅ ⇒ OGS(A,b,x) = ∅; (3.27)
A′ ⊆ A,x′ ⊆ x,b′ ⊆ b ⇒ OGS(A′,b′,x′) ⊆ OGS(A,b,x); (3.28)
A = A′ + A′′ ⇒ OGS(A,b,x) ⊆ OGS(A′,b−A′′x,x). (3.29)

March 14, 2005

60 3. An Overview of Solution Methods

Hereafter is another property on the width of the fixed point of the Gauss-Seidel iteration
(see [Neumaier 1990, Proposition 4.3.11]).

Proposition 3.11. Let A ∈ In×n; b,x ∈ In; and 〈A〉 the comparison matrix of A. Then

〈A〉 | lim
k→∞

O
〈k〉
GS(A,b,x)| ≤ |b|. (3.30)

A comparison between the Krawczyk operator and the preconditioned Gauss-Seidel op-
erator for linear interval equations is given as follows (originated by Neumaier [1984], see
Theorem 4.3.5 in [Neumaier 1990, p. 138]).

Theorem 3.12. Let A ∈ Im×n, b ∈ Im, x ⊆ y ∈ In, and C ∈ Rn×m. We have

OGS(CA, Cb,x) ⊆ OGS(I, Cb− (CA− I)y,y) = y ∩OK(A,b, C,y). (3.31)

Theorem 3.12 shows that the Krawczyk iteration for linear systems is indeed a special
case of the interval Gauss-Seidel iteration and that, for the same square system of linear
equations, the closures produced by the preconditioned Gauss-Seidel iteration are tighter than
those produced by the Krawczyk iteration. It implies that the interval Gauss-Seidel iteration
cannot be improved by relaxation methods. Empirical comparisons were shown in [Hansen and
Sengupta 1981; Ris 1972]. Note that both these iterations enjoy the quadratic approximation
property (first proved by Gay [1982]).

3.1.1.3. Krawczyk Iteration for Nonlinear Equations

Now consider the problem (3.11). Let c ∈ x and C ∈ Rn×m. If x is a zero of f in x and
A is a Lipschitz matrix for f on x, then there exists an m × n real matrix A ∈ A such that
f(c) + A(x− c) = f(x) = 0. Therefore, we have

x = x−C(f(c)+A(x−c)) = c−Cf(c)−(CA−I)(x−c) ∈ c−Cf(c)−(CA−I)(x−c). (3.32)

Hence,
x ∩ f−1(0) ⊆ x ∩ (c− Cf(c)− (CA− I)(x− c)). (3.33)

This leads to the definitions of the Krawczyk operator and iteration as follows.

Definition 3.13 (Krawczyk Operator for Nonlinear Equations). The Krawczyk op-
erator for the nonlinear system (3.11) is defined as

OK(f,A, C,x, c) ≡ c− Cf(c)− (CA− I)(x− c). (3.34)

The Krawczyk iteration for the nonlinear system (3.11) is defined as

c〈0〉 ∈ x〈0〉 ≡ x, (3.35a)
c〈k〉 ∈ x〈k〉 ≡ x〈k−1〉 ∩OK(f,A〈k〉, C〈k〉,x〈k−1〉, c〈k−1〉) (for k ∈ Z+). (3.35b)

March 14, 2005

3.1. Mathematical Solution Methods 61

The following theorem gives the main properties of the Krawczyk operator (the parts (i)
and (ii) were found by Krawczyk [1969]; the part (iii) by Kahan [1968] and Moore [1977]).

Theorem 3.14 (Krawczyk, Kahan). Let f : D ⊆ Rn → Rm be a Lipschitz continuous
function on D, x ∈ In a box contained in D, c ∈ x, C ∈ Rn×m, and A ∈ Im×n a Lipschitz
matrix for f on x. Then

(i) x ∩ f−1(0) ⊆ OK(f,A, C,x, c);
(ii) If x ∩OK(f,A, C,x, c) = ∅, then f contains no zero in x;

(iii) If c ∈ int(x) and ∅ 6= OK(f,A, C,x, c) ⊆ x, then A is strongly regular and f contains
a unique zero in x (and hence in the box OK(f,A, C,x, c)).

Proof. The parts (i) and (ii) follow the above argument. To prove the part (iii), note that the
proofs of Theorem 5.1.8 in [Neumaier 1990, p. 177] and related theorems for the case m = n
remain valid for the case m 6= n if we interpret the notation A−1 as in Definition A.7. ¥

Remark 3.15. If we replace the Lipschitz matrix A in the definition of the Krawczyk oper-
ator (3.34) with a slope matrix A for f at [c,x], where c ∈ c ⊆ x, then, in Theorem 3.14, the
parts (i) and (ii) still hold, and the uniqueness in the part (iii) reduces to the existence of a
solution. Moreover, if the stronger assumption ∅ 6= OK(f,A, C,x, c) ⊆ int(x) holds, then x
contains a unique zero of f in x. For more details, see [Neumaier 1990, Corollary 5.4.3] and
[Schichl and Neumaier 2004a, Theorem 2.2].

Krawczyk [1983] found that if A is a strongly regular Lipschitz matrix on x and the pre-
conditioning matrix C is chosen such that ρ(|CA − I|) = β < 1, then the Krawczyk iteration
(3.35) with c〈k〉 = mid(x〈k〉) is strongly convergent and

rad(x〈k〉) ≤ |CA− I| rad(x〈k−1〉), (3.36)

with noticing that limk→∞ |CA−I|k = 0 (see [Neumaier 1990, p. 181]). Moreover, the following
theorem (found by Krawczyk [1986], see also Theorem 5.1.9 [Neumaier 1990, p. 178]) implies
that, in the Krawczyk iteration (3.35), c〈k〉 should be chosen as the midpoint of x〈k〉 and the
conditioning matrix C〈k〉 should be chosen as mid(A〈k〉)−1, whenever it is possible.

Theorem 3.16 (Krawczyk). Let f : D ⊆ Rn → Rm be a Lipschitz continuous function on
D, x ∈ In a box contained in D, c ∈ x, C ∈ Rn×m, and A ∈ Im×n a Lipschitz matrix for f
on x. Then

(i) rad(OK(f,A, C,x, mid(x))) ⊆ rad(OK(f,A, C,x, c));
(ii) If OK(f,A, C,x, mid(x)) ⊆ x and the midpoint matrix mid(A) is regular, then

OK(f,A,mid(x)−1,x, mid(A)) ⊆ OK(f,A, C,x, mid(x)).

Proof. The proofs of Theorem 5.1.9 in [Neumaier 1990, p. 178] for the case m = n remain
valid for the case m 6= n if we interpret the notation A−1 as in Definition A.7. ¥

Let f be continuously differentiable in D and the specialized Krawczyk operator be

O′
K(x) ≡ c−mid(A)−1f(c)− |mid(A)−1| rad(A)(x− c), (3.37)

March 14, 2005

62 3. An Overview of Solution Methods

where c = mid(x), A = [f ′](x), and [f ′] is an interval extension of the derivative of f in D.
Krawczyk [1987] found that:

• If O′
K(x) ⊆ x and [f ′](x) is strongly regular, then O′

K(O′
K(x)) ⊆ O′

K(x);

• If O′
K(x) ⊆ int(x), then the iteration {x〈0〉 ≡ x, x〈k〉 = O′

K(x〈k−1〉) (k ∈ Z+)} is a nested
sequence of boxes, which converges to the unique zero of f in x.

Moreover, if [f ′] is the natural interval extension of arithmetic expressions that are Lipschitz
on x, then ‖rad(x〈k〉)‖ = O(‖rad(x〈k−1〉)‖2) (see Theorem 5.1.15 in [Neumaier 1990, p. 189]).

3.1.1.4. Hansen-Sengupta Iteration

Now consider the problem (3.11). Let c ∈ x and C ∈ Rn×m. If x is a zero of f in x and
A is a Lipschitz matrix for f on x, then there exists an m × n real matrix A ∈ A such that
A(x− c) = f(x)− f(c) = −f(c). Hence, we have

x ∩ f−1(0) ⊆ c + OGS(CA, −Cf(c), x− c). (3.38)

This leads to the definitions of the Hansen-Sengupta operator and iteration as follows.

Definition 3.17 (Hansen-Sengupta Operator). The Hansen-Sengupta operator for the
nonlinear system (3.11) is defined as

OHS(f,A, C,x, c) ≡ c + OGS(CA, −Cf(c), x− c). (3.39)

The Hansen-Sengupta iteration for the nonlinear system (3.11) is defined as

c〈0〉 ∈ x〈0〉 ≡ x, c〈k〉 ∈ x〈k〉 ≡ OHS(f,A〈k〉, C〈k〉,x〈k−1〉, c〈k−1〉) (for k ∈ Z+). (3.40)

The following theorem gives the main properties of the Hansen-Sengupta operator (the
parts (i) and (ii) by Hansen and Sengupta [1981]; the part (iii) by Moore and Qi [1982]).

Theorem 3.18 (Hansen & Sengupta). Let f : D ⊆ Rn → Rm be a Lipschitz continuous
function on D, x ∈ In a box contained in D, c ∈ x, C ∈ Rn×m, and A ∈ Im×n a Lipschitz
matrix for f on x. Then

(i) x ∩ f−1(0) ⊆ OHS(f,A, C,x, c);
(ii) If x ∩OHS(f,A, C,x, c) = ∅, then f contains no zero in x;

(iii) If c ∈ int(x) and ∅ 6= OHS(f,A, C,x, c) ⊆ x, then A is strongly regular and f contains
a unique zero in x (and hence in the box OHS(f,A, C,x, c)).

Proof. The parts (i) and (ii) follow the above argument. To prove the part (iii), note that the
proofs of Theorem 5.1.8 in [Neumaier 1990, p. 177] and related theorems for the case m = n
remain valid for the case m 6= n if we interpret the notation A−1 as in Definition A.7. ¥

Remark 3.19. If we replace the Lipschitz matrix A in the definition of the Hansen-Sengupta
operator (3.39) with a slope matrix A for f at [c,x], then the parts (i) and (ii) in Theo-
rem 3.18 still hold, and the uniqueness in the part (iii) reduces to the existence of a solution.
See [Neumaier 1990, Corollary 5.4.3] for more details.

March 14, 2005

3.1. Mathematical Solution Methods 63

The Hansen-Sengupta iteration is indeed a nonlinear version of the interval Gauss-Seidel
iteration. Similar to the linear case, the Hansen-Sengupt operator provides better enclosures
than the Krawczyk operator does, in the following sense [Neumaier 1990, p. 177]:

OHS(f,A, C,x, c) ⊆ OK(f,A, C,x, c). (3.41)

In 1979, G. Alefeld found that if A is a strongly regular Lipschitz matrix on x and CA
is an H-matrix, then the Hansen-Sengupta iteration (3.40) with c〈k〉 = mid(x〈k〉) is strongly
convergent (see Theorem 5.2.5 in [Neumaier 1990, p. 182]). Thiel [1989] found that if, in
addition to the above assumption, the fixed point inverse of CA is regular, then the Hansen-
Sengupta iteration (3.40) is strongly convergent for all choice of c〈k〉 ∈ x〈k〉 (see Theorem 5.2.6
in [Neumaier 1990, p. 182] and Definition A.15).

3.1.1.5. Interval Newton Iteration

Now consider the problem (3.11). Let c ∈ x and C ∈ Rn×m. If x is a zero of f in x and
A is a Lipschitz set for f on x, then there exists an m × n real matrix A ∈ A such that
CA(x− c) = C(f(x)− f(c)) = −Cf(c). Hence, by Definition A.12, we have

x ∈ c + Σ(CA,−Cf(c)) = c− Σ(CA, Cf(c)) ⊆ c− utΣ(CA, Cf(c)). (3.42)

This leads to the definitions of the interval Newton operator and iteration as follows.

Definition 3.20 (Interval Newton Operator). The interval Newton operator for the
nonlinear system (3.11) is defined as

ON(f,A, C,x, c) ≡ c− utΣ(CA, Cf(c)). (3.43)

The interval Newton iteration for the system (3.11) is defined as

c〈0〉 ∈ x〈0〉 ≡ x, (3.44a)
c〈k〉 ∈ x〈k〉 ≡ x〈k−1〉 ∩ON(f,A〈k〉, C〈k〉,x〈k−1〉, c〈k−1〉) (for k ∈ Z+). (3.44b)

The following theorem summarizes the main properties of the interval Newton operator
(the parts (i) and (ii) by Moore [1966]; the part (iii) for differentiable functions by Nickel
[1971], and latter extended in [Neumaier 1990, Theorem 5.1.7]; see also [Nickel 1981]).

Theorem 3.21 (Moore, Nickel). Let f : D ⊆ Rn → Rm be a Lipschitz continuous func-
tion on D, x ∈ In a box contained in D, c ∈ x, C ∈ Rn×m, and A ∈ Im×n a Lipschitz set for
f on x. Then

(i) x ∩ f−1(0) ⊆ ON(f,A, C,x, c);
(ii) If x ∩ON(f,A, C,x, c) = ∅, then f contains no zero in x;

(iii) If A is regular, c ∈ int(x) and ON(f,A, C,x, c) ⊆ x, then f contains a unique zero in x
(and hence in the box ON(f,A,x, c)).

Proof. The parts (i) and (ii) follow the above argument. To prove the part (iii), note that the
proofs of Theorem 5.1.7 in [Neumaier 1990, p. 176] and related theorems for the case m = n
remain valid for the case m 6= n if we interpret the notation A−1 as in Definition A.7. ¥

March 14, 2005

64 3. An Overview of Solution Methods

Remark 3.22. Neumaier [1986] found that if we replace the Lipschitz set A in the definition
of the interval Newton operator (3.43) with a slope matrix A for f at [c,x], then the parts
(i) and (ii) in Theorem 3.21 still hold, and the uniqueness in the part (iii) reduces to the
existence of a solution. See [Neumaier 1990, Theorem 5.4.2] for more details.

For any A ∈ Im×n, we denote by MA : Im → In some sublinear mapping such that

∀b ∈ Im : utΣ(A,b) ⊆MA(b)

and redefine the Newton operator (3.43) as

O′
N(f,A, C,x, c) ≡ c−MCA(Cf(c)). (3.45)

The new operator is called the general interval Newton operator and the corresponding iteration
is called the general interval Newton iteration.

Neumaier [1985] found that if A is a strongly regular Lipschitz matrix on x and MCA

is regular, then the general interval Newton iteration is strongly convergent for all choices of
c〈k〉 ∈ x〈k〉. Moreover, for all k ∈ N, we have

c〈k〉 ∈ x〈k+1〉 ⇒ x〈k+1〉 = c〈k〉 ∧ f(c〈k〉) = 0 (3.46)

holds (see Theorem 5.2.8 in [Neumaier 1990, p. 183]). Consequently, the volume relation
vol(x〈k+1〉) ≤ 1

2vol(x〈k〉) holds if we choose c〈k〉 = mid(x〈k〉). Neumaier [1990, Theorem 5.2.12]
also showed that the following combination of the general interval Newton operator and the
Hansen-Sengupta operator:

c〈0〉 ∈ x〈0〉 ≡ x, (3.47a)

c〈k−
1
2
〉 ∈ x〈k−

1
2
〉 ≡ x〈k−1〉 ∩O′

N(f,A〈k〉, C〈k〉,x〈k−1〉, c〈k−1〉) (for k ∈ Z+), (3.47b)

c〈k〉 ∈ x〈k〉 ≡ OHS(f,A〈k〉, C〈k〉,x〈k−
1
2
〉, c〈k−

1
2
〉) (for k ∈ Z+) (3.47c)

also leads to strong convergence if CA is an H-matrix.

3.1.2. Other Interval Methods for Linear Systems

In Section 3.1.2.1, we recall a fundamental method for enclosing the solution set of a linear
interval equation of the form (3.10), that is, of the form:

Ax = b, (3.48)

where A ∈ A ∈ In×n, b ∈ b ∈ In, and x ∈ x ∈ In. Note that any linear system can be made
square by adding zero coefficients and/or redundant variables. In Section 3.1.2.2, we brief an
interesting method for computing the hull of the solution of (3.48), under nice assumptions.

In Section 3.1.2.3, we discuss enclosing the solution set of the linear interval inequality

Ax ≤ b, (3.49)

where A ∈ A ∈ Im×n, b ∈ b ∈ Im, and x ∈ x ∈ In. Such a system may be directly mod-
eled in real world applications or generated by linear relaxation methods (see Section 3.3.1).
Throughout this section, we use the notations as depicted in Notation 3.5.

March 14, 2005

3.1. Mathematical Solution Methods 65

3.1.2.1. Interval Gauss Elimination

We consider the linear interval equation (3.48), for simplicity. There are several variants of the
Gauss elimination method [Wilkinson 1965]. Any of them can be adapted to interval arithmetic
to compute tight enclosures of the solution set by simply replacing each real arithmetic step
by the corresponding interval arithmetic step. A standard version was described in [Neumaier
1990, Section 4.5]. Similarly to the standard Gauss elimination, the interval version factorizes
the coefficient matrix into the product of a lower triangular matrix and an upper triangular
matrix , L = (Lij)n×n and U = (Uij)n×n respectively, with the following elimination:

Lij ≡ (Aij −
∑

k>j

LikUkj)/Ujj for i > j, (3.50a)

Uij ≡ Aij −
∑

k<i

LikUkj for i ≤ j, (3.50b)

yi ≡ bi −
∑

k<i

Likyk for i = 1, . . . , n, (3.50c)

xi ≡ (yi −
∑

j>i

Uijxj)/Uii for i = n, . . . , 1. (3.50d)

Thus, we have
A ⊆ LU, Ly ⊇ b, Ux ⊇ y. (3.51)

The elimination procedure (3.50) leads to the definition of Gauss inverse as follows.

Definition 3.23 (Gauss Inverse). Let A = (Aij)n×n ∈ In×n. The Gauss inverse of A is
the unique mapping, denoted by AG : In → In, that maps each b ∈ In to the unique solution
x, denoted by AGb, computed by (3.50).

Suppose the elimination procedure (3.50) does not fail because of a division by an interval
containing zero (otherwise, it will produce [−∞,∞]). If no diagonal element of U contains
zero, then A is regular. For example, when A is an H-matrix, then it is possible to factorize A
as shown above (see Theorem 4.5.7 in [Neumaier 1990, p. 158]). In 1974, W. Barth, E. Nuding
and H. Beeck showed that if A is an M-matrix, then

utΣ(A,b) ⊆ AGb ⊆ A−1b,

with equality if b < 0, b > 0, or b 3 0 (see Theorem 4.5.8 in [Neumaier 1990, p. 159]).
Krawczyk and Neumaier [1987] also proved that AGb ⊆ AFb.

Unfortunately, simply replacing a real version of Gauss elimination by an interval ver-
sion generally does not result in a good algorithm. Bounds of intermediate quantities tend to
grow rapidly because of accumulated rounding errors and especially because of the dependence
among computed intervals (see [Hansen and Walster 2004, Section 5.4]). This overestima-
tion has been empirically shown by several researchers in 1970s. This leads to the need for
preconditioning. Let C ∈ Rn×n be a matrix, we consider the preconditioned problem

CAx = Cb (3.52)

under the same assumption as in the original problem.

March 14, 2005

66 3. An Overview of Solution Methods

Neumaier [1990, Theorem 4.5.12] proved that if CA is strictly diagonally dominant; that
is, ∑

j 6=i

|CA|ij/〈CA〉ii ≤ β < 1 ∀i ∈ {1, . . . , n}, (3.53)

then

‖rad(utΣ(A,b))‖∞ ≤ ‖rad((CA)G(Cb)‖∞ ≤ 1 + β

1− β
‖rad(utΣ(A,b))‖∞. (3.54)

The preconditioning matrix C can be chosen as mid(A). While preconditioned Gauss elim-
ination gives good results when rad(A) is small, preconditioning matrices with wide intervals
may lead to a singular mid(A)−1A, even when AG exists. The issue of efficiently charac-
terizing a class of matrices A ∈ In×n when AG exists seems to be difficult (see [Neumaier
1990, p. 163]). Miller [1972, 1973] proved that the preconditioned Gauss elimination enjoy the
quadratic approximation property.

The interval Gauss elimination can be combined with fixed point methods by splitting
A = B + E and defining the iteration

x〈k〉 ≡ BG(b−Ex〈k−1〉). (3.55)

For more details, see [Neumaier 1987a], [Schwandt 1987], and [Mayer 1985, 1987, 1988]; see
also [Neumaier 1990, Section 4.4].

3.1.2.2. Hull Method

We use a matrix C ∈ Rn×n to precondition the linear interval equation (3.48). A procedure
for computing the hull utΣ(A,b) of (3.48) was proposed independently by Hansen [1992] and
Bliek [1992, Section 4.4]. Therein, an explicit formula for computing the hull has been devised.
However, the proofs were not completely rigorous. One year later, Rohn [1993] provided a
correct proof of the explicit formula. He also simplified the formula to improve the amount of
computations. Later on, Ning and Kearfott [1997] generalized Rohn’s result and proposed an
improved method for bounding the hull when A is an H-matrix. They showed that the result is
optimal when the midpoint matrix is diagonal. Recently, Neumaier [1999, 2000] gave a simple
proof of the method and showed how the rigor can be obtained in finite precision arithmetic.
The version described briefly in this section is a further improved version from [Hansen 2000]
and [Hansen and Walster 2004, Section 5.8].

Let C = mid(A)−1. We can write A = mid(A) + Q[−1, 1], where Q ∈ Rn×n. Therefore,
the preconditioned matrix can be written as

CA = I + CQ[−1, 1]. (3.56)

This means that the center of CA is the identity matrix. Denote CA = M = [M, M] and
Cb = d = [d, d]. Then, for all i, j = 1, . . . , n, we have

M ij = −M ij (for i 6= j); (3.57)

M ii + M ii = 2. (3.58)

We now consider the preconditioned system. Suppose we multiply the i-th equation of the
system by −1 and change the sign of xi simultaneously. It follows from (3.57) that the off-
diagonal components are unchanged. The diagonal components change sign twice so they

March 14, 2005

3.1. Mathematical Solution Methods 67

have no net change. Thus, the coefficient matrix is unchanged while xi and di change sign.
Therefore, we can assume that the lower bound di ≥ 0 by changing the sign of di (and xi). By
a similar argument, we can assume that

0 ≤ |di| ≤ di (for i = 1, . . . , n). (3.59)

Now, assume that M is regular. Let P = M−1 ∈ In×n. We define

ui = 1/(2Pii − 1), zi = (di + di)Pii − eT
i Pd, (3.60)

where ei is the i-th column of the identity matrix. The hull of the solution set h =
(h1, . . . ,hn) ∈ In is then computed as follows:

hi ≡
{

uizi if zi > 0,
zi if zi ≤ 0.

(for i = 1, . . . , n) (3.61)

The proof of this method can be found in [Hansen 2000]. To obtain this result, we assume the
center of computed A is exactly the identity matrix. In practice, it is not because of rounding
errors, for example, caused by the computations of C and CQ. The reader can find in [Hansen
2000] and [Hansen and Walster 2004, Section 5.8] a rigorous computation procedure that takes
into account the rounding errors.

A combination of the interval Gauss-Seidel method (see Section 3.1.1.2) and the hull method
was also proposed in [Hansen and Walster 2004, Section 5.8]. Basically, the combination method
uses the interval Gauss-Seidel method with a limited number of iteration steps for the first p
equations (1 ≤ p < n). Where the other variables xp+1, . . . , xn is replaced by its interval
bounds (domains). The resulting system is now a system of p unknowns in which the midpoint
matrix C is the identity. We then apply the hull method to the resulting system. This may fail
if the new coefficient matrix is not regular. In this case, we can use the Gauss-Seidel method.
If the new coefficient matrix is regular, the hull method obtains a sharp enclosure for first p
components of x. Once the new bounds on x1, . . . , xp have been obtained, we can obtain the
new bounds on the remaining component of x by using the Gauss-Seidel method.

3.1.2.3. Linear Interval Inequalities

We now consider the system of inequalities (3.49). We introduce a vector of m nonnegative
slack variables y = (y1, . . . , ym)T ≥ 0 to convert the linear interval inequality (3.49) into a
linear interval equation

Ax + y = b, (3.62)

or into the form
A′z = b, (3.63)

where
A′ = (A I) ∈ Rm×(n+m), z = (x1, . . . , xn, y1, . . . , ym)T ∈ Rn+m. (3.64)

Now we can use methods for linear interval equations to enclose the solution set of (3.63). For
example, we can use the Krawczyk iteration for linear interval equations (see Section 3.1.1.1)
or the interval Gauss-Seidel iteration with Remark 3.9 (see Section 3.1.1.2). In the application
of interval Gauss-Seidel iteration in Section 3.1.1.2, we set m∗ = m. The m∗ variables for each
iteration step are chosen from {x1, . . . , xn} if m ≤ n; or consists of x1, . . . , xn and arbitrary
(m− n) variables from {y1, . . . , ym} otherwise.

The reader can find a rule for ordering the component equations and choosing the variables
in Chapter 6 of [Hansen and Walster 2004].

March 14, 2005

68 3. An Overview of Solution Methods

3.1.3. Exclusion Tests

The basic branch-and-prune methods that use interval forms to find all solutions of a system of
nonlinear equations frequently have the difficulty that sub-boxes containing no solution cannot
be easily eliminated if there is a nearby solution outside the box. This has the cluster effect
that many small boxes near each solution are created by splitting/branching. More broadly,
the cluster effect may occur when solving optimization problems or constraint satisfaction
problems in the branch-and-bound framework or the branch-and-prune framework, respectively
(see [Kearfott and Du 1992, 1994] and [Van Hentenryck et al. 1997b]). In particular, the
branch-and-prune methods that use interval forms with the linear approximation property to
solve constraint satisfaction problems often produce an exponentially growing number of tiny
boxes near solutions when the resolution/precision ε approaches to 0. The interval forms with
the quadratic approximation property are often sufficient to bound the number of boxes for
sufficiently small ε. See [Schichl and Neumaier 2004a, Section 3] for more details on the cluster
effect in constraint satisfaction problems; see also [Neumaier 2004, Section 15] for details on
the cluster effect in optimization problems.

In order to reduce the cluster effect, one might uses a test to exclude as many and as large
regions that contain no solution as possible. One of the most common tools used in finding all
zero points (also called solutions and roots in literature) of a system of nonlinear equations of
the form (2.20) is the exclusion test. The concept of an exclusion test can be traced back at
least to [Moore 1979, p. 76], though it may be used earlier in other forms. For simplicity, we
only give the definition of the tests that take a box as input. The concept of an exclusion test
(on boxes) can be defined formally as follows.

Definition 3.24 (Exclusion Test). Given a function f : D ⊆ Rn → Rm. An exclusion test
for f is a Boolean function tf : In → {0, 1} such that, for any x ∈ In,

tf (x) = 0 ⇒ ∀x ∈ x ∩D : f(x) 6= 0. (3.65)

In the output of an exclusion test, the value 0 stands for false and the value 1 for true. By
definition, tf (x) = 0 implies that f has no zero point in x. Therefore, tf (x) = 1 is a necessary
condition for f to have a zero point in x.

Given a system of the form (2.20), a recursive version of the Exclusion algorithm is presented
in Algorithm 3.1 (see also [Georg 2001, 2003] for non-recursive versions). This algorithm is a
generic bisection search based only on the concept of an exclusion test (see Section 3.1.6 for
a combination of an exclusion test and other tests). It gets as input a box playing the role
of variable domains and provides as output a collection, S+, of ε-bounded boxes2 that cannot
be discarded by using the chosen exclusion test. Each box of the output is a tiny box that
potentially contains one or more solutions. If the output is empty, it implies that the problem
has no solution. The accuracy of the output depends on the quality of the underlying exclusion
test. The sooner the exclusion test can discard (boxes), the faster and more accurate the
algorithm can be. Note that the exclusion test is not necessary fixed for every iteration. That
is, the exclusion test used as input of each recursive call in Algorithm 3.1 may be different. A
combination of an exclusion test and other tests is discussed in Section 3.1.6.

2 An ε-bounded box is a box of which the sides are less than or equal to ε.

March 14, 2005

3.1. Mathematical Solution Methods 69

Algorithm 3.1: The Exclusion algorithm
Input: x, tf , ε, S+.
Output: S+.
if tf (x) = false then return ;
if w(x) < ε then

S+ := S+ ∪ {x};
return ;

end
(x1,x2) := Bisect(x);
Exclusion(x1, tf , ε, S+);
Exclusion(x2, tf , ε, S+);

During last forty years, numerous exclusion tests have been developed by using interval
arithmetic. Simple exclusion-based solution methods in interval analysis often aim at con-
structing an interval form [f] of f and defining the exclusion test as

tf (x) = 1 ⇔ 0 ∈ [f](x). (3.66)

So far, different interval methods are mainly distinguished in the way of constructing the
function [f], although some other improvements/features have also been introduced.

The Krawczyk operator (Section 3.1.1.1), interval Gauss-Seidel method (Section 3.1.1.2),
and the interval Gauss elimination (Section 3.1.2.1) can be used to construct exclusion tests
for linear systems.

3.1.3.1. Lipschitz Functions

One of the simplest exclusion tests for Lipschitz functions was devised from the well-known
Lipschitz condition. Let L be a Lipschitz constant for a Lipschitz continuous function f on
x ∈ In; that is,

∀y, z ∈ x : ‖f(y)− f(z)‖∞ ≤ L‖y − z‖∞. (3.67)

Thus, if x contains a zero of f , then (see [Xu et al. 1996, p. 185])

‖f(mid(x))‖∞ ≤ L‖rad(x)‖∞. (3.68)

The condition (3.68) is hence a necessary condition for the system (2.20) to have a solution in
x. This condition is equivalent to an exclusion test, called the Lipschitz exclusion test . Indeed,
we can define it as

tf (x) = true⇔ ‖f(mid(x))‖∞ ≤ L‖rad(x)‖∞. (3.69)

If f = g − h is the difference of two increasing functions on x = [x, x], a simple test was
also proposed in [Xu et al. 1996] as a necessary condition for having a solution in x:

g(x) ≤ h(x) (3.70a)
h(x) ≤ g(x) (3.70b)

Moreover, Xu et al. [1996] proved that the splitting, called the uniform dichotomization,
that consists of n dichotomizations, each of which is to dichotomize a domain, is asymptotically

March 14, 2005

70 3. An Overview of Solution Methods

optimal among the uniform cell subdivisions (i.e., each side of a box is split into ki ≥ 2 equal
parts at subdivision level i). They also proved that if f is twice continuously differentiable or
is the difference of two monotone and continuously differentiable functions, then the uniform
dichotomous search using the Lipschitz exclusion test can discard almost boxes except a con-
stantly bounded number of boxes when ε → 0. That leads to the complexity O(log 1

ε) for the
first case. This is far better than the complexity O(ε−N) obtained in the general case, where
N is the maximum level of subdivision.

More sophisticated methods employ advanced computations for exclusion tests. For in-
stance, the parts (ii) of Theorem 3.14, Theorem 3.18, Theorem 3.21, Remark 3.15, Remark 3.19,
and Remark 3.22 show that it is possible to construct exclusion tests for Lipschitz functions
by using the Krawczyk, Hansen-Sengupta, and interval Newton operators with either Lipschitz
matrices or slope matrices.

3.1.3.2. Taylor Expansion

We now consider the functions f, g : D ⊆ Rn → Rn. For each multi-index i = (i1, . . . , in)T ∈ Nn

and a real vector x = (x1, . . . , xn)T ∈ Rn, the power term of order i is defined as

xi ≡
n∏

j=1

x
ij
j . (3.71)

Xu et al. [1997] proposed an exclusion test based on power series expansion. In particular,
for two power series’ f(x) =

∑
i fix

i and g(x) =
∑

i gix
i, they define f ≺≺ g if |fi| ≤ gi for

every i ∈ Nn. If f ≺≺ g and the series g converges on a box x ∈ In contained in D, then

|f(c)| ≤ g(|c|+ r)− g(|r|), (3.72)

is equivalent to an exclusion test, called the power series exclusion test , for f on x, where
c = mid(x) and r = rad(x). Xu et al. [1997] also proved that the number of boxes that cannot
be discarded by this exclusion test is bounded by a constant, provided that f is sufficiently
smooth together with other weak assumptions (see [Xu et al. 1997]).

Very recently, K. Georg and his collaborators [Allgower et al. 2002; Georg 2001, 2003] have
extended the above method of Xu et al. [1997] by using the Taylor expansion of order k ∈ N
with integral remainder:

f(c + x) = f(c) +
∑

i∈Nn, 0<‖i‖1<k

∂if(c)xi +
∑

i∈Nn, ‖i‖1=k

xi

∫ 1

0
∂if(c + xt) k(1− t)k−1dt, (3.73)

where ∂i is the partial derivative of order i = (i1, . . . , in) ∈ Nn, which is defined as

∂i ≡ (
n∏

j=1

ij !)−1
n∏

j=1

∂
ij
j . (3.74)

Instead of using the relation ≺≺ defined by Xu et al. [1997], K. Georg and his collaborators
used a domination relation ≺k of order k ∈ Z+. The relation f ≺k g holds on D if and only if
∂if and ∂ig are integrable on D and, for every x, y ∈ D : |x| ≤ |y| and every i ∈ Nn : ‖i‖1 ≤ k,
we have

|∂if(x)| ≤ ∂ig(|x|) ≤ ∂ig(|y|). (3.75)

March 14, 2005

3.1. Mathematical Solution Methods 71

The relation ≺k implies the relation ≺l if k > l. The relation ≺≺ is equivalent to the relation
≺∞, where the ≺∞ holds if and only if the relation ≺k holds for every k ∈ Z+.

Let f, g : D ⊆ Rn → Rn be two functions such that f ≺k g holds on D for some k ∈ Z+

and x ∈ In a box in D. In [Georg 2003], the Taylor exclusion test of order k for f on x is
defined as

|f(c)| ≤ g(|c + r|)− g(|c|)−
∑

i∈Nn, 0<‖i‖1<k

(∂ig(|c|)− ∂if(c))ri, (3.76)

where c = mid(x) and r = rad(x).
Note that, for k = 1, the Taylor exclusion test (3.76) reduces to the power series exclusion

test in (3.72), under the assumption f ≺1 g instead of f ≺≺ g. Note also that, for k = 1, if
there are Lipschitz constants Ci such that

Ci ≥ sup
x∈x

|∂if(x)|, (3.77)

then the condition
|f(c)| ≤

∑

‖i‖1=1

Cir
i (3.78)

is an exclusion test for f on x, which is very similar to the Lipschitz exclusion test defined in
(3.68). Similarly, the condition

|f(c)| ≤
∑

‖i‖1=1

|∂if(c)|ri +
∑

‖i‖1=2

Cir
i (3.79)

is also an exclusion test for f on x. The reader can find more details in [Georg 2001].
The complexity of the Taylor exclusion test is summarized in Theorem 3.25. The reader

can find in Section 3.3.2.2 another method that uses linear programming on the domination of
nonlinear terms in the Taylor expansion to devise exclusion tests.

Theorem 3.25 (Georg). Let f, g : D ⊆ Rn → Rn be two functions such that the relation
f ≺k g holds on D for some k ∈ Z+. If, for each zero z of f , there exists l ≤ k in Z+ such
that ∂if(z) = 0 holds for all ‖i‖1 < l and that

∃α > 0 : α‖x− z‖l
∞ ≤ ‖f(x)‖∞ whenever ‖x− z‖∞ ≤ α; (3.80)

then the number of boxes that cannot be discarded in the Exclusion algorithm using the
Taylor exclusion test is bounded by a constant as ε → 0.

3.1.4. Exclusion Regions

Quite early, Kantorovich’s theorem (Theorem 3.26) has been used to devise exclusion tests
(and existence/uniqueness tests as well). However, the computed regions that do not contain
any zero are not in the form of boxes or convex sets, but in the form of the difference of two
boxes. For completeness, we recall Kantorovich’s theorem here.

March 14, 2005

72 3. An Overview of Solution Methods

Theorem 3.26 (Kantorovich, 1948). Let f : D ⊆ Rn → Rn be a twice continuously
differentiable and c ∈ Rn a vector in a box x ⊆ D such that f ′(x) is invertible. Suppose there
exist three positive constants α, β, γ such that ∆ = 1− 2αβγ > 0 and

‖f ′(c)−1‖∞ ≤ α, ‖f ′(c)−1f(c)‖∞ ≤ β, (3.81a)

∀x ∈ x, 1 ≤ i ≤ n :
∑

1≤j,k≤n

∣∣∂2
jkfi(x)

∣∣ ≤ γ. (3.81b)

Let denote r ≡ 2β/(1 +
√

∆) and r ≡ (1 +
√

∆)/(αγ). Then
(i) There is no zero x∗ of f in x satisfying r ≤ ‖x∗ − c‖∞ ≤ r;

(ii) There is at most one zero x∗ of f in x satisfying ‖x∗ − c‖∞ ≤ 2/(αγ);
(iii) If ‖x − c‖∞ < r holds for all x ∈ x, then there is a unique zero x∗ of f in x and this

zero satisfies ‖x∗ − c‖∞ ≤ r.

Inspired by Kantorovich’s theorem, Schichl and Neumaier [2004a] devised several ways to
reduce the cluster effect by identifying an inclusion region RI in which there exists a solution,
and an exclusion region RE ⊃ RI of which the interior contains only the solutions in RI. Hence,
the region int(RE) \ RI can be safely discarded. The new methods use slope matrices instead
of the second order derivative. They significantly enlarge the size of exclusion regions.

The first method is based on the following theorem (cf. [Schichl and Neumaier 2004a,
Theorem 4.3]). In this theorem, the inclusion and exclusion regions are boxes if S is a box.

Theorem 3.27 (Schichl & Neumaier). Let f : D ⊆ Rn → Rn be a twice continuously
differentiable function on a convex set D, X a convex subset of D, c ∈ X, C ∈ Rn×n, and
S ⊆ X any set containing c. Suppose we have the following componentwise bounds:

|Cf(c)| ≤ b ∈ Rn, (3.82a)
|Cf ′(c)− I| ≤ B′ ∈ Rn×n, (3.82b)
|Cf [c, c, x]| ≤ B ∈ Rn×n×n ∀x ∈ S. (3.82c)

For 0 < v ∈ Rn, we define w ≡ (I−B′)v ∈ Rn and a ≡ Bvv ∈ Rn. Suppose Di ≡ w2
i−4aibi > 0

for all i = 1, . . . , n. We also define

λE ≡ min
1≤i≤n

{
wi +

√
Di

2ai

}
, λI ≡ max

1≤i≤n

{
2bi

wi +
√

Di

}
. (3.83)

If λI < λE, then there is at least one zero of f in the inclusion region RI ≡ S∩[c−λIv, c+λIv].
The zeros in RI are the only zeros of f in the interior of the exclusion region RE ≡ S ∩ [c−
λEv, c + λEv].

In practice, the preconditioning matrix C in Theorem 3.27 can be chosen as an approx-
imation of f ′(z)−1, where z is an approximate zero of f . Such an approximate zero can be
computed by using any local iterative method, such as Newton-like methods. A simplified
procedure was devised for quadratic functions in [Schichl and Neumaier 2004a, Corollary 4.4].

The second method in [Schichl and Neumaier 2004a] is to compute inclusion and exclusion

March 14, 2005

3.1. Mathematical Solution Methods 73

regions in the form of polytopes (cf. [Schichl and Neumaier 2004a, Theorem 5.1])

P I = {x ∈ Rn | (w − v)T|x− c| ≤ b
T
w},

PE = {x ∈ Rn | P (w)|x− c|+ B′Tw ≤ w},

where 0 ≤ v ≤ w ∈ Rn, B = (B1, . . . , Bn) ∈ Rn×n×n, P (w) ≡ (BT
1 w, . . . , BT

n w) ∈ Rn×n, and
the bounds are defined as in Theorem 3.27. A simplified formula was also given therein.

The above two methods well address regions near zeros of f . Constructing exclusion regions
around arbitrary points was also proposed in [Schichl and Neumaier 2004a, Theorem 7.1].

Theorem 3.28 (Schichl & Neumaier). Let f : D ⊆ Rn → Rn be a twice continuously
differentiable function on a convex set D, X a convex subset of D, c ∈ X, and C ∈ Rn×n.
Suppose we have the following componentwise bounds:

|Cf(c)| ≥ b ∈ Rn, (3.84a)
|Cf ′(c)| ≤ B′ ∈ Rn×n, (3.84b)

|Cf [c, c, x]| ≤ B ∈ Rn×n×n ∀x ∈ Mu, (3.84c)

where 0 < u ∈ Rn such that b − B′u − Buu > 0 and Mu ≡ {x | |x− c| ≤ u}. Then there is
no zero of f in Mu.

3.1.5. Existence and Uniqueness Tests

Depending on goals, it is possible to derive various solution algorithms based on the branch-
and-prune framework. For example, to obtain merely a list of boxes, of which the union
contains all solutions and the total measure is less than the measure of the initial region, a
computational uniqueness test is not necessary. However, to isolate all solutions or determine
the precise number of solutions, such a uniqueness test is crucial. Furthermore, accepting as
large a box as possible in which uniqueness can be proven often leads to a faster, more practical
algorithm. The concepts of an existence test and a uniqueness test can be defined formally as
follows.

Definition 3.29 (Existence Test). Given a function f : D ⊆ Rn → Rm. An existence test
for f is a function tf : In → {0, 1} such that, for any x ∈ In, f has a zero in x if tf (x) = 1.

Definition 3.30 (Uniqueness Test). Given a function f : D ⊆ Rn → Rm. A uniqueness
test for f is a function tf : In → {0, 1} such that, for any x ∈ In, f has a unique zero in x if
tf (x) = 1.

In the output of existence and uniqueness tests, the value 0 stands for false and the value
1 for true. Computational existence and uniqueness tests can be devised based on Lipschitz
matrices. One can use the Krawczyk, Hansen-Sengupta, and interval Newton iterations for
this purpose. For instance, the parts (iii) of Theorem 3.14, Theorem 3.18, and Theorem 3.21
show that it is possible to use, respectively, the Krawczyk, Hansen-Sengupta, and interval

March 14, 2005

74 3. An Overview of Solution Methods

Newton operators with Lipschitz matrices as uniqueness tests. Moreover, Remark 3.15 and
Remark 3.19, and Remark 3.22 also show that, respectively, the Krawczyk, Hansen-Sengupta,
and interval Newton operators with slope matrices can be used as existence tests. Moreover,
the Krawczyk operator with slope matrices under the stronger assumption in Remark 3.15 can
be used for uniqueness tests.

The Kantorovich theorem (Theorem 3.26) has been used to devise existence/uniqueness
tests (see [Ortega and Rheinboldt 1970, 2000, Theorem 12.6.1]). However, Shen and Neumaier
[1990] proved that the Krawczyk operator with slope matrices always provide an existence
region that is at least as large as that computed by using the Kantorovich theorem. Hansen
[1997] improved the Krawczyk’s method by improving the preconditioning, but he gave only
heuristics for the process. Schichl and Neumaier [2004a] found the following theorem that can
serve as an existence test (cf. [Schichl and Neumaier 2004a, Theorem 4.2]).

Theorem 3.31 (Schichl & Neumaier). Let f : D ⊆ Rn → Rn be a twice continuously
differentiable function on a convex set D, X a convex subset of D, c ∈ X, and C ∈ Rn×n.
Suppose we have the following componentwise bounds:

|Cf(c)| ≤ b ∈ Rn, (3.85a)
|Cf ′(c)− I| ≤ B′ ∈ Rn×n, (3.85b)
|Cf [c, c, x]| ≤ B ∈ Rn×n×n ∀x ∈ Mu, (3.85c)

where 0 < u ∈ Rn such that (B′ + Bu)u + b ≤ u and Mu ≡ {x | |x− c| ≤ u}. Then there
exists a zero of f in Mu.

Schichl and Neumaier [2004a] also proposed the following theorem to verify the uniqueness
of a solution found in a box.

Theorem 3.32 (Schichl & Neumaier). Let f : D ⊆ Rn → Rn be a twice continuously
differentiable function on a convex set D, X a convex subset of D, and x ∈ In a subset of X.
Suppose c is an approximate zero of f in X and C, B ∈ Rn×n such that

|CF [c,x]− I|+ |CF [x, c,x]| |x− c| ≤ B. (3.86)

If ‖B‖ < 1 for some monotone norm ‖.‖, then x contains at most one solution of f .

By combining Theorem 3.31 and Theorem 3.32, it is possible to better verify the uniqueness
of a solution in a box. A simplified formula for quadratic functions was also given in [Schichl
and Neumaier 2004a, Section 6].

3.1.5.1. Epsilon-Inflation

As mentioned in Section 3.1.1, the interval Jacobian matrix [f ′](x) is a Lipschitz matrix for f
on x [Neumaier 1990, p. 174–175]; hence, it can be used in the Krawczyk, Hansen-Sengupta,
and interval Newton operators. More than ten years ago, one has often preferred interval
Jacobian matrices to slope matrices because it is simple to incorporate them in a computational
uniqueness test. In general, interval slopes provide tighter bounds and faster convergence, but

March 14, 2005

3.1. Mathematical Solution Methods 75

only allow existence (and not uniqueness) to be verified when used in a straightforward manner
(see Remark 3.15, Remark 3.19, and Remark 3.22). However, ten years ago, Rump [1994]
proposed an effective two-stage processing method to first verify the existence in as small a
region as possible, then verify the uniqueness in as large a region as possible. In particular,
when given an initial guess xa for an approximate zero of f , Rump’s method computes a box
x∃ 3 xa in which there must exist a zero of f and then a lager box x∃! containing x∃ such
that f contains a unique zero in x∃! (see Algorithm 2.1 in [Rump 1994]). Rump’s method
uses slopes instead of interval Jacobian matrices. Two boxes, x∃ and x∃!, obtained by Rump’s
method involves the so-called epsilon-inflation. The procedure starts by constructing a small
box centered at xa (e.g., by resorting to a bisection method), and then expanding it by using the
epsilon-inflation until the existence or uniqueness can be verified. This verification procedure
shows much promise in practice, especially for finding just one solution.

The epsilon-inflation was originated in Rump’s PhD thesis [Rump 1980] and described in
detailed in [Mayer 1995, 1998; Rump 1998]. In particular, for a box x, the epsilon-inflation (or
ε-inflation) is defined as

x ◦ ε ≡
{

x + w(x)[−ε, ε] if w(x) 6= 0,
x + [−η, η] otherwise,

(3.87)

where η denotes a tiny positive number, often chosen as the smallest computer-representable
positive number. The corresponding iteration is then defined as:

y〈k〉 ≡ x〈k〉 ◦ ε, (3.88a)
x〈k+1〉 ≡ z + Cy〈k〉, (3.88b)

where x〈k〉, y〈k〉 and z are boxes of size n, C is an interval matrix of size n×n. The convergence
of this method is obtained by applying the fixed point theorem of Banach or Brouwer (see
Section B.2), under some assumptions [Rump 1992, 1998]:

• If the operations in (3.88) are performed in interval arithmetic (respectively, power set
operations) and ρ(|C|) < 1/(1 + 2ε) (respectively, ρ(C) < 1/(1 + 2ε)), then x〈k+1〉 ⊆
int(y〈k〉) holds for some k;

• If the operations in (3.88) are performed in interval arithmetic (respectively, power set
operations) and x〈k+1〉 ⊆ int(y〈k〉) for some k, then ρ(|C|) < 1 (respectively, ρ(C) < 1)).

It is worth mentioning that, among the variants, the epsilon-inflation method has been
extended for P-contractions by Mayer [1995, 1998] and improved for systems of linear equations
by Rohn and Georg [1998].

3.1.6. Inclusion Tests

Kearfott [1987a,b] proposed a test, originally called the root inclusion test, for use in generalized
bisection algorithms for finding all solutions of a system of nonlinear equations. This test
is indeed a combination of an exclusion test (see Section 3.1.3) and a uniqueness test (see
Section 3.1.5). Consider a system of equations of the form (2.20), the root inclusion test is a
function tf mapping a box x to one of the three values {true, false, unknown} such that:

1. tf (x) = true implies that there is a unique solution of the system (2.20) within x;

March 14, 2005

76 3. An Overview of Solution Methods

2. tf (x) = false implies that there is no solution of the system (2.20) within x.

Basically, the root inclusion test is partly based on interval arithmetic to get lower and
upper bounds on f(x):

∀x ∈ x : lj ≤ fj(x) ≤ uj (for i = 1, . . . , m), (3.89)

Thus, if lj > 0 or uj < 0 for some j, we can set tf (x) = false. To know if tf (x) = true,
similar bounds on the partial derivatives of fj are computed. Using these bounds, we obtain a
new box x′ such that all images of points in x under a single application of the chord method
are contained in x′. The chord method is an iteration of the form x′ := x− yf(x), where y is
held fixed relative to x and is only an approximate inverse to f ′(x) [Ortega and Rheinboldt
1970, p. 181]. Thus, if x′ ⊆ x, the Schauder fixed point theorem and the fact that stationary
points of the chord method correspond to solutions of (2.20) show that there is a solution of
(2.20) in x.

In [Jaulin et al. 2001; Jaulin and Walter 1993], the concept of a root inclusion test was
extended for solving systems of the form (2.10), where the solution set may contain a continuum.
The test obtained is hence called the inclusion test . It is an interval form [t] : In → {0, 1, [0, 1]}
for the Boolean function t : Rn → {0, 1} that characterizes the solution set, S, of the considered
problem:

t(x) = 1 ⇔ x ∈ S; (3.90)

where the value 0 stands for false, the value 1 for true, and the interval value [0, 1] for unknown.
However, the concept of an inclusion test in [Jaulin et al. 2001] is no longer compatible with the
concept of a root inclusion test in [Kearfott 1987a,b]. Alternatively, we can easily generalize
the above two concepts to make them compatible as follows.

Definition 3.33 (Generalized Inclusion Test). Given k properties p1, p2, . . . , pk, each is
a function from In to {false, true} such that they are mutually exclusive; that is, if pi(x) =
true for some i ∈ {1, . . . , k} then ∀j 6= i : pj(x) 6= true. A generalized inclusion test (w.r.t.
these k properties) is a function tk : In → {0, 1, . . . , k} such that, for any x ∈ In,

∀i ∈ {1, . . . , k} : tk(x) = i ⇒ pi(x) = true. (3.91)

The concept of a generalized inclusion test allows computing approximations of the solution
set of not only the system (2.20), but also the system (2.10). Indeed, let S be the solution set
of the problem of the form (2.10). A generic bisection search technique, called the Inclusion
algorithm, for finding all solutions of (2.10) based on generalized inclusion tests is presented
in Algorithm 3.2. The Inclusion algorithm takes as input a box x ∈ In, among the input
parameters, and aims at producing (k + 1) collections of boxes S0, S1, . . . , Sk; where each box
in Si satisfies the property pi. That is, for every i ∈ {1, . . . , k}, we have:

∀x ∈ Si : pi(x) = true. (3.92)

If there is a property pj which states that there is no solution in a given box x, then
the Inclusion algorithm computes an outer approximation of the solution set by returning the
union

⋃k
i=0, i 6=j Si, with respect to the set of given properties {p1, p2, . . . , pk}. The collection

Sj should be considered as a trashcan. Adding an object to a trashcan should be interpreted as

March 14, 2005

3.1. Mathematical Solution Methods 77

Algorithm 3.2: The Inclusion algorithm
Input: x, tk, ε; S0, S1, . . . , Sk.
Output: S0, S1, . . . , Sk.
if tk(x) > 0 ∨ (tk(x) = 0 ∧ w(x) < ε) then

Stk(x) := Stk(x) ∪ {x};
return ;

end
(x1,x2) := Bisect(x);
Inclusion(x1, tk, ε, S0, S1, . . . , Sk);
Inclusion(x2, tk, ε, S0, S1, . . . , Sk);

discarding it. Note that the collection S0 consists of ε-bounded boxes (i.e., the sides of which
are bounded by a precision ε) and undetermined by any given properties. In progressively
solving, this collection will, therefore, be taken into further processing when reducing ε.

The concept of a generalized inclusion test allows interpreting in a common view the above
mentioned tests, including the exclusion tests, uniqueness tests, root inclusion tests, and inclu-
sion tests. Hereafter are the interpretations:

• Exclusion Test: k = 1, the property p1(x) states that there is no zero of the function
f in x. The collection S1 is a trashcan, is then ignored. The collection S0 consists of
ε-bounded boxes, each may contain a solution. This type of tests should be applied to
systems of equations.

• Existence Test: k = 1, the property p1(x) states that there is a unique zero of the
function f in x. The collection S1 consists of boxes, each contains at least one solution.
The collection S0 consists of ε-bounded boxes, each may contain a solution. Note that no
boxes are discarded in this case. In practice, one rarely uses existence tests alone. This
type of tests should be applied to systems of equations.

• Uniqueness Test: k = 1, the property p1(x) states that there is a unique zero of the
function f in x. The collection S1 consists of boxes, each contains a unique solution. The
collection S0 consists of ε-bounded boxes, each may contain a solution. Note that, in this
case, no boxes are discarded. In practice, one rarely uses the uniqueness test alone. This
type of tests should be applied to systems of equations.

• Root Inclusion Test: k = 2, the property p1(x) states that there is a unique zero of
the function f in x, the property p2(x) states that there is no zero of the function f in x.
The collection S1 consists of boxes, each contains a uniques solution. The collection S2

is a trashcan, is then ignored. The collection S0 consists of ε-bounded boxes, each may
contain a solution. Note that, owning to the property p2, some boxes may be discarded.
This type of tests should be applied to systems of equations.

• Inclusion Test: k = 2, the property p1(x) states that all points in x are solutions of the
considered problem, the property p2(x) states that there is no solution of the considered
problem in x. The collection S1 consists of boxes all the points of which are solutions.
The collection S2 is a trashcan, is then ignored. The collection S0 consists of ε-bounded
boxes, each may contain a solution. Note that, owning to the property p2, some boxes

March 14, 2005

78 3. An Overview of Solution Methods

may be discarded. This type of tests should be applied to systems of inequalities. For
example, we can define an inclusion test for the system (2.10) as follows:

t2(x) = 1 ⇔ [f](x) ⊆ b, (3.93a)
t2(x) = 2 ⇔ [f](x) ∩ b = ∅, (3.93b)

where [f] is an interval form of f . The collections S− = S1 and S+ = S1∪S2 are inner and
outer approximations of the solution set S, respectively; that is, pts(S−) ⊆ S ⊆ pts(S+)
(w.r.t. the meaning of point sets).

An algorithm is similar to the Inclusion algorithm, which is called SIVIA (Set Inverter Via
Interval Analysis), was described in [Jaulin et al. 2001; Jaulin and Walter 1993] to solve the
set inversion problem: find the inverse images of a function f : X ⊆ Rn → Rm when given
Y ⊆ Rm; that is, compute the set S = X ∩ f−1(Y) ≡ X ∩ {x ∈ Rn | f(x) ∈ Y }.

Lottaz [2000, Section 3.3.3] proposed to use the inclusion test (3.93) in place of the bisection
search proposed in [Sam-Haroud 1995, Section 3.4] to determine the feasibility of boxes in the
2k-tree representation [Sam-Haroud 1995]. Namely, in this method, the boxes in a 2k-tree are
classified into three categories based on the output of the inclusion test: black (= false),
white (= true), and grey (= unknown). The improved classification method, which relies on
the inclusion test (3.93), is more rigorous and faster than the original one. After constructing
the octree representation (i.e., k = 3) for ternary constraints, which are obtained by ternarizing
a factorable NCSP (see Section 2.1.3.5), a constraint propagation algorithm is performed on
obtained octrees to achieve relational (3, 2)-consistency with the time complexity O(n5) as
described in Section 2.3.4.2, where n is the number of variables in tenarized CSPs.

3.2. Constraint Programming Methods

3.2.1. Classical Complete Search Methods

The most simple backtracking search is called the simple backtracking or chronological back-
tracking (BT) [Golomb and Baumert 1965]. It picks one variable at a time and consider one
value for the variable at a time, making sure that the newly picked value is compatible with
all the values picked so far (i.e., no inconsistency is detected). If at any stage no value can be
assigned to a variable without leading to an inconsistency of the problem, the variable corre-
sponding to the value that was last picked is revised and another value which is not yet tried,
if any, is assigned to it. If, from the current node, the algorithm is allowed to go further back
to ancestor nodes than just the parent node, it is called intelligent backtracking or dependency
directed backtracking (see [Baar et al. 1981]). The backtracking-like methods were designed to
address constraint satisfaction problems (CSPs) with discrete domains.

The backtracking-like methods can also change the order of exploring the search space, for
example, using the well-known search orders, such as breadth-first search (BFS) and depth-first
search (DFS). Many other search orders for tree search can also be used: iterative broadening
search (IB) [Ginsberg and Harvey 1992], limited discrepancy search (LDS) [Harvey and Gins-
berg 1995], improved limited discrepancy search (ILDS) [Korf 1996], depth-bounded discrepancy
search (DDS) [Walsh 1997], and interleaved depth-first search (IDFS) [Meseguer 1997].

The reader can find detailed overviews of fundamental complete search methods in con-
straint satisfaction for CSPs with discrete domains in [Frei 2000, Appendix B] and [Torrens Ar-
nal 2003, Appendix B]. These overviews cover the following methods: backmarking (BM)

March 14, 2005

3.2. Constraint Programming Methods 79

[Gaschnig 1977], backjumping (BJ) [Gaschnig 1978], forward checking (FC) [Haralick and El-
liot 1980; McGregor 1979], full and partial look-ahead [Haralick and Elliot 1980], graph-based
backjumping (GBJ) [Dechter 1990], partial chronological backtracking (PBT) and partial for-
ward checking (PFC) [Freuder and Wallace 1992], conflict-directed backjumping (CBJ) [Prosser
1993], minimal forward checking (MFC) [Dent and Mercer 1994], maintaining arc consistency
(MAC) [Sabin and Freuder 1994].

The overviews in [Frei 2000, Appendix B] and [Torrens Arnal 2003, Appendix B] also cover
hybrid algorithms such as backmarking with backjumping (BM-BJ), backmarking with conflict-
directed backjumping (BM-CBJ), forward checking with backjumping (FC-BJ), forward checking
with conflict-directed backjumping (FC-CBJ). These combinations are all due to Prosser [1993].
The overviews also cover some heuristics for accelerating the search, such as dynamic variable
ordering , and cover value ordering heuristics for complete search techniques, such as dynamic
backtracking (DB) [Ginsberg 1993], partial order backtracking (POB) [McAllester 1993], partial
dynamic backtracking (PDB) [Ginsberg and McAllester 1994], general partial order backtracking
(GBP), and flexible partial order backtracking (FPB) [Bliek 1998].

The most popular complete search for CSPs with continuous domains is the bisection search.
In the bisection search, each variable domain is bisected into two parts. Each part is considered
for further branching after trying with other methods, such as problem reduction methods. The
search tree is therefore a binary tree. However, the most simple search for CSPs with continuous
domain is the griding search or cell subdivision search. It splits each variable domain into cells
of size ε (the precision), and considers each cell generated by the split, one by one. It can also
be viewed as a problem reduction technique.

For more details on complete search methods for CSPs with continuous domains, see Sec-
tion 3.1.3, Section 3.1.6, and also [Tsang 1993, Chapter 3] and [Apt 2003, Chapter 8]. The
reader can also find in [Neumaier 2004] a very recent and comprehensive survey on complete
search methods for optimization problems and CSPs with continuous domains.

3.2.2. Branch-and-Prune Methods

In constraint programming, a typical framework for solving constraint satisfaction problems
(CSPs) is the branch-and-prune framework. It is a variant of the classic branch-and-bound
framework for solving optimization problems, invented independently by Land and Doig [1960]
and Little et al. [1963]. Basically, a branch-and-prune algorithm alternates pruning and branch-
ing steps. At each pruning step, the algorithm attempts to reduce the considered problem. In
other words, it uses a problem reduction technique. At each branching step, the considered
problem is split into subproblems. To be complete, a branch-and-prune algorithm has to guar-
antee that the pruning and branching steps are equivalence-preserving transformations. The
branch-and-prune methods are essentially backtracking.

A branch-and-prune algorithm is similar to the Solution algorithm in Algorithm 2.1. It
might, in practice, have the recursive form as in Algorithm 3.3 or the loop form as in Al-
gorithm 3.4, but is not limited to these forms. In general, it provides as output two sets:
the set Solutions of found solutions and the set Atoms of atomic subproblems. A problem
is considered as atomic if it is not amenable to be split, for instance, when its domains are
smaller than an allowed tolerance. In constraint programming, the pruning steps of a branch-
and-prune algorithm (i.e., the Prune procedure) usually use constraint propagation techniques.
For example, when solving numerical CSPs (NCSPs), they can use interval constraint propa-
gation techniques. The domain reduction techniques are the most typical among the problem

March 14, 2005

80 3. An Overview of Solution Methods

reduction techniques used at the pruning steps. One often aims at constructing domain reduc-
tion operators to reduce NCSPs with continuous domains. The contractiveness, correctness,
monotonicity, and idempotence are often desired (but not required) for domain reduction tech-
niques (see Property 2.44). Since the previously available branch-and-prune algorithms are
different mainly in the domain reduction techniques they use, we only discuss about funda-
mental domain reduction techniques in the next subsections.

Algorithm 3.3: The Branch&Prune algorithm – the recursive version
Input: a CSP P.
Output: Solutions, Atoms.
if Prune&Check(P, Solutions, Atoms) then return ; J On page 80.

(P1, . . . ,Pk) := Split(P);
for i := 1, . . . , k do

Branch&Prune(Pi, Solutions, Atoms);
end

Algorithm 3.4: The Branch&Prune algorithm – the loop version
Input: a CSP P.
Output: Solutions, Atoms.
if Prune&Check(P, Solutions, Atoms) then return ; J On page 80.

WaitingList := {P};
while WaitingList 6= ∅ do

Take a CSP P0 from WaitingList;
(P1, . . . ,Pk) := Split(P0);
for i := 1, . . . , k do

if Prune&Check(Pi, Solutions, Atoms) then continue for; J On page 80.

WaitingList := WaitingList ∪ {Pi};
end

end

Function Prune&Check(P, Solutions, Atoms)
Prune(P);
if P is inconsistent then return ;
if P is globally solved then

Solutions := Solutions ∪ {P}; return true;
end
if P is atomic then

Atoms := Atoms ∪ {P}; return true;
end
return false;

3.2.2.1. Hull Consistency by Search

The concept of hull consistency is described in Section 2.3.3.1. In this section we present a
simple search algorithm for achieving F-hull consistency for NCSPs. It is presented in Algo-

March 14, 2005

3.2. Constraint Programming Methods 81

rithm 3.6. In this algorithm, the search procedure at Line 1 is performed either by a simple
increment search or by a bisection search. Other search procedures can also used in place of this
search procedure. Since the set of canonical intervals is totally ordered, there always exist the
smallest and greatest canonical intervals as required at Line 1. We can use a search procedure
similar to the functions SearchLowerBound and SearchUpperBound in Section 3.2.2.3.

To achieve F-hull consistency for an NCSP, a propagation algorithm similar to AC3 (an
algorithm for maintaining arc consistency, see [Mackworth 1977; Tsang 1993]) is performed.
The difficult is how to check if a canonical box contains a solution. This can be done by using
mathematical techniques in Section 3.1. It does, however, not always give the exact result.

Algorithm 3.6: The F-Hull Consistency algorithm – F-hull consistency by search
Input: an NCSP P ≡ (V ≡ (x1, . . . , xn),D, C), a box x ≡ [x, x] ⊆ D.
Output: new domains x′ ∈ In of V.
x′ := x;
WaitingList := C;
while WaitingList 6= ∅ and x′ 6= ∅ do

Take a constraint C from WaitingList;
for each variable xi constrained by C do

search for the outermost canonical interval bounds l ≡ [l, l] and u ≡ [u, u] such1

that l ∩ C[xi] 6= ∅ and u ∩ C[xi] 6= ∅, respectively;
x′i := [l, u];2

if x′i has been modified at Line 2 then
WaitingList := WaitingList ∪ {C ′ ∈ C | C ′ 6= C, xi is contrained by C ′}

end
end

end

3.2.2.2. Hull Consistency by Propagation

The concept of hull consistency is described in Section 2.3.3.1. In this section, we present the
HC4 algorithm, which was proposed by Benhamou et al. [1999], with very slight modifications,
for simplicity. We consider an NCSP of the form (2.10): f(x) ∈ b, where f : D ⊆ Rn → Rm is
a factorable function and x is a vector of real variables associated with domains x ∈ In. The
other notations of vectors follow the form (2.10) in Section 2.1.3.2.

Tree Representation. The explicit tree representation of factorable NCSPs was first in-
troduced by Benhamou et al. [1999] for constraint propagation, although the implicit repre-
sentation equivalent to it has been used in earlier works (e.g., see [McCormick 1976, 1983],
[Neumaier 1990, p. 13], and [Benhamou and Older 1992, 1997]). Each factorable constraint
fj(x) ∈ bj is of the form ϕ(E1, . . . , Ek) ∈ b; where ϕ is a k-ary operation and E1, . . . , Ek are
factorable subexpressions. It can be recursively represented by an attribute tree the root node
of which represents the operation ϕ, and each subexpression Ei is recursively represented in
the same way. In the original tree representation of the inequality constraints of the system
(2.10), auxiliary variables are introduced to represent the constraint ranges (Definition 2.59),
as shown in Figure 3.1. For compactness, we combine each node representing an auxiliary vari-
able (and the corresponding root node) with its sibling to get the compact tree representation
(see Figure 3.2). Therefore, we no longer need the auxiliary variables.

March 14, 2005

82 3. An Overview of Solution Methods

Each node of the tree representation of a constraint is associated with two intervals, called
the forward and backward node ranges. The former is used in forward evaluation and the latter
is used in backward propagation. The exact value, hence the exact range, of the subexpression
represented by an arbitrary node must be in the intervals associated with that node, that is,
in its forward and backward node ranges.

Remark 3.34. Granvilliers and Benhamou [2001] considered the tree representation as a
DAG by combining all nodes representing the same subexpressions of individual constraints.
However, this does not so much differ from the tree representation because multiple occur-
rences of the same subexpressions are represented individually for multiple constraints. It is
hence less compact than the corresponding DAG representation described in Section 6.2.

Example 3.35. Let consider a CSP of the form (2.10):

P ≡ 〈√x + 2
√

xy + 2
√

y ≤ 7, 0 ≤ x2√y − 2xy + 3
√

y ≤ 2; x ∈ [1, 16], y ∈ [1, 16]〉.
The first constraint is an inequality with the constraint range [−∞, 7]. The second constraint
is a two-sided inequality with the constraint range [0, 2]. P can be written in the form:

{ √
x + 2

√
xy + 2

√
y = u,

x2√y − 2xy + 3
√

y = v,
(3.94)

where x ∈ [1, 16] and y ∈ [1, 16] are the initial variables; and u ∈ [−∞, 7], v ∈ [0, 2] are the
auxiliary variables. The constraint system (3.94) is equivalent to P w.r.t. the variables x and
y. The tree representation of the system (3.94) is depicted in Figure 3.1. The compact tree
representation corresponding to the tree in Figure 3.1 is depicted in Figure 3.2. ♣

Forward Evaluation and Backward Propagation on Trees. An algorithm, called
HC4revise,3 was proposed by Benhamou et al. [1999] to achieve (F-)hull consistency on all
nodes, when considered as primitive constraints, of the tree representation of a constraint, not
on the constraint itself. It consists of the following two main processes:

1. Recursive Forward Evaluation – RFE: It recursively traverses the compact tree
representation of a constraint in the post-order , from leaves to the root, and evaluates
the forward node range Rf [N] of each visited node N by using the natural interval form
(see Section A.2.1) of the elementary operation represented by N.

2. Recursive Backward Propagation – RBP: It recursively traverses the compact tree
representation of a constraint in the pre-order , from the root to leaves, and prunes the
backward node range Rb[N] of each visited node N by using the projection narrowing
operator associated with the father of N.

The HC4revise algorithm is presented concisely in Algorithm 3.7. At Line 1 of the RBP
procedure, the constraint range Rb[E] is intersected with the node range computed by the
RFE procedure. At Line 2 of the RBP procedure, the elementary operation ψ represented
by E defines a relation ψ∗ on the sequence (E, E1, . . . , Ek); where E, E1, . . . , Ek are consid-
ered as variables taking values in Rb[E],Rf [Ei], . . . ,Rf [Ei], respectively. At Line 3 of the

3 It is also referred to as the forward-backward contractor in [Jaulin et al. 2001, Section 4.2.4].

March 14, 2005

3.2. Constraint Programming Methods 83

RBP procedure, the projection of ψ∗ on the variable Ei is computed. Since the relation ψ is
elementary, the relation ψ∗ is very simple. There are some simple formulas to compute the
projections (see [Benhamou et al. 1999] for more details). The HC4 algorithm presented in
Algorithm 3.10 uses a constraint propagation mechanism similar to the AC3 algorithm (an
algorithm for maintaining arc consistency, see [Mackworth 1977; Tsang 1993]).

The HC4revise algorithm is a domain reduction operator applying to a constraint. It enjoys
the following properties: contractiveness, correctness, and monotonicity (see Property 2.44).

Figure 3.1. The tree representation of the NCSP in Example 3.35. The initial variables, x and y,
are represented by the grey nodes that are pointers to the two domains of them. Each tree starting at
the root represents a constraint. Each node representing a real constant is associated with the smallest
interval that contains the constant. If a node is not specified with a domain in Figure 3.1, its domain
is the universal interval [−∞, +∞].

Figure 3.2. The compact tree representation of the NCSP in Example 3.35. No auxiliary variable is
needed. The whole tree is presented in a consistent way.

March 14, 2005

84 3. An Overview of Solution Methods

Algorithm 3.7: The HC4revise algorithm – a forward-backward propagation on a tree
Input: a compact tree TC ; domains x ∈ In of variables (x1, . . . , xn).
Output: new domains x′ ∈ In of (x1, . . . , xn).
x′ := x;
RFE(TC , x′); J On page 84.

RBP(TC , x′); J On page 84.

Procedure RFE(in/out: a compact tree TE ; in: x ∈ In)
if E is a variable xi then Rf [E] := xi;
else if E is the expression ψ(E1, . . . , Eq) then

Rf [E] := ψ(RFE(TE1 ,x), . . . ,RFE(TEq ,x));
end

Procedure RBP(in/out: a compact tree TE , x ∈ In)
if E is a variable xi then xi := xi ∩Rb[E];
else if E is the expression ψ(E1, . . . , Eq) then

Rb[E] := Rb[E] ∩Rf [E];1

Let ψ∗ be the relation E = ψ(E1, . . . , Eq) on E := (Rb[E],Rf [Ei], . . . ,Rf [Ei])T;2

for i := 1, . . . , q do
Rb[Ei] := E ∩ ψ∗[Ei];3

RBP(TEi , x);
end

end

Algorithm 3.10: The HC4 algorithm – hull consistency on primitive constraints
Input: an NCSP P ≡ (V ≡ (x1, . . . , xn),D, C), a box x ⊆ D.
Output: new domains x′ ∈ In of V.
x′ := x;
WaitingList := C;
while WaitingList 6= ∅ and x′ 6= ∅ do

Take a constraint C from WaitingList;
y := HC4revise(TC ,x′); J On page 84.1

if y 6= x′ then
Put into WaitingList the constraint C and every constraint C ′ sharing with C
at least a variable of which the domain has been reduced at Line 1;
x′ := y;

end
end

Let HC4revise* be the algorithm obtained from HC4revise by removing the intersection
at Line 1 of the RBP procedure if the considered node is the root. The following theorem
[Benhamou et al. 1999, Proposition 4] characterizes the correctness of the HC4revise algorithm.

March 14, 2005

3.2. Constraint Programming Methods 85

Theorem 3.36. Let C be a factorable constraint on n real variables associated with n do-
mains of which the Cartesian product contains x ∈ In. Then

ut(C ∩ x) ⊆ HC4revise(TC ,x) ⊆ HC4revise*(TC ,x).

Proof. See the proof of Proposition 4 of [Benhamou et al. 1999]. ¥

3.2.2.3. Box Consistency by Search

The concept of box consistency is defined in Section 2.3.3.3. In this section, we present a simple
search algorithm to achieve box consistency for NCSPs, which was proposed by Benhamou
et al. [1999]. In Algorithm 3.11, we present an algorithm, called BC3Revise, to achieve box
consistency for a constraint w.r.t. one of its variables.

The BC3revise algorithm is a domain reduction operator for one constraint. It enjoys
the following properties: contractiveness, correctness, and monotonicity (see Property 2.44).
To achieve box consistency and box(Γ) consistency for an NCSP, a constraint propagation

Algorithm 3.11: The BC3Revise algorithm – box consistency by search
Input: an interval form Γ of an NCSP P, domains x ∈ In, i ∈ {1, . . . , n}.
Output: new domains x′ ∈ In of V.
l ≡ [l, l] := SearchLowerBound(Γ,x, i); J On page 85.

if l = ∅ then return ∅;
x′ := x; x′i := [l,xi];
u ≡ [u, u] := SearchUpperBound(Γ,x′, i); J On page 85.

x′i := [l, u];

Function SearchLowerBound(in: an interval form Γ, x ∈ In, i ∈ {1, . . . , n})
if x /∈ Γ then return ∅;
if xi is canonical then return xi;
c := x; ci := [xi, x

+
i];

if c ∈ Γ then return ci;
t := mid([x+

i , xi]);
if d ≡ SearchLowerBound(Γ, [x+

i , t], i) 6= ∅ then return d;
return SearchLowerBound(Γ, [t, xi], i);

Function SearchUpperBound(in: an interval form Γ, x ∈ In, i ∈ {1, . . . , n})
if x /∈ Γ then return ∅;
if xi is canonical then return xi;
c := x; ci := [x−i , xi];
if c ∈ Γ then return ci;
t := mid([xi, x

−
i]);

if d ≡ SearchUpperBound(Γ, [t, x−i], i) 6= ∅ then return d;
return SearchUpperBound(Γ, [xi, t], i);

March 14, 2005

86 3. An Overview of Solution Methods

Algorithm 3.14: The BC3 algorithm – box(Γ) consistency by bounds search + AC3

Input: interval forms Γ = {Γ1, . . . ,Γn} of an NCSP P ≡ (V,D, C), a box x ⊆ D ⊆ Rn.
Output: new domains x′ ∈ In of V.
x′ := x;
WaitingList := C;
while WaitingList 6= ∅ and x′ 6= ∅ do

Take a constraint C from WaitingList;
foreach variable xi constrained by C do

y := BC3Revise(Γi,x′, i);
if x′i 6= y then

WaitingList := WaitingList ∪ {C ′ ∈ C | C ′ 6= C, xi is contrained by C ′};
x′i := y;

end
end

end

algorithm similar to the AC3 algorithm (which maintains arc consistency, see [Mackworth 1977;
Tsang 1993]) is performed, where BC3revise is in place of arc consistency for each constraint
of the NCSP. This propagation algorithm, called BC3, is presented in Algorithm 3.14.

3.2.2.4. Box Consistency by Propagation

In Algorithm 3.15, we present a version of box consistency , called BC4, which was proposed
by Benhamou et al. [1999]. The BC4 algorithm is based on the HC4revise algorithm (Sec-
tion 3.2.2.2) and the BC3 algorithm (Section 3.2.2.3).

In the rest of this section, we use the notations defined as follows.

Notation 3.37. Consider a factorable NCSP P ≡ (V,D, C), where V ≡ (x1, . . . , xn) and D
contains a box x ≡ (x1, . . . ,xn)T ∈ In.

• Let denote by C the natural interval form of each C ∈ C, by Cxk
the interval constraint

obtained from C by replacing all variables xi with its domain, xi, where i 6= k.
• Let C1

x the set of constraints of C in which x occurs exactly one time and C2+
x the set of

constraints of C in which x occurs more than one time.
• Let S1

xi
≡ {Cxi | C ∈ C1

xi
} and S2+

xi
≡ {Cxi | C ∈ C2+

xi
}.

The following theorem characterizes the relation between the HC4revise* algorithm (Sec-
tion 3.2.2.2) and box(Γ) consistency . It follows that the HC4revise* algorithm is an algorithm
for achieving box(Γ) consistency for a constraint, under the assumption in Theorem 3.38.

Theorem 3.38. Let C be a constraint of C as described in Notation 3.37. Suppose xk is
a variable that occurs in C only one time. Denote Γ ≡ {C, . . . ,Cxk

, . . . ,C}, where Cxk

is located at the k-th position. Then C is box(Γ) consistency in x′ on xk, where x′ :=
HC4revise*(TC ,x).

Proof. See the proof of Proposition 3 of [Benhamou et al. 1999]. ¥

March 14, 2005

3.2. Constraint Programming Methods 87

Algorithm 3.15: The BC4 algorithm – box(Γ) consistency by BC3 + HC4revise

Input: an NCSP P ≡ (V ≡ (x1, . . . , xn),D, C), a box x ⊆ D.
Output: new domains x′ ∈ In of V.
repeat

x′ = x;
repeat

Continue := false;
foreach C ∈ C do

x′′ := x′;
x′ := HC4revise(TC ,x′);
V1

C = {x ∈ vars(C) | x occurs in C once};
Continue := (x′ 6= ∅ ∧ (Continue ∨ (∃k : x′k 6= x′′k, xk ∈ V1

C)))
end

until Continue = false;
if x′ 6= ∅ then

Γ2+ := (S2+
x1

, . . . ,S2+
xn

) (see Notation 3.37);
x′ := BC3(Γ2+,x′);

end
until x′ = x or x′ = ∅;

Now let BC4* be the algorithm obtained from the BC4 algorithm by replacing HC4revise
(in Algorithm 3.15) with HC4revise* (see Section 3.2.2.2). The BC4* algorithm is an algorithm
for achieving box(Γ) consistency for NCSPs, under the assumption in Theorem 3.39.

Theorem 3.39. Consider an NCSP P and the related notations in Notation 3.37. Let Γ =
(Γ1, . . . ,Γn), where Γi ≡ S1

xi
∪ S2+

xi
for all i = 1, . . . , n. Then P is box(Γ) consistent in

x′ := BC4*(P,x).

Proof. See the proof of Proposition 5 of [Benhamou et al. 1999]. ¥

3.2.2.5. kB-Consistency by Search

The concepts of kB-consistency and kB(F)-consistency are described in Section 2.3.3.2. On the
same floating-point number system, F-hull consistency and kB(F)-consistency are equivalent.
Therefore, we refer to Algorithm 3.6 as a procedure to compute 2B(F)-consistency, where the
procedure at Line 1 in Algorithm 3.6 is incrementally performed by search.

In Algorithm 3.16, we present an algorithm, which was proposed by Bordeaux et al. [2001],
to achieve kB(F)-consistency for NCSPs (with k ≥ 3). This algorithm is equivalent to the
function ΦFkB in Definition 2.123. In this algorithm, each time a canonical interval bound σ
at Line 1 in Algorithm 3.16 is considered, if a nonempty fixed point of the procedure ΦF(k−1)B

has been computed for larger domains than the slice of the considered NCSP in σ (and has
been cached at Cache(σ)), then there is no need to repeat the procedure. That is why there is
a check at Line 2. When a canonical interval bound is reconsidered, at Line 3, it possible to
restart the procedure from the domains x ∩ Cache(t) because we have

ΦF(k−1)B(P|xi∈σ) = ΦF(k−1)B(P|x∈x∩Cache(σ)).

March 14, 2005

88 3. An Overview of Solution Methods

The reader can find the proof in [Bordeaux et al. 2001]. The main loop starting at Line 4 is
to find the outermost (thick) canonical interval bound such that the procedure ΦF(k−1)B cannot
prove the inconsistency. It is an incremental search. After this search, the reduced domains
are cached (at Line 5).

Algorithm 3.16: The kB-Consistency algorithm – the function ΦFkB

Input: an NCSP P with domains x ≡ [x, x] ∈ In of (x1, . . . , xn).
Output: new domains x′ ∈ In of (x1, . . . , xn).
for i := 1, . . . , n do

Cache([xi, x
+
i]) := Cache([x−i , xi]) := x;

end
repeat

foreach i := 1, . . . , n; σ in {[xi, x
+
i], [x−i , xi]} do1

if Cache(σ) * x then2

Cache(σ) := ΦF(k−1)B(P|x∈x∩Cache(σ));3

if Cache(σ) = ∅ then
while σ ∩ xi 6= ∅ ∧ ΦF(k−1)B(P|xi∈σ) = ∅ do4

if σ = [xi, x
+
i] then

xi := x+
i ; σ := [xi, x

+
i];

end
if σ = [x−i , xi] then

xi := x−i ; σ := [x−i , xi];
end

end
if σ ∩ xi = ∅ then return x′ := ∅;
Cache(σ) := ΦF(k−1)B(P|xi∈σ);5

end
end

end
until x is unchanged;
x′ := x;

Bordeaux et al. [2001] proved that the algorithm in Algorithm 3.16 computes a kB(F)-
consistent box in the optimal time complexity O(mNk−1nk−2), where N is the maximum
number of (floating-point) elements in a domain, n is the number of variables, m is the number
of constraints. Note that the time complexity of the old algorithm proposed by Lhomme [1993]
to achieve kB-consistency is O(mNk−1n2k−4).

3.2.3. Cooperation of Solution Techniques

3.2.3.1. Cooperation of Domain Reduction Techniques

The cooperation of interval constraint propagation techniques has been proposed in [Van Hen-
tenryck et al. 1997a,b]. This has led to the implementation in the systems Newton and Nu-
merica, which efficiently combine the box consistency notions with different interval forms of
constraints. These ideas have been extended in [Benhamou et al. 1999] and [Granvilliers et al.
1999] in order to avoid useless redundant computations and accelerate local computations.

March 14, 2005

3.2. Constraint Programming Methods 89

These techniques essentially combine the box consistency notions over natural and centered
interval forms with the hull consistency notion, for example, as described in Section 3.2.2.4.

There have been some strategies to schedule (or combine) variable reductions [Lhomme
et al. 1998], different local consistency notions [Benhamou et al. 1999], or preconditioning
matrices [Kearfott and Shi 1996], parallel computations [Granvilliers and Hains 2000], and dis-
tributed computations [Monfroy and Réty 1999]. Generic algorithms [Granvilliers and Monfroy
2000] were also proposed to combine several domain reduction techniques in one solver.

Algorithm 3.17: The Fixed Point Combination algorithm
Input: x ∈ In
Output: x′ ∈ In
k := 0; x〈0〉 := x;
repeat

k := k + 1;
choose an operator R in L according to strategy S;
x〈k〉 := R(x〈k−1〉);

until x〈k〉 is a fixed point of all operators in L;
x′ := x〈k〉;

In Algorithm 3.17, we present a generic algorithm, called Fixed Point Combination, to
combine domain reduction operators from a finite list L. A strategy to choose an operator
from L is called a fair strategy if, for any k > 0 and any operator R in L, there exists a finite
step k1 > k at which R is chosen. Several basic strategies for collaborations between interval
domain reduction operators have been discussed in [Jaulin et al. 2001, Section 4.4]. Jaulin
et al. [2001, Theorem 4.3] pointed out that, given a set L of monotonic domain reduction
operators, the Fixed Point Combination algorithm converges, for any fair strategy S, to the
same fixed point that is the largest box included in the initial domain such that it is the fixed
point of every operator in L. In order to reduce time for convergence, the strategy S must be
dynamically designed so that the slow convergence of operators can be identified (for instance,
as in the cooperative strategy [Lhomme et al. 1998]).

Moreover, Lhomme et al. [1998] showed that it is not efficient to combine a set of domain
reduction operators which compute a fixed point of an iteration because this may result in
slow convergence. Therefore, one should stop at a desired precision (e.g., see the definition of
box〈±ϕ〉 consistency in Definition 2.127 and the method in [Granvilliers et al. 1999]).

Recently, several combinations of different local consistency notions were described in
[Granvilliers 2001]. This paper tackles the issue of combining the hull consistency and box
consistency notions, and the interval Newton method into a new domain reduction technique.
This combination, however, tends to be symbolic-based and inflexible. Namely, the choice of
consistency techniques is based on the number of occurrences of variables in constraints.

3.2.3.2. Cooperation of Symbolic-Interval Techniques

A good survey on symbolic-interval cooperation was given in [Granvilliers et al. 2001], also
in [Bliek et al. 2001, Chapter 6]. Therein, three types of symbolic-interval techniques for
improving the solution of a nonlinear constraint system were discussed:

(i) The simplification of constraint expressions for tackling the dependency problem of in-
terval arithmetic;

March 14, 2005

90 3. An Overview of Solution Methods

(ii) The combination of constraint expressions for handling the independence of computa-
tions;

(iii) The cooperation of solvers for collectively solving a constraint system.

However, the control of the percentages of symbolic and numerical computations in order to
accelerate the solving process remains a difficult issue for the above techniques.

Several cooperation strategies were proposed in [Benhamou and Granvilliers 1997], They are
however not possible to decide a priori which one will be the most efficient for solving a given
constraint system. To date, various symbolic techniques have been tried in symbolic-interval
constraint solving, such as Gröbner computation, factorization, simplex method, Gaussian elim-
ination, substitution, and abstraction. The theoretical cooperation schemes based on shared
variables in [Benhamou 1996] and [Apt 1999] seem to be suitable in interval constraint propaga-
tion. When dealing with the symbolic-numerical cooperation, however, these schemes require
an ordering on the manipulated elements. Unfortunately, defining this ordering is a difficult
issue, if not impossible in numerous cases.

3.3. Relaxation Based Methods

3.3.1. Linear Relaxation with Linear Programming

In order to reduce the domains of a numerical constraint satisfaction problem (NCSP), P ≡
(V,D, C), an efficient approach is to generate a linear relaxation system P ′ of P (Definition 2.38)
by using linear relaxation techniques. The obtained relaxation system can be explored further
(e.g., by resorting to linear programming techniques) to evaluate lower and upper bounds of
variables. Namely, the lower and upper bounds of each variable x in V satisfying the constraints
of P ′ can be computed by solving the following two linear programs, respectively:

minimize x

s.t. P ′,

and maximize x

s.t. P ′.

Because the latter can be easily converted into the former by replacing x with −x, we will limit
the presentation to minimization problems in the rest of this section.

In general, computing bounds on n variables amounts to solving 2n minimization problems.
Any linear programming technique can be employed to compute approximate bounds on vari-
ables. However, to get rigorous bounds, one often has to use rigorously bounding techniques
with directed rounding controls. To name a few among them, we refer to the interval-based
simplex method by Kashiwagi [1996, 1997], the safe procedure for embedding directed round-
ing controls into the framework of constraint programming by Michel et al. [2003], and the
generic safe bounding technique by Neumaier and Shcherbina [2004]. It is interesting that the
post-processing technique in [Neumaier and Shcherbina 2004] can provide rigorous bounds of
reasonable size on the objective functions of linear programs without interfering in the source
codes of simplex-based linear programming solvers.

March 14, 2005

3.3. Relaxation Based Methods 91

3.3.1.1. Linear Relaxation Based on Quadratic Terms

In [McCormick 1976, 1983] and [Al-Khayyal 1990; Al-Khayyal and Falk 1983], quadratic terms,
such as x2 and xy, is relaxed to get linear inequalities. Namely, a term x2, where x is a real
variable taking its value in x ≡ [x, x], can be relaxed by introducing a new variable z in place
of x2:

−(x + x)x + z + xx ≤ 0. (3.95)

The domain for the new variable z is given by z := x2. The term xy, where x and y are two
real variables taking their values in x ≡ [x, x] and y ≡ [y, y] respectively, can also be relaxed
by introducing a new variable z in place of xy: the inequalities of the form

bx + ay − ab ≤ z ≤ dx + cy − cd (3.96)

hold for all (a, b) ∈ {(x, y), (x, y)} and (c, d) ∈ {(x, y), (x, y)}. The domain of the new variable
z is set to the interval product z := xy.

In [Lebbah et al. 2003a,b], any power term of the form xn1
1 . . . xnk

k is recursively composed
of terms of the form x2 and xy. Therefore, linear relaxations of a system of factorable con-
straints can be generated by recursively resorting to the rules (3.95) and (3.96). Many new
auxiliary variables are introduced in this procedure. After obtaining a system L of linear relax-
ations for the considered constraint system, a constraint propagation procedure, called Quad,
is enforced in order to reduce domains of initial variables. The Quad algorithm is presented
in Algorithm 3.18. Note that the structure of L is unchanged after each loop step (Line 2 in
Algorithm 3.18), only coefficients in L will be changed and these changes can be easily updated
by fixed simple formulas.

Algorithm 3.18: The Quad algorithm – a propagation based on linear relaxations
Input: an NCSP P ≡ (V,D, C), a box x ⊆ D ⊆ Rn.
Output: new domains x′ ∈ In of V.
Generate a system L of linear relaxations based on the rules (3.95) and (3.96);1

x′ := x;
while x′ 6= ∅ and the reduction of x′ is greater than ε do2

Update the coefficients of L according the new domains x′;
Reduce the domains x′ of V by resorting to a linear programming technique on L;3

end

3.3.1.2. More General Linear Relaxation Techniques

Many techniques have been proposed to generate linear relaxations of a nonlinear system of
forms that are more general than quadratic. For example, there are linear relaxation techniques
based on power terms [Borradaile and Van Hentenryck 2004] and on rational power/quotient
terms [Hongthong and Kearfott 2004] of factorable constraints. A more general linear relaxation
method was also proposed in [Georg 2003], where the high order terms in the Taylor expan-
sion of differentiable functions/constraints is dominated by simpler form (see Section 3.1.3.2).
There are also general linear relaxation techniques which can be made rigorous, as described
in Section 3.3.3.

It is clear that any linear relaxation technique that keeps initial variables, such as the above
mentioned ones, can be used in place of Line 1 in Algorithm 3.18. Domain reduction techniques

March 14, 2005

92 3. An Overview of Solution Methods

described in the sections 3.1.1.1, 3.1.1.2, 3.1.2, and 3.3.3 can also be used in place of Line 3 in
Algorithm 3.18 at some stages. The exclusion techniques in Section 3.3.2 can be used at that
place. However, the structure of L may vary; hence, the cost for updating the coefficients in L
may be prohibitively high.

3.3.2. Exclusion Test Using Linear Programming

3.3.2.1. Exclusion Test Using Dual Simplex Method

In general, the computation of tight bounds of variables of a linear relaxation system (i.e., a
system of linear equations/inequalities) is still very cost for the purpose of domain reduction.
One may reduce this purpose to an exclusion test (see Section3.1.3). That is, the inconsistency
of linear relaxation system implies the inconsistency of the initial CSP. Moreover, when using
the branch-and-prune methods to solve the initial CSP, search nodes (branches) often share
some common properties with their parent. Therefore, some information computed at a level
may be reused for the next level, in the search tree. Yamamura and Fujioka [2003]; Yamamura
and Tanaka [2002] followed these common ideas to devise efficient exclusion tests from linear
relaxations. In particular, they use the first phase of the simplex method for this purpose.
Their ideas are summarized hereafter.

We recall that the simplex method consists of two phases. In the first phase of the simplex
method, the constraint system in a linear program is converted into a system of equations by
introducing slack variables (see Section 2.1.3.2) of the standard form for the simplex method

minimize z ≡ cx

s.t. Ax = b,

x ≥ 0,

where x is a vector of n real variables, A is a m×n real matrix, b is a vector of m real numbers,
c is a vector of n real numbers. If A has rank m, the linear constraints in the program can be
transformed into Gauss-Jordan form and written in a so-called basic tableau. The general form
in Table 3.1, where xB are called basic variables and xN are called nonbasic variables. The
reduced form of basic tableau in given in Table 3.2. A basic feasible solution to the basic tableau
given in Table 3.1 is a basic solution (i.e., xN = 0) to the corresponding system of equations
such that xB ≥ 0. A basic feasible solution can be found by using artificial variables. In case
no basic feasible solution is found, then the first phase of the simplex method terminates with
the inconsistency confirmed [Press et al. 1992]. The second phase of the simplex method starts
with a basic feasible solution obtained by the first phase to optimize the objective function. It
is an prime iterative descent method . The simplex method applying to the dual linear program
of the considered linear program is called the dual simplex method .

Table 3.1. The general form of a basic tableau in the simplex method

basis −z xB xN rhs
xB 0 I N b′

−z 1 0 c′N −z0

March 14, 2005

3.3. Relaxation Based Methods 93

Table 3.2. The reduced form of a basic tableau in the simplex method

basis xN rhs
xB N b′

−z c′N −z0

When using the simplex method to devise an exclusion test, we do not need the second of
the simplex method since the objective function is an arbitrary constant. A square system of
nonlinear equations can be relaxed (e.g., by using interval arithmetic [Yamamura 2000, 2003;
Yamamura and Fujioka 2003; Yamamura and Tanaka 2002]) to a linear program of the form

minimize constant (3.97)
s.t. Px0 + Qy0 = r,

a ≤ x0 ≤ b, (3.98)
c ≤ y0 ≤ d,

where x0 is a vector of n initial real variables, y0 is a vector of n auxiliary real variables in place
of the nonlinear terms in n nonlinear equations, and a, b, c, d ∈ Rn. In (3.97), by substituting
x ≡ x0 − a, y ≡ y0 − c, and introducing two suitable vectors u and v of slack variables of size
n; we obtain a linear program of the standard form

minimize constant (3.99)
s.t. Px + Qy = r,

x + u = b− a,

y + v = d− c,

x ≥ 0, y ≥ 0, u ≥ 0, v ≥ 0.

This system has 3n equations. Because both b − a ≥ 0 and d − c ≥ 0 hold, we only need
to introduce n artificial variables for the first n equations: Px + Qy = r. Then u, v and
these artificial variables are used as the initial basic variables, while x, y are used as the initial
nonbasic variables. Hence, the size of the resulting basic tableau is (3n + 2)× (2n + 3).

Let the optimal feasible tableau be, for example,4 of the pattern in Table 3.3, where α+β =
bk − ck. The term optimal implies that the optimality condition is satisfied in the auxiliary
objective function low [Press et al. 1992]. Depending on which variables are chosen to be basic
variables, there are nine possible patterns for optimal feasible tableaus. Note that the sum of
the xk-row and the uk-row in Table 3.3 is (0, . . . , 0, bk − ak).

A branch-and-prune method resorting to the above exclusion test usually restarts the first
phase of the simplex method from the scratch. Hence, the total number of pivots to be used by
the simplex method is often very huge for a large scale system. This leads to an unacceptable
running time for large scale systems.

We now consider to bisect the domain [ak, bk] of a variable xk in the original nonlinear
problem, where 1 ≤ k ≤ n. Without loss of generality, we consider the first half [a′k, b

′
k] ≡

[ak, b
′
k], where b′k is the bisection point. This bisection leads to the fact that the corresponding

4 The results are similar for the other patterns of the optimal feasible tableau.

March 14, 2005

94 3. An Overview of Solution Methods

Table 3.3. The optimal feasible tableau for the linear program (3.99)

basis . . . vk . . . rhs
...

...
...

xk . . . γ . . . α
...

...
...

uk . . . −γ . . . β
...

...
...

yk 0 −1 0 dk − ck

...
...

...
−z 0 0 0 −z0

linear program to be considered has the form

minimize constant
s.t. Px′ + Qy′ = r,

xi + ui = bi − ai, (for i = 1, . . . , n; i 6= k)
x′k + u′k = b′k − a′k,
yi + vi = di − ci, (for i = 1, . . . , n; i 6= k)
y′k + v′k = d′k − c′k,
x′ ≥ 0, y′ ≥ 0, u′ ≥ 0, v′ ≥ 0,

where [c′k, d
′
k] is the new domain of yk,5 x′k ≡ x0

k − a′k, y′k ≡ y0
k − c′k, and

x′ ≡ (x1, . . . , xk−1, x
′
k, xk+1, . . . , xn)T,

y′ ≡ (y1, . . . , yk−1, y
′
k, yk+1, . . . , yn)T,

u′ ≡ (u1, . . . , uk−1, u
′
k, uk+1, . . . , un)T,

v′ ≡ (v1, . . . , vk−1, v
′
k, vk+1, . . . , vn)T.

Notice that (3.99) and (3.100) are different only in the constant terms, ignoring the meaning
of variables. The numerical relations between old and new variables are

x′k = xk,

u′k = uk − (bk − b′k),
y′k = yk − (c′k − ck),
v′k = vk − (dk − d′k).

Substituting these relations into the optimal feasible tableau computed for (3.99), we get the
optimal tableau in Table 3.4 for the linear program (3.100) easily with no cost. The new optimal
tableau in Table 3.4 differs the one in Table 3.3 only in the right hand side (rhs) column. Note
that, all other elements in the rhs column change values, but they are not written for simplicity.

5 We recall that yk represents the bounds on the nonlinear term of the k-th equation in the original square
nonlinear system.

March 14, 2005

3.3. Relaxation Based Methods 95

Table 3.4. The optimal tableau for the linear program (3.100)

basis . . . v′k . . . rhs
...

...
...

x′k . . . γ . . . α + γ(dk − d′k)
...

...
...

u′k . . . −γ . . . β − (bk − b′k)− γ(dk − d′k)
...

...
...

y′k 0 −1 0 d′k − c′k
...

...
...

−z 0 0 0 −z0

The optimal tableau in Table 3.4 may be infeasible (i.e., constants on the rhs column may
be negative), but always dual feasible [Yamamura and Tanaka 2002]. Therefore, starting from
this tableau, we can perform the dual simplex method and check the consistency, instead of
the inconsistency. In most cases, this dual simplex method requires only very few pivots.

Yamamura and Tanaka [2002] showed that this method is very efficient for system of equa-
tions the form f(x) ≡ Px + Qg(x) − r = 0, where g : Rn → Rn is a function with component
gi(xi) for all i = 1, . . . , n. Note that, general nonlinear factorable functions can be converted
to this form (see Section 2.1.3.4).

The reader can find some related works in [Kashiwagi 1996, 1997], [Nakaya and Oishi
1998], [Yamamura et al. 1998], [Yamamura and Nishizawa 1999], [Yamamura and Hata 2000],
and [Yamamura and Kumakura 2001], .

3.3.2.2. Exclusion Test Using Taylor Expansion and Linear Programming

In Section 3.1.3.2, we have studied that Georg [2003] used the Taylor expansion to devise
exclusion test. He also devise linear programs from the domination of nonlinear terms in the
Taylor expansion of functions. The resulting system can obviously benefit from any linear
programming techniques. In this section, we use the same notations as in Section 3.1.3.2.

From the Taylor expansion with integral remainder (3.73), Georg [2003, Theorem 14] proved
the following result, which can be used as an exclusion test.

Suppose f ≺k g : D ⊆ Rn → Rn, where k > 1 (see also Section 3.1.3.2). Let x ∈ In be
a box in D. Then a necessary condition for f to have a zero in x is that the following linear
program has optimal value zero:

minimize eTt (3.100)
s.t. Ef ′(c)x + Ey + t = p,

x + u = 2r,

y + v = 2d,

x ≥ 0, y ≥ 0, u ≥ 0, v ≥ 0, t ≥ 0,

where E ∈ Rn×n is a diagonal matrix with ±1 on its diagonal, c ≡ mid(x), r ≡ rad(x), and

p ≡ E
(−f(c) + f ′(c)r + d

) ≥ 0,

March 14, 2005

96 3. An Overview of Solution Methods

d ≡ g(|c + r|)− g(|c|)− g′(|c|)r −
∑

i∈Nn, 0<‖i‖1<k

(∂ig(|c|)− ∂if(c))ri ≥ 0.

Note that the linear program (3.100) has the feasible basis t = p, u = 2r, and v = 2d, which
can be used to start the simplex methods. Similarly to the argument in Section 3.3.2.1, the
first phase of the simplex method is sufficient for the purpose of devising an exclusion test.
The proof can be found in [Georg 2003]. Georg [2003] also found the following relation in
comparison to the Taylor exclusion test in Section 3.1.3.2.

Theorem 3.40. The exclusion test resulting from (3.100) implies the Taylor exclusion test
resulting from (3.76).

3.3.3. Linear Relaxation with Fixed Point Methods

Since Yamamura [1993, 1996] had provided a practical method for converting a factorable
constraint system into a separable constraint system (Section 2.1.3.4), one started studying
interval methods on separable systems. Among the works in this direction, we name a series of
successful techniques by Kolev [1998, 1999, 2001, 2002]. Hereafter, we present the main ideas
of this series.

3.3.3.1. Linear Relaxation of Separable Functions

We consider a square system of nonlinear equations of the form f(x) = 0, where f is a separable
function from D ⊆ Rn to Rm,6 and x ≡ (x1, . . . , xn)T is a vector of n real variables. The
domains to be considered is a box x ≡ (x1, . . . ,xn)T. Since the function f is separable, it can
be written as

f(x) =
n∑

j=1

fj(xj), (3.101)

where fj is a factorable univariate function from R to Rm. In previous methods, the range of
each function fj(xj) over x is often included in interval enclosures by using interval derivatives
or interval slopes. Quite differently, Kolev [1998] proposed to enclose it by a hybrid form
L(xj , xj) = ajxj + dj (1 ≤ j ≤ n), where xj ∈ xj , dj ≡ [dj , dj] ∈ Im, and aj ∈ Rm. Obviously,
the inclusion property should hold; that is,

∀xj ∈ xj : fj(xj) ∈ ajxj + dj (for 1 ≤ j ≤ n). (3.102)

Let xj ≡ [xj , xj], where xj 6= xj , then the vector aj can be easily computed by the real slope

aj = (fj(xj)− fj(xj))/(xj − xj) (for 1 ≤ j ≤ n), (3.103)

where operations are performed componentwise. The remaining task is to enclose the range
fj(xj) between two vectors of lines Lj(xj) ≡ ajxj + dj and Uj(xj) ≡ ajxj + dj ; that is,

∀xj ∈ xj : Lj(xj) ≤ fj(xj) ≤ Uj(xj) (for 1 ≤ j ≤ n). (3.104)

6 Kolev [1998] assumed that m = n, the same argument (presented here) also holds for m 6= n.

March 14, 2005

3.3. Relaxation Based Methods 97

Suppose f is continuously differentiable,7 we consider, for each j ∈ {1, . . . , n}, the following
m equations:8

f ′j(xj)− aj = 0, xj ∈ xj .

Additionally, we suppose that this system has only a finite number of solutions:
x
〈1〉
j , . . . , x

〈N〉
j ; then

dj := min
1≤j≤N

{
f ′j(x

〈j〉
j)− ajx

〈j〉
j

}
(for 1 ≤ j ≤ n), (3.105a)

dj := max
1≤j≤N

{
f ′j(x

〈j〉
j)− ajx

〈j〉
j

}
(for 1 ≤ j ≤ n), (3.105b)

are the best among ones satisfying (3.104), where the operations are interpreted in the compo-
nentwise manner. The reader can find the proof and a detailed algorithm in [Kolev 1998].

Once the hybrid form L(xj , xj) satisfying (3.102) is obtained for all j ∈ {1, . . . , n}, all zeros
of f(x) in x are contained in the solution set of the system of linear equations

Ax = b, b ∈ b (3.106)

where A = −(a1, . . . , an) ∈ Rm×n, b =
∑n

j=1 dj ∈ Im, and b ∈ Rm.

Remark 3.41 ([Kolev 1998]). In the above computations, real arithmetic can be replaced
by interval arithmetic for the rigor. Therefore, the obtained values for aj , bj , bj are no longer
real numbers. Rigorous bounds on solutions of (3.104) can also be computed by using interval
arithmetic (see Section 3.1). However, the matrix A in (3.106) computed by using interval
arithmetic is no longer a real matrix, but an interval matrix.

Now assume that A ∈ Rm×n. Equivalently, the form (3.106) can also be written as

Ax ∈ b. (3.107)

Tight bounds on the variables x of the system (3.107) can be obtained by resorting to linear
programming techniques, as discussed in Section 3.3.1. One can also use the linear programming
techniques in Section 3.3.2 for checking if the system (3.107) contains no solution. Kolev [1998]
proposed a method to get bounds on the variables, which is not based on linear programming
technique. Hereafter, we recall the main steps of this method.

Assumption 3.42. The matrix A ∈ Rm×n in the system (3.107) is assumed to be invertible.
Although Kolev [1998] also assumed m = n, the argument given here does not require m = n
since we can use the extended inverse of matrix in Definition A.7.

Under Assumption 3.42, it is simple to enclose the hull of the solution set of (3.106) by
x ∩ A−1b because utΣ(A,b) ⊆ A−1b (see Definition A.7 and Theorem A.19). If m = n, then
utΣ(A,b) = A−1b (see [Neumaier 1990, p 93]). For convenience, we define the Kolev operator
and iteration as follows.

7 In case the function f is piecewise continuously differentiable, a similar argument could be applied.
8 We recall that fj is a vector of m functions mapping from R to R.

March 14, 2005

98 3. An Overview of Solution Methods

Definition 3.43 (Kolev Operator). For a separable function f defined in (3.101), the fol-
lowing is called the Kolev operator for f in x:

OKL(f,x) ≡ A−1b, (3.108)

where A = −(a1, . . . , an) ∈ Rm×n, b =
∑n

j=1 dj ∈ Im, aj is defined by (3.103), and dj ≡
[dj , dj] is defined by (3.105). The Kolev iteration is defined as

x〈0〉 ≡ x, x〈k+1〉 ≡ x〈k〉 ∩OKL(f,x〈k〉) (for k ∈ Z+). (3.109)

We recall the fixed point property of the Kolev operator [Kolev 1998, Theorem 2.3] for the
case m = n as follows.

Theorem 3.44. Let f : D ⊆ Rn → Rn be a separable continuously differentiable function.
Given a compact box x ⊆ D. If OKL(f,x) is defined and contained in x, then f has at least
a zero in x.

Proof. Let b(x) = Ax + f(x). It follows from (3.102) or (3.104) that b(x) ∈ b for all x ∈ x.
Hence, for all x ∈ x, we have g(x) ≡ x + A−1f(x) = A−1b(x) ∈ A−1b = OKL(f,x) ⊆ x. Since
A−1 is invertible, g(x) = x ⇒ f(x) = 0 holds. Hence, it follows from Theorem B.15 that f has
a zero in x. ¥

A variant of the Kolev iteration (3.109) were also proposed in [Kolev 1998]. For instance,
if x〈k+1〉

i ⊂ x〈k〉i (or stronger condition: w(x〈k+1〉
i) < ε w(x〈k〉i)) holds for some k and some

i < n, then we repeat the procedures (3.103) and (3.105) for domains x〈k+1〉
i to compute a

〈k+1〉
i

and d〈k+1〉
i ≡ [d〈k+1〉

i , d
〈k+1〉
i], respectively. The interval vector b〈k+1〉 ≡ [b〈k+1〉, b〈k+1〉] at the

iteration step (k + 1) can then be updated as follows:

b〈k+1〉 := b〈k〉 − d
〈k〉
i + d

〈k+1〉
i ,

b
〈k+1〉 := b

〈k〉 − d
〈k〉
i + d

〈k+1〉
i ,

A〈k+1〉 := −(a〈k〉1 , . . . , a
〈k〉
i−1, a

〈k+1〉
i , a

〈k〉
i+1, a

〈k〉
n).

For the case m = n, we only need to update the i-th row, ri, of (A〈k〉)−1 in order to compute
the i-th row of OKL(f,x〈k〉) ≡ (A〈k〉)−1b〈k〉, hence the i-th row of x〈k+1〉. It can be done by
solving the system of n linear equations.

(A〈k〉)Tri = ei,

where ei is the i-th column of the identity matrix. This procedure can be proceeded for
i = 1, . . . , n then change to the usual Kolev iteration. For sufficiently narrow boxes, Kolev’s
method is convergent of order two. For more details, see [Kolev 1998].

3.3.3.2. Linear Relaxation of Factorable Systems

From Factorable Systems to Separable Systems. Now consider a factorable constraint
system. It is converted to a separable constraint system, for example, by using the technique

March 14, 2005

3.3. Relaxation Based Methods 99

in Section 2.1.3.4. The obtained system has n original real variables x and k auxiliary real
variables y. Using the technique in Section 3.3.3.1, we can get a square system of linear
equations (

A11 A12

A21 A22

)(
x
y

)
=

(
b1

b2

)
, (3.110)

where all A11 ∈ Rn×n, A12 ∈ Rn×k, A21 ∈ Rk×n, A22 ∈ Rk×k, b ∈ b1 ∈ In, b ∈ b2 ∈ Ik, x ∈ x,
and y ∈ y.

For simplicity, Kolev [1999] assumed that A22 is unit matrix. By eliminating y, we have

(A11 −A12A21)x = b1 −A12b2.

Let C = A11 −A12A21 and suppose C is invertible. We have

x = C−1b1 − C−1A12b2 ∈ C−1b1 − C−1A12b2. (3.111)

New bounds x′ on x is computed by using (3.111) and then intersected with x; that is, x′ :=
x′ ∩ x. New bounds on y can be computed by using

y = b2 −A21x ∈ b−A21x′. (3.112)

This method can be combined with the Kolev iteration methods, as described in [Kolev 1999].

Linear Relaxation Using Affine Arithmetic. In [Kolev 2001, 2002], two linear relaxation
methods were also proposed for directly computing linear relaxations of factorable systems. In
these methods, a factorable function is composed of elementary operations. Each operation
is then computed by using Kolev generalized affine arithmetic or Kolev affine arithmetic (see
Section 2.2.3.4).

When using Kolev affine arithmetic (or affine arithmetic) to compute an affine form of a
separable factorable function f : D ⊆ Rn → Rm in a compact box x ∈ In, we get a linear
expression of the form

f(x̂) = L(x, y) = −Ax + By + b, x̂ ∈ x, (3.113)

where A ∈ Rm×n, B ∈ Rm×k, b ∈ Rm, x is vector of n initial variables taking values in x,
and y is a vector of k auxiliary variables taking values in a box y ∈ Ik. The variables in
y are noise variables arising in the computations using (Kolev) affine arithmetic. Therefore,
y = ([−1, 1], . . . , [−1, 1])T. If x is a zero of f and A−1 is defined,9 then

x = A−1By + A−1b ∈ A−1By + A−1b. (3.114)

This leads to a new rule for domain reduction for fixed point methods:

x := x ∩ (A−1By + A−1b). (3.115)

3.3.4. Convexification Based Methods

High order relaxation can also be used for solving NCSPs. For completeness, we only give
pointers to very recent papers on this advanced topic: a convexification technique for nonlinear
functions can be found in [Jansson 2000], a book specializing on convexification [Tawarmalani
and Sahinidis 2002], an extended technique for computing rigorous bounds on polynomial
relaxations can be found in [Garloff et al. 2003]. The reader can find the references therein for
more details on this topic.

9 The inverse A−1 can be defined as usual for the case m = n, or as in Definition A.7 for the case m 6= n.

March 14, 2005

100 3. An Overview of Solution Methods

3.4. Incomplete Search Methods

One of the most well-known stochastic search methods is the hill climbing method, also called
the multiple random start method. It is a general search and has been being used in various
areas. Basically, the hill climbing algorithm starts with a random focal point in the search
space. Given the current focal point P , all the points near to P according a neighborhood
function are evaluated by using the evaluation function. If there exist some points with higher
values than P , one of these points will be picked nondeterministically to become the new focal
point. This process continues until the value of the current focal point is higher than the values
of the nodes in its neighborhood.

A drawback of the hill-climbing method is that it may get stuck in a local hill. Alternatively,
many techniques have been devised to overcome this drawback. Among them are simulated
annealing search [Kirkpatrick et al. 1983], tabu search [Glover 1986, 1989, 1990], min-conflicts
heuristic [Minton et al. 1992], random-walk search [Selman and Kautz 1993], connectionist
method (or connectionist approach) [Davenport et al. 1994], and genetic search for CSPs [Eiben
et al. 1994]. Some of these methods were described in detail in [Tsang 1993, Chapter 8] and
[Apt 2003, Chapter 6].

The reader can find a brief description of the above methods in [Torrens Arnal 2003,
Appendix B]. Neumaier [2004, Section 7] gave pointers to other incomplete search methods for
solving constrained optimization problems, such as homotopy/continuation methods, clustering
methods, local descent methods, response surface methods. Many of these methods can be
adapted to solving CSPs. A special survey on homotopy/continuation methods can be found
in [Allgower and Georg 1980]. Very recent homotopy/continuation methods for solving systems
of equations can also be found in [Inoue et al. 2002, 2004, 2001].

Notably, a very recent PhD thesis of van Hermet [2002] provides detailed descriptions
and empirical comparisons of several evolutionary computation methods for solving CSPs,
including the initiative evolutionary method, the microgenetic iterative descent method, the
co-evolutionary constraint satisfaction method, the stepwise adaptation of weights method, the
grouping genetic method, and the zooming adaptation of weights method.

March 14, 2005

Chapter 4

Improvements to Search Strategies
for Numerical CSPs

Note: This chapter includes the research conducted jointly with Djamila Sam-Haroud and Marius-Calin
Silaghi in [Vu et al. 2002, 2003]. This is a major contribution of the thesis.

4.1. Introduction

In design applications (e.g., estimation, robust control [Asarin et al. 2000; Jaulin et al. 2001];
automation and robotics [Jaulin et al. 2001; Neumaier and Merlet 2002]; shape design [Snyder
1992]; civil engineering problems, see Appendix C), the solution set of a numerical constraint
satisfaction problem (NCSP) often expresses relevant alternatives that need to be identified as
precisely and as completely as possible. In many of such applications the complete solution
set of an NCSP is required, while in others it is only highly desired, but not mandatory. For
example, in practical contexts such as early stages of a design process, a formulated NCSP
may have many solutions that express equally relevant choices. In this case, one often desires
to find as many solutions as possible because investigating many solutions at earlier stages
potentially increases the chance of success at later stages. It also makes it possible to identify
good design alternatives. Therefore, the complete solution set is often sought for, provided
that the response time is reasonable. Since a general NCSP is NP-hard, the time for finding all
its solutions at a high precision (or within a very small tolerance) are often prohibitively long.
In most cases, low or medium precisions are sufficient for real world applications. Hence, there
is a trade-off between timely but poor information and slow but more precise information.

Recent interval-based constraint solvers, such as Numerica [Van Hentenryck 1998] and ILOG
Solver [ILOG 2003], have shown their ability to find all solutions of certain instances of NCSPs
efficiently within an arbitrary positive tolerance. Most of them are essentially branch-and-prune
methods, which interleave branching steps with pruning steps (see Section 3.2.2). They mainly
focus on improving the pruning steps, while leaving the branching steps unimproved. Namely,
they use the domain bisection or dichotomization for the branching steps and only aim at
generating a collection of boxes, each encloses one solution. This approach is referred to as the
point-wise approach. Such branching strategies have been mainly designed to address NCSPs
with isolated solutions (see Figure 4.1a). Therefore, they are often inefficient when applied,
in a straightforward manner, to NCSPs with non-isolated solutions (see Figure 4.1b). In this
case, the set of generated enclosures is prohibitively verbose or poorly informative. Neither the

101

102 4. Improvements to Search Strategies for Numerical CSPs

computational time nor the compactness of the solution representation are satisfactory.

x

y

x

y

(a) (b)

Figure 4.1. (a) An NCSP with four isolated solutions (grey dots); (b) An NCSP with two continuums
of solutions (grey regions).

In contrast to the above approach, a new approach has been developed in order to pro-
vide promising alternatives to the point-wise techniques. They consist in covering a spectrum
of non-isolated solutions with a number of subsets of Rn (see Definition B.4). These subsets
are usually chosen to be simple ones such as interval boxes. Due to theirs simplicity, interval
boxes have been used in many set covering techniques, which forms box covering techniques
(see Section 3). These (previously available) algorithms are based on simple domain splitting
and have one of the following limitations: (i) they are designed for special constraints only
(e.g., universally quantified constraints [Benhamou and Goualard 2000]); (ii) they uniformly
enforce dichotomous splitting strategies on all variables (e.g., [Jaulin 1994], [Sam-Haroud 1995;
Sam-Haroud and Faltings 1996]). In general, most known algorithms follow a branching strat-
egy that insists on splitting interval domains until canonical intervals are reached or their
widths are not greater than a predefined precision. The most successful techniques enhance
the solving process by applying inclusion tests or domain reduction techniques to the overall
constraint system, after each split (see Section 3.1.6 and Section 3.2.2). This policy is referred
to as dichotomous maintaining bounds by consistency (DMBC). When applied to NCSPs with
non-isolated solutions, most DMBC techniques still produce verbose representations for the
boundaries of non-isolated solution sets. Hence, either their applicability is restricted or the
tractability limits are rapidly reached.

Recently, a new search strategy, called UCA6, was proposed by Silaghi et al. [2001]. This
search strategy allows enforcing domain reduction techniques on the negation of individual
constraints. The difference between the input domains x and the obtained domains x′ is
feasible w.r.t. a considered constraint, C. Hence, splitting x around x′ allows identifying a
feasible region y := x \ x′. The constraint C is redundant in the region y, hence can be
eliminated from consideration. The constraints that are still in consideration are called the
running constraints. In the subproblems generated during the solving process, there may be
some variables that do not occur in any running constraint. These variables no longer need to
be considered further. In general, the UCA6 algorithm allows better splitting decisions, hence
faster branch-and-prune solution methods. This algorithm is however still slow and provides
verbose output in some cases. The first reason is that the orthogonal splitting policy generates
a significant number of nearly aligned boxes near the boundaries of constraints. The second
reason is that the UCA6 algorithm often spends too much time in producing too small boxes
(near the boundaries of constraints and the boundary of the solution set) w.r.t. a predefined
precision ε. This is often unnecessary in many real world applications.

March 14, 2005

4.2. Motivation 103

In this chapter, we propose a new search strategy, called UCA6+, in order to overcome
the above limitations of the UCA6 algorithm by revising the branching steps of the UCA6
algorithm. The new contribution in the UCA6+ algorithm is twofold. First, the UCA6+

algorithm allows better controlling domain reduction operators when the precision is practically
detected as sufficient with respect to the requirements of applications. Namely, it prevents
unnecessarily spending efforts on reducing the domains of which the sizes are smaller than
a predefined precision ε. Moreover, when a certain number of domains are smaller than ε, it
resorts to a simple solver that is efficient for small and very low dimensional problems. The gain
is then in both the running time and the alignment of boxes. Second, the UCA6+ algorithm
allows resorting to geometric techniques, such as the extreme vertex representation [Aguilera
1998; Bournez et al. 1999], to combine aligned boxes resulting in the previous stage into larger
equivalent boxes. Therefore, the representation of the solution set is more concise. This hence
potentially accelerates the query on the explicit representation of the solution set.

In case the solution set is isolated, the UCA6+ algorithm leaves the branching steps un-
changed. That is, it uses the bisection as usual. There is a simple heuristic to predict whether
solutions are isolated or not. It is simply based on checking if the constraints are equalities. In
case the considered problem has inequality constraints, it allows performing domain reduction
techniques on the negation of these constraints. In general, the UCA6+ algorithm improves
search techniques in case the solution set contains continuums of solutions and keeps the same
procedure as DMBC techniques in case solutions are isolated. In the former case, the UCA6+

algorithm provides inner and outer approximations w.r.t. a predefined precision ε. Moreover,
a large percentage of provided approximations are often proved to be sound solutions (see De-
finition 2.47). Our experiments show that the new search technique improves the efficiency as
well as the conciseness of the solution representation.

4.2. Motivation

We start by giving two small introductory examples to illustrate the inadequacy of the point-
wise approach when blindly applied to NCSPs with non-isolated solutions.

Example 4.1. The first example illustrates how the point-wise approach is misused when
applied to NCSPs with non-isolated solutions. Since point-wise techniques inherently assume
the isolation of solutions, the interval splitting process they use for branching steps is sometimes
prematurely stopped, as soon as a solution is detected within a box. This leads to poorly
informative approximations of the solution sets, as shown in the following example. The first
example, WP, is a two-dimensional simplification of the design model for a kinematic pair
consisting of a wheel and a pawl. The constraints determine the regions where the pawl can
touch the wheel without blocking its motion.

WP ≡ 〈20 <
√

x2 + y2 < 50,
12y√

(x− 12)2 + y2
< 10; x ∈ [−50, 50], y ∈ [0, 50]〉.

Figure 4.2 shows the exact solution set (the grey region) and the outcome of a point-wise
constraint solver (six large boxes) when the existence of point-wise solutions is abusively as-
sumed. The outcome was computed by using a simple combination of IloGenerateBounds
and IloSplit in ILOG Solver 5.3 in the recommended way [ILOG 2003]:

Solver.setDefaultPrecision(P);
Solver.extract(WP);

March 14, 2005

104 4. Improvements to Search Strategies for Numerical CSPs

Solver.startNewSearch(IloGenerateBounds(Env, X, P) && IloSplit(Env, X));
while (Solver.next()){

IlcFloatVarArray S = Solver.getFloatVarArray(X);
reportSolution(S);

}
Solver.endSearch();

where
• WP is a C++ object of the type IloModel, which is added with the problem WP;
• Solver is a C++ object of the type IloSolver;
• Env is a C++ object of the type IloEnv;
• X is a C++ object of the type IloNumVarArray, which is the vector of the variables x, y;
• P is the predefined precision, which is set to the value 2. ♣

= feasible

x

y

20 5012?20?50

50

?20

50

?18.1

[?50.00, 50.00] x [00.00, 01.56]

[?49.98, 49.98] x [01.56, 03.13]

[?49.90, 49.90] x [03.13, 06.25]

[?49.61, 49.61] x [06.25, 12.50]

[?48.41, 48.41] x [12.50, 25.00]

[?43.30, 43.30] x [25.00, 50.00]

20

18.1

Figure 4.2. An example of a poorly informative representation: the solution set of the problem WP
is poorly covered by six boxes, when the precision P is set to the value 2.

Example 4.2. The second example to be considered is an NCSP that has four nonlinear
inequality constraints involving three variables:

P3 ≡





x2 ≤ y;
ln y + 1 ≥ z;
xz ≤ 1;
x3/2 + ln(1.5z + 1) ≤ y + 1;
x ∈ [0, 15]; y ∈ [1, 200]; z ∈ [0, 10].

The solving process in Example 4.1 fails to solve the problem P3 in reasonable time. Using
an efficient implementation of classical bisection techniques,1 the solving process does not
terminate after ten hours and produces more than 260000 small boxes (see Section 4.5). Our
technique, the UCA6+ algorithm, reduces the complete output to 1376 boxes and terminates
after 1.41 seconds on the same computer (see Table 4.1 and Table 4.2). ♣

The result described in Example 4.2 is one of our most successful results and hence does
not objectively illustrate the power of our technique. However, it clearly illustrates how the
point-wise approach can be inadequate to solve NCSPs with continuums of solutions.

1 The pruning technique is based on IloGenerateBounds in ILOG Solver 5.3, but the branching technique is
rewritten to reflect the ideas of DMBC techniques.

March 14, 2005

4.3. Representation of Non-isolated Solutions 105

4.3. Representation of Non-isolated Solutions

4.3.1. Inner and Outer Approximations

In case the solution set is empty or consists of isolated points, its representation is usually
simple. The representation of the solution set of a numerical CSP (NCSP) is not simple in
other cases, especially when the solution set contains continuums of solutions. The solution
set of an NCSP is, in general, a relation on Rn, where n is the number of variables in the
considered NCSP. A relation can be theoretically approximated by a superset and/or subset.

Definition 4.3 (Inner Approximation). Given a relation, S ⊆ Rn, a set S− ⊆ Rn is
called an inner approximation of S if it is contained in S; that is, S− ⊆ S.

Definition 4.4 (Outer Approximation). Given a relation, S ⊆ Rn, a set S+ ⊆ Rn is
called an outer approximation of S if it contains S; that is, S+ ⊇ S.

When a relation on Rn, such as the solution set of a numerical CSP, is approximated by
inner and/or outer approximations. The former is a complete approximation (i.e., it contains all
solutions), but may contain some points that are not solutions. Conversely, the latter is a sound
approximation (i.e., it only contains solutions), but may lose some solutions. The concepts of
inner and outer approximations are depicted in Figure 4.3. Given an exact representation R
of a relation S ⊆ Rn, we denote by pts(R) the set of points in S.

Inner Approximation

(a)

Outer Approximation

(b)

Figure 4.3. An example of inner and outer approximations of a circle with interior: (a) the light grey
region is an inner approximation; (b) the dark grey region is an outer approximation.

4.3.2. Union Approximations

A box is the Cartesian product or a vector of real intervals (see Definition 2.78). Because the
computational time for querying a point in a box is constant, one often approximates a relation
S ⊆ Rn by a collection of pairwise disjoint boxes, where two boxes are said to be disjoint if
they have no common points. Such a collection is called a collection of disjoint boxes, for
short. The representation of a collection of disjoint boxes that enumerates these boxes and
that stores their coordinates is called the disjoint box representation (DBR) [Aguilera 1998].

March 14, 2005

106 4. Improvements to Search Strategies for Numerical CSPs

Among the approximations by boxes, the following three approximations attract the most
attention in practice, because of their simplicity. The disjointness condition on boxes
can be relaxed, depending on specific applications: the results in this chapter still hold
for boxes that may have common points on their facets/boundaries, but not in their interiors.

Definition 4.5 (Inner Union Approximation, ¢I). Given a relation S ⊆ Rn. An inner
union approximation of S, denoted by ¢I [S], is a collection of (disjoint) boxes in In◦ such that
S ⊇ pts(¢I [S]).

Definition 4.6 (Outer Union Approximation, ¢O). Given a relation S ⊆ Rn. An outer
union approximation of S, denoted by ¢O[S], is a collection of (disjoint) boxes in In◦ such
that S ⊆ pts(¢O[S]).

Definition 4.7 (Boundary Union Approximation, ¢B). Given a relation S ⊆ Rn. A
boundary union approximation, denoted by ¢B[S], of S (with respect to an inner union
approximation ¢I [S] and an outer union approximation ¢O[S]) is a collection of (disjoint)
boxes in In◦ such that pts(¢B[S]) = pts(¢O[S]) \ pts(¢I [S]).

Note 4.8. Note that ¢X is not a function, where X ∈ {I,O,B}. In this thesis, we will
always refer to ¢B[S] with respect to some ¢I [S] and some ¢O[S], even not explicitly.

Figure 4.4. An example of inner/outer/boundary union approximations of a circle with interior: the
collection of the light grey boxes is an inner union approximation (¢I); the collection of the dark grey
boxes is a boundary union approximation (¢B); the collection of the light and dark grey boxes is an
outer union approximation (¢O).

The concepts of union approximations are depicted in Figure 4.4. Note that we always have
the identity pts(¢I [S])∩pts(¢B[S]) = ∅. In practice, we often compute ¢I [S] and ¢B[S] first,
and then obtain ¢O[S] simply by ¢O[S] ≡ ¢I [S]∪¢B[S], which is a cover of S (Definition B.4).

The worst-case query time of a box-tree in the space Rd is Θ(N1−1/d + k), where N is
the number of boxes and k is the number of boxes intersecting the query range (see [Agarwal
et al. 2001a]). Therefore, it is useful to construct inner and/or outer union approximations of
a relation S in the form of a bounding-box tree. That is, the box represented by an arbitrary

March 14, 2005

4.3. Representation of Non-isolated Solutions 107

node N of the tree is contained in the box represented by the parent of N and has no common
points with the boxes represented by the siblings of N. Fortunately, this is an inherent property
enjoyed by branch-and-prune methods that use boxes as variable domains.

Several authors have recently addressed the issue of computing inner and/or outer union
approximations of the solution set of a factorable NCSP. In [Jaulin 1994], a recursive dichoto-
mous split is performed on variable domains (given as a box). Each box obtained by the split
is tested for inclusion by using interval arithmetic (see Section 3.1.6). The obtained boxes
are hierarchically structured in the form of a 2k-tree. This technique has shown its practical
usefulness in robotics, automation and robust control. Sam-Haroud and Faltings [1996] also
proposed a similar technique. However, only binary and ternary constraints, which are ob-
tained by ternarizing the initial NCSP (see Section 2.1.3.5), are considered when performing
the split. This means that, for a general factorable NCSP, only quadtrees or octrees need to
be constructed. The approach is restricted to the class of NCSPs with convexity properties.
The technique proposed in [Garloff and Graf 1999] constructs outer union approximations al-
gebraically by using Bernstein polynomials, which makes it possible to use algebraic inclusion
tests for boxes. The approach is however restricted to polynomial constraints. Collavizza et al.
[1999] proposed a technique to extend known consistent domains for inequality constraints
(e.g., f(x) ≤ 0) using associated equalities (f(x) = 0). Unfortunately, their results do not
hold for general constraints as claimed in their Proposition 1 and Proposition 2. Most recently,
Benhamou and Goualard [2000] devised a method to solve universally quantified constraints by
working on the negation of constraint (see Section 4.4.2), and Silaghi et al. [2001] extended this
method to compute inner union approximations of NCSPs with classic numerical constraints.

4.3.3. Qualification of Union Approximations

Most interval-based constraint solvers stop splitting a box, which represents the domains of
the currently considered subproblem, as soon as the size of this box is smaller or equal to a
given positive precision ε (hence, this box is called an ε-bounded box). Some other solvers may
attempt to apply a pruning technique or test to ε-bounded boxes before classifying them as
undiscernible; hence, the name undiscernible box has come out.

In general, different constraint solvers use different criteria for leaving ε-bounded boxes
unprocessed. If a technique that is applied to ε-bounded boxes before claiming them as undis-
cernible is used by a solver, then it can be used for the other solvers as well. Therefore, the
comparison of solvers should be based on the same criteria of classifying ε-bounded boxes as
undiscernible. Here, we propose a definition of a checker for this purpose.

Definition 4.9 (Feasibility Checker, FC). Consider a sequence X of n real variables. A
feasibility checker is a function FC which takes as input a box x ∈ In◦ and a finite set C of
constraints on a subsequence Y of X, and which returns either feasible, infeasible, or
unknown such that:

(i) If FC(x, C) = feasible, then every point in x satisfies all the constraints in C.
(ii) If FC(x, C) = infeasible, then no point in x satisfies all the constraints in C.

(iii) If FC(x, C) = unknown, then FC(x′, C) = FC(x′, C ∪ C′) = unknown holds for every box x′

and every finite set C′ of constraints on Y such that

x[Y] ⊆ x′[Y] ⊆
⋂

C∈C′
C.

March 14, 2005

108 4. Improvements to Search Strategies for Numerical CSPs

We recall that the notation x[Y] denotes the projection of x on the sequence Y of variables
(see Definition 2.24). A trivial feasibility checker is the function that always returns unknown.
It is easy to prove by contradiction way that

• If FC(x, C) = feasible, then FC(x′, C) = FC(x′, C ∪ C′) = feasible holds for every finite
set C′ of constraints on Y and every nonempty box x′ such that x′[Y] ⊆ x[Y] ⊆ ⋂

C∈C′ C;

• If FC(x, C) = infeasible, then FC(x′, C) = FC(x′, C ∪ C′) = infeasible holds for every
finite set C′ of constraints on Y and every box x′ such that x′[Y] ⊆ x[Y] ⊆ ⋂

C∈C′ C.

Therefore, we say that a feasibility checker is monotonic. A feasibility checker is very similar
to an inclusion test (see Section 3.1.6), except that it enjoys the monotonicity.

Definition 4.10 (Interval-Based Precision). Given an NCSP P = (V,D, C), a precision
(vector) ε, and a feasibility checker FC. A solution algorithm that computes inner and bound-
ary union approximations is said to be of the precision ε w.r.t. the feasibility checker FC if
the boundary union approximation equals (w.r.t. the set union) to a collection U of disjoint
ε-bounded boxes in In◦ such that

∀x ∈ U : FC(x, C) = unknown. (4.1)

4.4. Exhaustive Search for CSPs with Non-isolated Solutions

Essentially, recent interval-based search techniques for NCSPs are of the form of dichotomous
maintaining bounds by consistency (DMBC). However, DMBC techniques often generates ver-
bose inner and outer union approximations. The first reason is that the orthogonal splitting
policy they use often generates a significant number of nearly aligned boxes near the boundaries
of constraints. The second reason is that entirely feasible boxes might be unnecessarily split.
The improvements to this search strategy (i.e., DMBC) we propose are presented in the sec-
tions 4.4.4, 4.4.5, and 4.4.6. They require, however, to generalize or modify several previously
existing concepts. These modifications will be presented in the next three subsections.

4.4.1. Domain Reduction Operators

First, we define the concept of a domain reduction operator as follows.

Definition 4.11 (Domain Reduction Operator, DR). Given a sequence X of n real vari-
ables associated with domains D. A domain reduction operator DR for numerical constraints
is a function which takes as input a box x ∈ In◦ contained in D and a finite set C of constraints
on X, and which returns a box in In◦ , denoted by DR(x, C), satisfying the following properties:

(Contractiveness) DR(x, C) ⊆ x, (4.2)

(Correctness) DR(x, C) ⊇ x ∩
⋂

C∈C
C. (4.3)

March 14, 2005

4.4. Exhaustive Search for CSPs with Non-isolated Solutions 109

A domain reduction operator has also been referred to as a narrowing operator, contracting
operator, or contractor in literature. We eventually adopt the name domain reduction operator,
because it is mnemonic and the terminology domain reduction has been widely accepted in
many fields, not only in contraint programming.

C1

C2

The result of a DR operator on (x, {C1, C2})

= feasible w.r.t. a constraint

The bounding box x

= feasible w.r.t. all constraints

Figure 4.5. A domain reduction (DR) operator applied to a box x and a constraint set {C1, C2}.

In constraint programming, domain reduction operators are usually constructed by enforc-
ing box consistency, hull consistency, or kB-consistency (see Section 2.3.3 and Section 3.2.2).
These particular domain reduction operators enjoy the monotonicity (see Definition 2.44 and
Definition 4.18). Many domain reduction operators do not enjoy the monotonicity, but they
are still very efficient in practice. The concept of a domain reduction operator is depicted in
Figure 4.5. Other examples of domain reduction operators are depicted in Figure 4.7. The fol-
lowing property of domain reduction operators is obvious but important for constraint solving.

Theorem 4.12. Given a set C of constraints on a sequence of n real variables associated
with domains D. Suppose x ∈ In◦ is a box contained in D. If there exists a domain reduction
operator DR that maps (x, C) to an empty set (i.e., DR(x, C) = ∅), then C is inconsistent in x;
that is,

x ⊆ ¬C ≡ D \
⋂

C∈C
C. (4.4)

Proof. It follows from the correctness of domain reduction operators, as defined in Defini-
tion 4.11, that x ∩⋂

C∈C C = ∅. Hence, we have x ⊆ ¬C. ¥

4.4.2. Complementary Boxing Operators

We now consolidate the technique for constructing inner approximations of universally quan-
tified constraints [Benhamou and Goualard 2000] and the technique for constructing outer
approximations of numerical constraints [Silaghi et al. 2001] with a new notation that facili-
tates the presentation of our techniques in Section 4.4.4.

Let X be a sequence of n real variables associated with domains D and C a finite set of
constraints on X. Consider a box x ⊆ D. A negation test amounts to performing a kind
of domain reduction operator on (x,¬C) to get a box x′. If x′ is an empty set, then every
point in x satisfies C (see Theorem 4.12); otherwise, use a kind of splitting operator, proposed
in [Benhamou and Goualard 2000] under the name ICAb3c, to split x around x′ and then
dichotomize x′. A negation-based search algorithm, called ICAb5, recursively performs ICAb3c

on a selected running constraint2 until a predefined interval-based precision is reached. This
2 A running constraint is a constraint that is currently still under consideration.

March 14, 2005

110 4. Improvements to Search Strategies for Numerical CSPs

procedure was originally proposed for universally quantified constraints of the form ∀t : C(t, x)
by Benhamou and Goualard [2000], and was later adapted to solving numerical constraints
by Silaghi et al. [2001]. In [Silaghi et al. 2001], an operator, called Bq therein, similar to a
negation test is applied to numerical inequality constraints. The search algorithm in [Silaghi
et al. 2001], called UCA6, employs the Bq operator to enclose the negations of all individual
constraints and then choose the best result to guide the domain splitting during search. In
addition, the UCA6 algorithm memorizes old Bq’s for reuse when computing new Bq’s. It also
uses some heuristics to choose inequalities for the Bq operator and domain splitting.

For convenience, we define a kind of operator to generalize the concept of a negation test,
and then give several important properties. The generalized operator is called the comple-
mentary boxing operator, and the corresponding splitting operator is called the box splitting
operator. Hereafter is the definition of a complementary boxing operator.

Definition 4.13 (Complementary Boxing Operator, CB). Given a sequence X of n real
variables associated with domains D. A complementary boxing operator is a function CB that
takes as input a box x ∈ In◦ contained in D and a finite set C of constraints on X, and that
returns a box in In◦ , denoted by CB(x, C), satisfying the following properties:

(Contractiveness) CB(x, C) ⊆ x, (4.5)

(Complementariness) x \ CB(x, C) ⊆
⋂

C∈C
C. (4.6)

C2

The result of a CB operator on (x, {C1, C2})

= feasible w.r.t. a constraint

The bounding box x

= feasible w.r.t. all constraints

C1

CB operator

Figure 4.6. An example of a complementary boxing (CB) operator applied to a box x and a set {C1, C2}
of two constraints.

A box resulting from the application of a complementary boxing operator to a bounding
box x and a set C of constraints is called a complementary box of C within x. The term
complementary boxing refers to the process of computing a complementary box. The concept of
a complementary boxing operator is depicted in Figure 4.6. Additionally, Figure 4.7 illustrates
the behavior of domain reduction operators and complementary boxing operators when applied
to the same bounding boxes, in some typical situations.

The complementariness of complementary boxing operators means that complementary
boxing makes it possible to isolate certain regions, namely x \ CB(x, C), of which the points
entirely satisfy all the constraints in C. Especially, if the application of a complementary boxing
operator to a box and a constraint results in an empty set, then the box completely satisfies
that constraint. Similarly, if the application of a complementary boxing operator to a box with

March 14, 2005

4.4. Exhaustive Search for CSPs with Non-isolated Solutions 111

DR operator

CB operator
CB operator = bounding box

DR operator

DR operator = bounding box

CB operator

DR operator = bounding box

= feasible

Figure 4.7. Examples of domain reduction (DR) operators and complementary boxing (CB) operators.

the whole set of constraints results in an empty set, then the box is completely feasible. The
following theorem states that property formally.

Theorem 4.14. Given a set C of constraints on a sequence of n real variables associated
with domains D. Suppose x is a box contained in D. If there exists a complementary boxing
operator CB that maps (x, C) to an empty set (i.e., CB(x, C) = ∅), then C is satisfied with
every point in x; that is, x ⊆ ⋂

C∈C C.

An complementary boxing operator can be constructed from a domain reduction operator
as stated in the following theorem.

Theorem 4.15. Given a domain reduction operator DR. The function f defined as f(x, C) ≡
DR(x,¬C) is a complementary boxing operator.

Proof. By definition xf = f(x, C) = DR(x,¬C). The contractiveness of domain reduction
operators implies that xf ⊆ x. That is, f enjoys the contractiveness of complementary boxing
operators. In addition to that, the correctness of domain reduction operators implies that

x ∩ ¬C ⊆ xf (4.7)

It follows from (4.7) that, for all x ∈ x \ xf , we have x /∈ x ∩ ¬C, thus, x /∈ ¬C ≡ D \⋂
C∈C C,

and x ∈ ⋂
C∈C C because x ∈ x ⊆ D. That is, we have x \ xf ⊆

⋂
C∈C C. This means that f

enjoys the complementariness of complementary boxing operators. ¥

March 14, 2005

112 4. Improvements to Search Strategies for Numerical CSPs

By a similar argument, we also have the following result.

Theorem 4.16. Given a complementary boxing operator CB. The function f defined as
f(x, C) ≡ CB(x,¬C) is a domain reduction operator.

Proof. By definition xf = f(x, C) = CB(x,¬C). The contractiveness of complementary boxing
operators implies that xf ⊆ x; that is, f has the contractiveness of domain reduction operators.
In addition to that, the complementariness of complementary boxing operators implies that

x \ xf ⊆ ¬C = D \
⋂

C∈C
C (4.8)

It follows from (4.8) that, for all x ∈ xf , we have x /∈ x ∩ ¬C, thus, x /∈ D \ ⋂
C∈C C and

x ∈ ⋂
C∈C C because x ∈ xf ⊆ D. That is, we have x \ xf ⊆ C. This means that f enjoys the

complementariness of complementary boxing operators. ¥

It follows from Theorem 4.15 and Theorem 4.16 that complementary boxing operators
can be constructed from domain reduction operators and vice versa. Next, we refine the
general definition of the monotonicity of domain reduction operators and complementary boxing
operators. In particular, let C = {C1, . . . , Ck} be set of k constraints. A complementary boxing
operator can be constructed by CB(x, C) := DR(x,¬C) = DR(x, C0), where C0 is the disjunction
of constraints ¬C1, . . . ,¬Ck. In a system that does not accept disjunctive constraints, we can
relax it by taking the union of complementary boxes, as stated in following theorem.

Theorem 4.17. Consider a sequence X of n real variables associated with domains D. Let
C = {C1, . . . , Ck} be a set of constraints on X and {DR1, . . . , DRk} a set of domain reduction
operators for X. Suppose {C ′

1, . . . , C
′
k} is a set of constraints on X such that ¬Ci ≡ D\Ci ⊆ C ′

i

for all i = 1, . . . , k. Then the operator defined by the following rule is a complementary boxing
operator:

∀x ∈ In◦ ,x ⊆ D : f(x, C) ≡ ut
k⋃

i=1

DRi(x, C ′
i), (4.9)

Proof. The contractiveness of f is obvious because DRi(x, C ′
k) ⊆ x. We now prove the com-

plementariness. For every x ∈ x \⋃k
i=1 DRi(x, C ′

i) and every i ∈ {1, . . . , k}, we have

x /∈ DRi(x, C ′
i) ⊇ x ∩ C ′

i

⇒ x /∈ x ∩ C ′
i

⇒ x /∈ C ′
i ⊇ ¬Ci

⇒ x /∈ D \ Ci

⇒ x ∈ Ci (since x ∈ D),

hence, x ∈ ⋂k
i=1 Ci. Therefore, we have

x \ f(x, C) ⊆ x \
k⋃

i=1

DRi(x, C ′
i) ⊆

k⋂

i=1

Ci.

This is the complementariness as required. ¥

March 14, 2005

4.4. Exhaustive Search for CSPs with Non-isolated Solutions 113

The negation ¬C of a numerical constraint C of the form f(x) ¦ 0; where ¦ is either ≤, <,
≥, >, =, or 6=; is the constraint f(x) ¦̃ 0 with ¦̃ is either >, ≥, <, ≤, 6=, or =, respectively.
In practice, some implementations of domain reduction operators only accept constraints that
are defined with the relations ≤ and ≥, but not with the relations < and >. For example, a
constraint Ci of the form Ci ≡ (f(x) ≤ 0) has the negation of the form ¬Ci ≡ (f(x) > 0),
which is not accepted in some implementations. Fortunately, we can safely use C ′

i ≡ (f(x) ≥ 0)
in the complementary boxing operator defined by (4.9) because ¬Ci ⊆ C ′

i holds.

Definition 4.18 (Monotonicity). Given a sequence X of variables associated with domains
D. A domain reduction (or complementary boxing) operator µ is called monotonic if for every
set C of constraints on X we have

∀x,x′ ∈ In◦ ,x ⊆ D,x′ ⊆ D : x ⊆ x′ ⇒ µ(x, C) ⊆ µ(x′, C). (4.10)

The following theorem gives a way to construct a feasibility checker from domain reduction
operators and complementary boxing operators that enjoys the monotonicity.

Theorem 4.19 (FC from DR and CB). Given a set {DR1, . . . , DRn} of n domain reduction
operators and a set {CB1, . . . , CBn} of n complementary boxing operators, where DRk and CBk

are defined in k-dimensional space (k = 1, . . . , n). Assume that all the operators DRk and CBk

are monotonic. Let X be a sequence of n real variables. Suppose f is a function which takes
as input a box x ∈ In◦ and a finite set C of constraints on a subsequence Y of size k of X, and
which returns either feasible, infeasible, or unknown such that

f(x, C) = infeasible ⇔ DRk(x[Y], C) = ∅, (4.11)
f(x, C) = feasible ⇔ CBk(x[Y], C) = ∅. (4.12)

Then f is a feasibility checker.

Proof. The result follows Definition 4.9, Theorem 4.12, and Theorem 4.14 easily. ¥

4.4.3. Domain Splitting Operators

First, we recall the concept of a bisection, where a side (i.e., an interval) of a box is dichotomized
into two equal parts.

Definition 4.20 (Dichotomous Splitting Operator, DS). A dichotomous splitting (DS)
operator is a function DS : In◦ → 2I

n◦ that takes as input a box in In◦ , and that returns two
(disjoint) boxes in In◦ resulting from splitting a side of the input box into two halves.

Example 4.21. Consider a box x ≡ (x1, . . . ,xn)T ∈ In◦ , where xi = [xi, xi[. A dichotomous
splitting operator DS may split x into two disjoint boxes: x′ = (x1, . . . ,xi−1,x′i,xi+1, . . . ,xn)T

and x′′ = (x1, . . . ,xi−1,x′′i ,xi+1, . . . ,xn)T, where x′i = [xi, mid(x)[and x′′i = [mid(x), xi[. Note
that x′i ∩ x′′i = ∅, thus, x′ ∩ x′′ = ∅. ♣

March 14, 2005

114 4. Improvements to Search Strategies for Numerical CSPs

Second, we define the concept of a box splitting operator, which splits around a comple-
mentary box in order to isolate feasible regions w.r.t. a set of constraints.

Definition 4.22 (Box Splitting Operator, BS). A box splitting (BS) operator is a func-
tion BS : In◦ × In◦ → 2I

n◦ which takes as input two boxes such that the former contains the
latter, and which sequentially splits the outer box along some facets of the inner one. The
output is a sequence of disjoint boxes.

CB operator CB operator = bounding box

CB operator

= feasibleBS operator
DS operator

BS operator

Figure 4.8. Examples of box splitting (BS) and dichotomous splitting (DS) operators. In box splitting,
all boxes excepted the complementary box are feasible w.r.t. the considered constraints.

In fact, the concept of a box splitting operator is a slight generalization of the splitting
operator proposed in [Van Iwaarden 1996]. The original splitting operator gives a way to split
a region surrounding a box, provided that this box contains at most one optimal solution to a
considered optimization problem.

In our algorithm, a box splitting operator which takes as input a domain box and a com-
plementary box resulting from the application of a complementary boxing operator is applied
in combination with a dichotomous splitting operator. The dichotomous splitting operator is
used when either the complementary boxing operator produces no reduction or the box split-
ting operator results in too small boxes. Figure 4.8 illustrates the concept of a box splitting
operator used for this purpose.

4.4.4. Controlling the Reduction of Small Domains

We first observe that a better alignment of boxes near boundary regions of the solution set can
be obtained by finely controlling the application of domain reduction operators during search.
In particular, if the i-th component xi of a box x ∈ In◦ , which represents the vector of domains

March 14, 2005

4.4. Exhaustive Search for CSPs with Non-isolated Solutions 115

of the considered subproblem, is bounded by εi, then the domain reduction to be applied to the
corresponding variable xi is not necessary to be enabled. This is to obtain better alignments
of contiguous boxes and the computational performance. Here is the formal definition of the
condition for the context.

Definition 4.23 (Active/Inactive Variable). Given a sequence X of n real variables
(x1, . . . , xn), and a vector ε = (ε1, . . . , εn)T ∈ Rn

+. Consider a box x = (x, . . . ,xn)T ∈ In◦
and a finite set C of constraints on subsequences of X. The variable xi is called an active
variable in x w.r.t. C and ε if it is a variable of (in other words, it occurs in) at least one
constraint in C and w(xi) ≡ sup(xi)− inf(xi) > εi holds. The variable xi is called an inactive
variable in x w.r.t. C and ε if it is not an active variable in x w.r.t. C and ε.

A domain reduction operator (respectively, a complementary boxing operator) that only
works on active variables is called a restricted-dimensional domain reduction operator (respec-
tively, a restricted-dimensional complementary boxing operator). In other words, a restricted-
dimensional operator stops reducing the domains of inactive variables in its implementation.
We denote by DRrd (respectively, CBrd) the restricted-dimensional domain reduction operator
(respectively, the restricted-dimensional complementary boxing operator) obtained from the
normal domain reduction operator DR (respectively, the normal complementary boxing opera-
tor CB) by enforcing the domain reduction only on active variables.

When local consistency notions are enforced in order to obtain the effect of domain re-
duction (i.e., they play the role of domain reduction operators), restricted-dimensional oper-
ators amount to enforcing the local consistency notions only for active variables. The recent
algorithms for achieving local consistency (such as box consistency, hull consistency, and kB-
consistency) in the sections 3.2.2.1, 3.2.2.2, 3.2.2.3, 3.2.2.4, and 3.2.2.5 can be easily modified
to adopt the idea of only working on active variables (by ignoring any procedure involving
inactive variables). In case a domain reduction operator cannot be modified to adopt the idea
of working only on active variables, we can apply it normally and then restore the domains of
inactive variables to the input domains/intervals. In this case, the gain is only in the (better)
alignment of contiguous boxes, but not in the performance.

Fortunately, the implementation of box consistency in a well-known product, ILOG Solver
[ILOG 2003], supports the idea of working only on active variables. It can be done by simply
passing only active variables (X) to the function IloGenerateBounds when we need to generate
narrower bounds on X.

An illustration of the difference between the effect of a normal domain reduction (DR)
operator and the effect of a restricted-dimensional domain reduction (DRrd) operator in the
solving process is given in Figure 4.9. In this example, although the normal DR operator
produces more accurate output than the DRrd operator does, it has to spend much time on
making the boundary region narrower than the allowed tolerance ε1. This is, in practice,
unnecessary since real world applications mainly focus on the inner boxes, the boxes near the
boundary are often unsafe for the further exploration in the applications, as shown in our
experiments (see Section 4.5). Moreover, the number boxes (15 inner boxes + 8 undiscernible
boxes) resulting from the application of the DR operator is higher than the number boxes (3
inner boxes + 8 undiscernible boxes) resulting from the application of the DRrd operator, in
general. Moreover, the contiguous boxes obtained by using the DRrd operator are often aligned;
hence, a geometrically compacting technique can work on them efficiently to get a concise
representation of the solution set, as shown in the next section.

March 14, 2005

116 4. Improvements to Search Strategies for Numerical CSPs

Figure 4.9. An example of normal domain reductions and restricted-dimensional domain reductions
at different levels: (a) all variables (x1 and x2) are considered for the over-reduction; (b) only the active
variable (x2) is considered for the reduction. The light grey regions are inner boxes, the dark grey
regions are undiscernible boxes.

4.4.5. Compact Representation of Solutions

Once the effect of better alignments is obtained, the question is how such a set of aligned boxes
can be compacted into a smaller set. We propose to use the extreme vertex representation
(EVR) of orthogonal polyhedra for this purpose. The extreme vertex representation was first
proposed by Aguilera and Ayala [1997] for the three-dimensional space, and was later extended
to the n-dimensional space in [Bournez and Maler 2000; Bournez et al. 1999]. The basic idea
is that the union of disjoint boxes delivered by a box covering solver defines an orthogonal
polyhedron for which an improved representation can be generated. An orthogonal polyhedron
can be naturally represented as the union of disjoint boxes (by enumerating the boxes and their
vertices). That representation is called the disjoint box representation (DBR) in computational
geometry. The EVR is a way of compacting the DBR (see [Aguilera 1998] and [Bournez and
Maler 2000; Bournez et al. 1999]). Roughly speaking, in the EVR, the extreme vertices of an
orthogonal polyhedron are identified and stored in a compact manner such that no information
is lost w.r.t. the representation of the polyhedra. Moreover, when converting from EVR back
to DBR, the obtained DBR are often more compact than the initial DBR.

We now recall some basic concepts in the theory of extreme vertex representation. The
reader can find more details in [Bournez and Maler 2000; Bournez et al. 1999]. These concepts
are sufficient to be presented for griddy polyhedra3 because the results on general orthogonal
polyhedra can be easily obtained from the results on griddy polyhedra by mapping the multidi-
mensional array of vertex indices of the orthogonal polyhedra to the multidimensional array of
vertices of griddy polyhedra (see Figure 4.10). In fact, they do not depend on the orthogonality
of the underlying basis.

3 A griddy polyhedron is the union of some unit hypercubes with integer-valued vertices [Bournez et al. 1999].

March 14, 2005

4.4. Exhaustive Search for CSPs with Non-isolated Solutions 117

(a) (b)

v1, 1 v2, 1 v3, 1

v1, 2 v2, 2 v3, 2

v2, 3 v3, 3

v2, 4 v3, 4

v4, 3

v4, 4

v3, 5 v4, 5

(1, 1) (2, 1) (3, 1)

(1, 2) (2, 2) (3, 2)

(2, 3) (3, 3) (4, 3)

(4, 4)(3, 4)(2, 4)

(3, 5) (4, 5)

Figure 4.10. Examples of a griddy polyhedron and an orthogonal polyhedron: (a) a griddy polyhedron
made of the vertex indices of (b) an orthogonal polyhedron.

For simplicity, polyhedra are assumed to live in X = [0,m[d ⊆ Rd (the results also hold for
X = Rd

+). Let G = (0, 1, . . . ,m− 1)d ⊆ Nd be a grid of integer points. For every point x ∈ X,
bxc denotes the grid point corresponding to the (componentwise) integer part of x. The unit
box associated with a grid point x = (x1, . . . , xd)T ∈ G is the box B(x) = [x1, x1 + 1[× · · · ×
[xd, xd + 1[. The set of all unit boxes is denoted by B. A griddy polyhedron P is the set closure
of the union of some unit boxes, or can be viewed as a set of grid points.

Definition 4.24 (Color Function). Let P be a griddy polyhedron. The color function
color : X → {0, 1} is defined as follows: if x is a grid point then color(x) = 1 ⇔ B(x) ⊆ P ;
otherwise, color(x) = color(bxc).

We say that a grid point x is black (respectively, white) and that B(x) is full (respectively,
empty) when color(x) = 1 (respectively, color(x) = 0). Figure 4.11a illustrates the color function
for griddy polyhedra. In Figure 4.11b, the concept of a forward cone based at x ∈ G is also
depicted: x/ ≡ {y ∈ G | x ≤ y}.

(a) (b)

x

Figure 4.11. A griddy polyhedron: (a) sample colors defined by the color function; (b) the forward
cone x/ ≡ {y ∈ G | x ≤ y}.

A canonical representation scheme for 2B (or 2G) is a set E of syntactic objects such that
there is some bijective function Ψ : E → 2B; that is, every polyhedron has a unique rep-
resentation. The most simple representation scheme is to explicitly enumerate the values of
the color function on every grid point; hence, it needs a d-dimensional array of bits with md

March 14, 2005

118 4. Improvements to Search Strategies for Numerical CSPs

entries. Another simple representation is the vertex representation that consists of the set
{(x, color(x)) | x is a vertex}. This is however still verbose. Hence, it is desired to store only
important vertices only. The following definition identifies these important vertices.

Definition 4.25 (Extreme Vertex). A grid point x is called an extreme vertex of a griddy
polyhedron P if the number of black grid points in N (x) = {x1 − 1, x1} × · · · × {xd − 1, xd}
is odd (called the neighborhood of x).

Let ⊕ denotes the addition modulo 2, known also as the exclusive-or (XOR) operation
in Boolean algebra, p ⊕ q = (p ∧ ¬q) ∨ (p ∧ ¬q). The ⊕ operation on sets is defined by
A⊕B = {x | (x ∈ A)⊕ (x ∈ B)}. The set of extreme vertices (together with the ⊕ operation)
makes an canonical representation of griddy polyhedra as follows [Bournez and Maler 2000].

Theorem 4.26 (Extreme Vertex Representation). For any griddy polyhedron P , there
is a unique set V of grid points in G such that P =

⊕
x∈V x/. Moreover, the set V is the set

of all extreme vertices of P and this is a canonical representation.

Proof. See the proofs of Theorem 1 and Theorem 2 in [Bournez and Maler 2000]. ¥

Feasible Undiscernible Infeasible Black

(a) (b)

White Extreme vertex

Figure 4.12. An example of (a) DBR and (b) extreme vertices of union approximations

Figure 4.12 illustrates the concept of EVR applied to union approximations. Theorem 4.26
shows that any griddy polyhedron can be canonically represented by the set of its extreme
vertices (and their colors). The extreme vertex representation improves the space required for
storing orthogonal polyhedra by an order of magnitude [Aguilera 1998; Bournez and Maler 2000;
Bournez et al. 1999]. It also enables the design of efficient algorithms for fundamental operations
on orthogonal polyhedra, such as the membership query and the set-theoretic operations (see
[Aguilera 1998] and [Bournez and Maler 2000; Bournez et al. 1999]).

An effective transformation between DBR and EVR was proposed for low dimensional or
small-size (i.e., m is small) polyhedra [Aguilera 1998; Bournez and Maler 2000]. For example,
in the three-dimensional space, the average experimental time complexity of converting an

March 14, 2005

4.4. Exhaustive Search for CSPs with Non-isolated Solutions 119

EVR to a DBR is far less than quadratic but slightly greater than linear in the number of
extreme vertices [Aguilera 1998]. Results in [Bournez and Maler 2000] also imply that, in a
fixed dimension, the time complexity of converting a DBR to an EVR by using XOR operations
is linear in the number of boxes in DBR. We then propose to exploit the ideas of these effective
transformation schemes to produce a compact representation of contiguous aligned boxes, using
the following Combination procedure:

1. Produce a better alignment of the boxes along the boundaries of constraints. This is
done by preventing the unnecessary application of contracting operators over inactive
variables. Figure 4.9 shows the effect of better alignment obtained for a set of nearly
aligned boxes of an undiscernible approximation. The original set of eight small boxes
(Figure 4.9a) reduces to two groups of four aligned boxes (Figure 4.9b) without altering
the predefined interval-based precision.

2. The set of aligned boxes in each group, S1, is converted to EVR and then back to DBR
to get a set of combined boxes, S2 (containing only one box in this case). Due to the
properties of EVR, S2 is more concise than S1. Figure 4.9b shows how this conversion
procedure reduces the two groups of four boxes to two (dark gray) boxes.

The above conversion procedure can theoretically be applied in any dimension. Due to the
efficiency of EVR in low dimension, we however restrict its application to very low dimensional
and small-size regions of the search space in our implementation (see Section 4.4.6). The
running time for this conversion is hence near zero.

4.4.6. Search Algorithms

First, for convenience in comparing the previously available algorithm with our revised algo-
rithm, we present in Algorithm 4.1 a slightly generalized and improved version of the UCA6
algorithm – a search technique proposed by Silaghi et al. [2001]. Basically, this version is the
same as the original version, but it is improved by changing the order of the pruning phase
(Function solveQuickly) such that each box is pruned before being put into the waiting list.
This change reduces the number of subproblems in the waiting list because some inconsistent
subproblems can be discarded sooner than that in the original version in [Silaghi et al. 2001].
This version is general enough to be used with the heuristics in [Silaghi et al. 2001]. Those
heuristics are represented by a generic function, called getSplitType, at Line 1 in Algorithm 4.1.
Moreover, in this version, we make the stop condition more explicit by Function isEpsilonBox.
It is important (for gaining in performance) to emphasize that checking if a domain (i.e., an
interval) is not wider than the predefined precision ε is only performed on variables that occur
in some running constraint, because some constraints have become redundant. This detail has
been omitted in both [Silaghi et al. 2001] and [Silaghi 2002, Section 5.2.3].

Notation 4.27. The notations to be used in Algorithm 4.1 and Algorithm 4.4 follow the
following conventions:

• The notations B, Bi and B′ denote relevant bounding boxes in In◦ , that is, the vectors of
domains of the considered NCSPs.

• The notations C, Ci, C′ and C′′ denote relevant sets of constraints.
• The notation CBc denote a complementary box w.r.t. a constraint, c.

March 14, 2005

120 4. Improvements to Search Strategies for Numerical CSPs

• The notation ¢I and ¢B denote the global lists that accumulate computed boxes of inner
and boundary union approximations, respectively.

• The notations DR, CB, and FC denote some domain reduction operator, complementary
boxing operator, and feasibility checker, respectively.

• The notations DRrd and CBrd denote the restricted-dimensional version of some domain
reduction operator and complementary boxing operator, respectively.

Algorithm 4.1: The UCA6 algorithm – a slightly improved version
Input: a bounding box B0, a constraint set C0, ε ∈ Rn

+, a feasibility checker FC.
Output: an inner union approximation ¢I , a boundary union approximation ¢B.
¢I := ∅; ¢B := ∅; WaitingList := ∅;
if solveQuickly(B0, C0, {B0, . . . ,B0}, ε, FC, WaitingList) then return ; J Page 120.

while WaitingList 6= ∅ do H/* A set {CBc | c ∈ C} of memorized complementary boxes. */

(B, C, {CBc | c ∈ C}) := getNext(WaitingList);
foreach c ∈ C do

CBc := CB(B ∩CBc, c);
if CBc = ∅ then C := C \ {c}; J c is now redundant in B (Theorem 4.14).

end
if C = ∅ then

¢I := ¢I ∪ {B}; continue while;
end
Splitter := getSplitType(); J Get a splitting mode, heuristics can be used.1

J The splitting mode is box splitting.if Splitter = BS then
CBb := chooseTheBest({CBc | c ∈ C});
(B1, . . . , Bk) := BS(B, CBb); J If box splitting did not fail, then ∃Bi ⊇ CBb.

if BS failed then Splitter := DS;
end
if Splitter = DS then (B1, . . . ,Bk) := DS(B); J Bisect B.

for i := 1, . . . , k do
Ci := C;
if Splitter = BS and Bi ∩CBb = ∅ then

Ci := Ci \ {b}; J b is now redundant.

if Ci = ∅ then
¢I := ¢I ∪ {Bi}; continue for;

end
end
solveQuickly(Bi, Ci, {CBc | c ∈ Ci}, ε, FC, WaitingList); J On page 120.

end
end

Function solveQuickly(B, C, {CBc | c ∈ C}, ε, FC, WaitingList)
B′ := DR(B, C); J Reduce domains.

if B′ = ∅ then return true; J B is infeasible, the problem has been solved.
if isEpsilonBox(B′, C, ε, FC) then return true; J The problem has been solved. Page 121.

put(WaitingList← (B′, C, {CBc | c ∈ C})); J Put the current problem into the waiting list.
return false; J The problem has not been solved yet.

March 14, 2005

4.4. Exhaustive Search for CSPs with Non-isolated Solutions 121

Function isEpsilonBox(B, C, ε, FC)
if the domain (in B) of some variable occurring in some running constraint is neither
bounded by ε nor canonical then return false;
if (Result := FC(B, C)) = feasible then J Identify the feasibility of B w.r.t. C.

¢I := ¢I ∪ {B}; J B is feasible, store it into the list of inner boxes.

else if Result = unknown then
¢B := ¢B ∪ {(B, C)}; J B is undiscernible, store it into the list of boundary boxes.

end
return true;

Second, we propose in Algorithm 4.4 a revised version of the improved version of the
UCA6 algorithm, which is called UCA6+ (revised union-constructive approximation). It takes
as input an NCSP, P ≡ (V, C,D), and returns an inner union approximation (¢I) and a
boundary union approximation (¢B) the solution set of P. The outer union approximation
of the solution set can be computed by ¢O := ¢I ∪ ¢B. Roughly speaking, the UCA6+

algorithm uses restricted-dimensional versions of domain reduction and complementary boxing
operators instead of normal versions to produce the effect of better alignment (and also to
gain in performance), and then uses the conversion between the extreme vertex representation
and disjoint box representation to get a compact representation of union approximations. The
UCA6+ algorithm proceeds by recursively repeating three main steps/processes:

(i) Use DRrd operators to reduce the current bounding box, playing the role of variable
domains, to a narrower ones (see Function solveQuickly+).

(ii) Use CBrd operators to get a list of complementary boxes w.r.t. each running constraint
and the new bounding box obtained at Step (i) (Line 2 in Algorithm 4.4). The constraints
that make empty complementary boxes are removed (Line 3 in Algorithm 4.4).

(iii) Combine dichotomous splitting (DS) operators with box splitting (BS) operators for the
whole set of running constraints (see the lines 4, 5, and 7 in Algorithm 4.4).

Remark 4.28. In practice, equality constraints usually define surfaces, we then do not need
to perform Step (ii) for them.

The UCA6+ algorithm uses a waiting list, WaitingList, to store the subproblems waiting
to be processed further. The elements can be retrieved from, and be put to, WaitingList by
the functions getNext and put. WaitingList can be handled as a queue or a stack. This allows
for the breadth-first search in the former case and the depth-first search in the latter case.

The UCA6+ algorithm does not compute complementary boxes for all running constraints
as the UCA6 algorithm does. Instead of this, it allows user to predefine a policy to choose a
subset C′′ of C, of which the constraints are enforced with restricted-dimensional complementary
boxing (CBrd) operators (see Line 1 in Algorithm 4.4). A simple policy is to choose either all
the constraints of C or a fixed number of constraints in C. A more complicated and dynamic
policy based on the pruning efficiency can be used. The set of constraints to be considered
for computing complementary boxes (by either using CBrd operators or intersecting with the
memorized complementary boxes) is hence C′∪C′′, where C′ is the set of constraints memorized
together with its complementary boxes (see Line 2 in Algorithm 4.4).

March 14, 2005

122 4. Improvements to Search Strategies for Numerical CSPs

Algorithm 4.4: The UCA6+ algorithm
Input: a bounding box B0, a constraint set C0, ε ∈ Rn

+, a feasibility checker FC, Dstop.
Output: an inner union approximation ¢I , a boundary union approximation ¢B.
¢I := ∅; ¢B := ∅; WaitingList := ∅;
if solveQuickly+(B0, C′0, ∅, ε, FC, WaitingList, Dstop) then return ; J On page 123.

while WaitingList 6= ∅ do
H/* A set {CBc | c ∈ C} of complementary boxes that were optionally memorized. */

(B, C, {CBc | c ∈ C′}) := getNext(WaitingList); J C′ ⊆ C, CBc ⊂ B.

Choose an arbitrary set C′′ ⊆ C; J C′′ is a set of constraints to be used with the CBrd operator.1

foreach c ∈ C′ ∪ C′′ do2

if c ∈ C′ ∩ C′′ then
CBc := CBrd(B ∩CBc, c);

else if c ∈ C′′ then J c /∈ C′.
CBc := CBrd(B, c); C′ := C′ ∪ {c};

else J c ∈ C′, c /∈ C′′.
CBc := B ∩CBc;

end
if CBc = ∅ then C := C \ {c}; J c is now redundant in B (Theorem 4.14).

if CBc = ∅ or CBc = B then C′ := C′ \ {c};
end
if C = ∅ then3

¢I := ¢I ∪ {B}; continue while;
end
Splitter := getSplitType(); J Get a splitting mode, heuristics can be used.4

J The splitting mode is box splitting.if Splitter = BS then5

CBb := chooseTheBest({CBc | c ∈ C′});6

(B1, . . . , Bk) := BS(B, CBb); J If box splitting did not fail, then ∃Bi ⊇ CBb.

if C′ = ∅ or BS failed then Splitter := DS;
end
if Splitter = DS then (B1, . . . ,Bk) := DS(B); J Bisect B.7

for i := 1, . . . , k do
Ci := C; C′i := C′;
if Splitter = BS and Bi ∩CBb = ∅ then

Ci := Ci \ {b}; C′i := C′i \ {b}; J b is now redundant.

if Ci = ∅ then
¢I := ¢I ∪ {Bi}; continue for;

end
end
foreach c ∈ C′i do if Bi ⊆ CBc then C′i := C′i \ {c};8

solveQuickly+(Bi, Ci, {Bi ∩CBc | c ∈ C′i}, ε, FC, WaitingList, Dstop);
end

end

Function getSplitType returns a mode of splitting the current domains, which are repre-
sented by a box. The current splitting mode can be inferred from the history of the current
box (e.g., the splitting mode at the parent subproblem). In contrast to DMBC, the UCA6
and UCA6+ algorithms only allow DS operators to dichotomize the domains of active variables,

March 14, 2005

4.4. Exhaustive Search for CSPs with Non-isolated Solutions 123

Function solveQuickly+(B, C, {CBc | c ∈ C′}, ε, FC, WaitingList, Dstop)

B′ := DRrd(B, C); J Restricted-dimensional domain reduction.

if B′ = ∅ then return true; J B is infeasible, the problem has been solved.
if isEpsilonBox+(B′, C, ε, FC) then return true; J It has been solved. Page 123.

H/* Resort to another technique. */if there are at most Dstop active variables in B′ then9

(¢I(B′, C), ¢B(B′, C)) := DimStopSolver(B′, C, ε, FC, DRrd, CBrd);10

H/* Combination(.) does the conversions DBR → EVR → DBR in a Dstop-dimensional space. */

¢I := ¢I ∪ Combination(¢I(B′, C)); J Store in the global list of feasible boxes.

¢B := ¢B ∪ Combination(¢B(B′, C)); J Store in the global list of undiscernible boxes.
return true; J The problem has been solved.

end
foreach c ∈ C′ do if B′ ⊆ CBc then C′ := C′ \ {c};11

put(WaitingList← (B′, C, {B′ ∩CBc | c ∈ C′})); J Put the problem into the waiting list.
return false; J The problem has not been solved yet.

Function isEpsilonBox+(B, C, ε, FC)
if there exists an active variable in B w.r.t. C and ε then return false; J Def. 4.23.

if (Result := FC(B, C)) = feasible then J Identify the feasibility of B w.r.t. C.
¢I := ¢I ∪ {B}; J B is feasible, store it into the list of inner boxes.

else if Result = unknown then
¢B := ¢B ∪ {(B, C)}; J B is undiscernible, store it into the list of boundary boxes.

end
return true;

not the domains of inactive variables (see Line 7 in Algorithm 4.4). This avoids resulting in
a huge number of tiny boxes. The reason is that, in the UCA6+ algorithm, constraints are
removed from consideration whenever empty complementary boxes are computed w.r.t. them
(see Line 3 in Algorithm 4.4) and, maybe, some variables no longer appear in any running
constraints. The interval (domain) with the greatest width is preferred for DS operators.

For efficiency, the BS operators (at Line 5 in Algorithm 4.4) split along some facet of a
complementary box only if that produces sufficiently large boxes, the complementary box itself
excepted. This estimation is done by using a predetermined parameter, fragmentation ratio.
After the splitting phase (after Line 7 in Algorithm 4.4), if the box splitting operator was chosen
and it did not fail (i.e., Splitter = BS), then there is a unique resulting box intersecting the
best complementary box CBb, where CBb was returned by Function chooseTheBest. In this
case, the constraint b is redundant in every box that has empty intersection with CBb. This
is due to the complementariness of CBrd operators.

The UCA6+ algorithm use the same Function chooseTheBest (Line 6 in Algorithm 4.4) as
the UCA6 algorithm does. That is to choose the best complementary box CBb (and the respec-
tive constraint b) based on some criteria to maximize the space surrounding the complementary
box. The other complementary boxes can be memorized for improving the complementary box-
ing of subproblems. However, the memorization should be made optional because it may make
the computation slow. Unlike the UCA6 algorithm, the UCA6+ algorithm only memorizes
complementary boxes that do not contain the corresponding bounding box (see Line 8 in Al-
gorithm 4.4 and Line 11 in Function solveQuickly+).

March 14, 2005

124 4. Improvements to Search Strategies for Numerical CSPs

Function solveQuickly+ (on page 123) attempts to apply a DRrd operator to the input sub-
problem in a way similar to Function solveQuickly does. If it cannot solve this subproblem
by using the DRrd operator, it then checks if the subproblem has at most Dstop active vari-
ables. If the answer is yes, it resorts to a secondary solution technique, DimStopSolver, to
solve the current subproblem, provided that DimStopSolver provides an output with good
alignments. A good candidate for DimStopSolver is a search technique with the following
branching strategies: simple gridding4, 2k-trees [Lottaz 2000; Sam-Haroud and Faltings 1996],
and the bisection with generalized inclusion tests (see Definition 3.33), such as in the Exclusion
algorithm (Algorithm 3.1, page 69) and in the Inclusion algorithm (Algorithm 3.2, page 77).
Variants of DMBC or UCA6 that use the restricted-dimensional operators can alternatively be
used. For a given subproblem, DimStopSolver constructs two respective inner and boundary
union approximations (see Line 10 of Function solveQuickly+). These two union approxima-
tions are naturally represented in DBR (or a bounding-box tree). They are converted to EVR
and then back to DBR in order to combine each group of contiguous aligned boxes into a bigger
equivalent box. This operation is performed by Function Combination.

Function isEpsilonBox+ (on page 123) checks if the input subproblem has no active variable.
If so, it uses a feasibility checker, called FC, to check if the subproblem is either infeasible,
feasible, or unknown. If FC returns infeasible, the subproblem is discarded. If FC returns
unknown, the subproblem is classified as undiscernible w.r.t. ε and FC. In the other case, every
point in the domains of the subproblem is a solution. Although the feasibility checker FC in
our implementation is a combination of DR and CB operators as described in Theorem 4.19, it
is however not restricted to this kind of feasibility checker.

Theorem 4.29. Given a feasibility checker, FC. The algorithm UCA6+ terminates and com-
putes the inner, boundary and outer union approximations at an arbitrary interval-based
precision ε w.r.t. FC (see Definition 4.10).

Proof. The conclusion is easily deduced from the properties:

(i) The union approximations ¢I and ¢B are disjoint, and ¢O := ¢I ∪¢B.

(ii) No solution is lost due to the correctness of DRrd operators;

(iii) All points in the inner boxes (i.e., the boxes in ¢I) are sound solutions. That is due to
complementariness of CBrd operators (Definition 4.13) and Theorem 4.14;

(iv) The union of disjoint boxes ¢B is equivalent to a union of the boxes (before applying
EVR-DBR conversions by Function Combination) each of which have no active variable
and each of which cannot be classified as feasible or infeasible by using the feasibility
checker FC (see Function isEpsilonBox+). That is due to the properties of EVR-DBR
conversion and due to the fact that each box that has no active variable has the same
feasibility (under feasibility checkers) with its projection – an ε-bounded box – on the
space defined by all the variables of the running constraints. ¥

4 A simple gridding/cell subdivision solver splits variable domains into a grid and then solves each subproblem in
each grid cell.

March 14, 2005

4.5. Experiments 125

4.5. Experiments

We now present a preliminary evaluation on the following small set of problems with non-
isolated solutions (with different properties of constraints and the solution set): WB, TD,
P2, P3, FD, CD. The reader can find their detailed descriptions in Section C.1.

For the purpose of evaluation, we have implemented the three search algorithms DMBC,
UCA6, and UCA6+ with different options, using the same data structures and the same domain
reduction operators. We have also implemented a direct adaptation, called UCA5, of the ICAb5
algorithm in [Benhamou and Goualard 2000] to solve NCSPs and a version of the DMBC
algorithm to include a negation test (i.e., a complementary boxing operator). This enhanced
version, called DMBC+, of DMBC is a branch-and-prune method (see Section 3.2.2). It can
check whether a box (playing the role of domains) is completely feasible or not, similarly to
the Inclusion algorithm in Section 3.1.6. However, the DMBC+ not only checks if a box is
infeasible or feasible, but also allows narrowing the box in case the return value is unknown.
In fact, the DMBC+ algorithm is very similar to the BnPSearch algorithm (see Algorithm 6.5
in Section 6.6), except that the set of constraints is unchanged throughout the solving process.
Our experiments discarded DMBC as a reasonable candidate for NCSPs with non-isolated
solutions, particularly when the solution set contains continuums of solutions, because DMBC
usually produces a huge number of boxes, each is ε-bounded, in very long running time.

The source codes of the above algorithms (DMBC, DMBC+, UCA5, UCA6, and UCA6+)
are open in the BCS (box covering solver) module which is downloadable at the official web
site of the COCONUT project, http://www.mat.univie.ac.at/coconut-environment/.

Table 4.1. The running time results for search algorithms.

Prob. ε
DMBC+

(DS), ¬MEM
UCA6

(DS), MEM
UCA6+

(DS), MEM
UCA5

(BS+DS), ¬MEM
UCA6

(BS+DS), MEM
UCA6+

(BS+DS), ¬MEM
WP 0.1 22.07s 6.73s 5.98s 5.11s 4.77s 3.97s
TD 0.01 81.53s 26.45s 26.01s 14.96s 13.43s 3.59s
P3 0.1 >10h 615.98s 530.16s 87.09s 135.28s 1.41s
P2 0.1 >10h 4959.76s 4433.06s 281.51s 293.09s 7.32s
FD 0.1 3878.47s 1278.82s 740.05s 394.29s 439.07s 211.91s
CD 0.01 1308.63s 468.21s 389.12s 538.21s 493.57s 352.96s

Table 4.2. The numbers of boxes in inner union approximations (on the left) and boundary union
approximations (on the right).

Prob. ε DMBC+ UCA6 UCA6+ UCA5 UCA6 UCA6+

H (DS), ¬MEM (DS), MEM (DS), MEM (BS+DS), ¬MEM (BS+DS), MEM (BS+DS), ¬MEM
WP 0.1 2753 2620 2753 2620 2489 2147 1738 2788 1573 2791 1176 1585

TD 0.01 3900 2917 3900 2917 3895 1970 2832 3270 1313 3496 53 50

P3 0.1 >110000 150000 33398 38006 30418 28229 10784 29888 12113 38808 406 970

P2 0.1 >120000 180000 108701 100027 106320 78755 21872 55901 18722 55063 1873 3225

FD 0.1 42178 66940 42178 66940 42084 47138 51882 65536 26378 70170 10341 35126

CD 0.01 8957 22132 8873 21974 8354 14857 12729 25079 9922 25344 2826 12922

March 14, 2005

http://www.mat.univie.ac.at/coconut-environment/

126 4. Improvements to Search Strategies for Numerical CSPs

Table 4.3. The ratios of the total volumes of inner union approximations to that of outer union
approximations.

Prob. ε
DMBC+

(DS), ¬MEM
UCA6

(DS), MEM
UCA6+

(DS), MEM
UCA5

(BS+DS), ¬MEM
UCA6

(BS+DS), MEM
UCA6+

(BS+DS), ¬MEM
WP 0.1 0.992 0.992 0.991 0.994 0.994 0.993
TD 0.01 0.997 0.997 0.997 0.999 0.999 0.998
P3 0.1 n/a 0.907 0.912 0.980 0.980 0.919
P2 0.1 n/a 0.973 0.974 0.995 0.995 0.975
FD 0.1 0.987 0.987 0.984 0.992 0.992 0.986
CD 0.01 0.638 0.638 0.619 0.830 0.828 0.616

(a)
 (b)

1.00

10.00

100.00

1000.00

10000.00

100000.00

WP
 TD
 P3
 P2
 FD
 CD

T
im

e
(s

ec
.)

DMBC+ (DS)
 UCA6(DS)
 UCA6+ (DS)

UCA5(BS+DS)
 UCA6(BS+DS)
 UCA6+ (BS+DS)

10

100

1000

10000

100000

1000000

WP
 TD
 P3
 P2
 FD
 CD

o

f
B

o
xe

s

DMBC+ (DS)
 UCA6(DS)
 UCA6+ (DS)

UCA5(BS+DS)
 UCA6(BS+DS)
 UCA6+ (BS+DS)

Figure 4.13. Logarithmic charts for: (a) the running time; and (b) the total number of boxes.

The empirical results are shown in Table 4.1, Table 4.2, and Table 4.3. A graphic overview of
the results are shown in Figure 4.13. These results were obtained with the settings fragmentation
ratio = 0.25, Dstop = 1, and with the feasibility checker FC being constructed as described in
Theorem 4.19 (where the precision set to 1). The domain reduction operators (DR and DRrd)
were implemented by using the function IloGenerateBounds in ILOG Solver 5.3 [ILOG 2003].
The default precision for this function is set to the value 1, for optimal performance.5 Let ε be
the interval-based precision to stop at. For simplicity, we assume that all components of the
precision vector ε are equal. The secondary search technique used in the UCA6+ algorithm is
a simple gridding solver.6

5 Our experiments on different values of the default precision for the function IloGenerateBounds showed that
the value 1 seems to be the most suitable.

6 The 2k-tree based solver would serve better this purpose, but it requires more time for integration.

March 14, 2005

4.6. Conclusion 127

The terms (DS) and (BS+DS) in Table 4.1, Table 4.2, and Table 4.3 indicate the splitting
strategies used in the respective search algorithms. The term MEM means the memorization of
complementary boxes. Table 4.1 shows the running times of the search algorithms (in seconds
and hours). Table 4.2 shows the numbers of boxes in inner and boundary union approximations
delivered by the respective algorithms. Table 4.3 shows the ratios of the total volumes of inner
union approximations to that of outer union approximations.

Together with other experiments on tens of similar or larger problems (including the experi-
ments in Chapter 6 and Chapter 7), our experiments showed that the best gains, in the running
time and the number of boxes, of the algorithms UCA5, UCA6 and UCA6+ over DMBC+ are
obtained for the cases the arities of individual constraints are less than the arity of the problem
(e.g., P2, P3). In all the tests, the UCA6+ algorithm with the option (BS+DS) and with either
the option MEM or the option ¬MEM is better than the other algorithms in the running time and
the number of boxes. The best gains are obtained when (nonlinear) constraints contain a large
percentage of nearly axis-parallel regions (e.g., P2, P3, TD). The UCA6+ algorithm with the
option (BS+DS) is slightly less accurate than the UCA5 algorithm and the UCA6 algorithm in
the volume measure, but the situation is improved when ε is reduced (i.e., in higher precision).
However, this is hardly a matter for real world applications because no one could ever use all
solutions when a very large percentage of sound solutions has been found.

In summary, the UCA6+ algorithm shows to be the most adaptive search algorithm among
the above-considered search algorithms for NCSPs with continuums of solutions. For NCSPs
with isolated solutions, all these search algorithms should be equal, in general, because they
are assumed to use the same splitting strategy – the bisection. Its characteristics are clearly
more suitable for real world applications than the other search algorithms.

The experiments are therefore encouraging enough to investigate other combinations of the
control parameters and higher values of Dstop in combination with solvers with good alignments,
such as 2k-tree solvers [Lottaz 2000; Sam-Haroud 1995; Sam-Haroud and Faltings 1996], the
Exclusion algorithm (Algorithm 3.1, page 69), and the Inclusion algorithm (Algorithm 3.2,
page 77), in the place of the secondary solution technique (DimStopSolver).

4.6. Conclusion

Our contribution in this chapter is a new search strategy, called UCA6+, which overcomes
the limitations of the previously available search strategies: DMBC and UCA6. The UCA6+

algorithm revise the branching steps. The new contribution in the UCA6+ algorithm is twofold:

1. The UCA6+ algorithm allows better controlling domain reductions by restricting the
domain reduction effort to active variables (see Definition 4.23). This feature is supported
by many local consistency notions which are achieved by search such as box consistency,
hull consistency, kB-consistency, and their variants (see Section 2.3.3 and Section 3.2.2).
Moreover, when a subproblem has at most Dstop active variables, the UCA6+ algorithm
resorts to a solver, which is efficient for small-size and low dimensional problems, with
better alignments in the output. The gain is then in both the running time and the
alignment of boxes.

2. The UCA6+ algorithm allows resorting to a geometrically compacting technique, such
as the extreme vertex representation, to combine each group of locally aligned boxes
resulting in the previous stage into a larger equivalent box. Hence, the representation

March 14, 2005

128 4. Improvements to Search Strategies for Numerical CSPs

of the solution set is more concise. This hence potentially accelerates the query on the
explicit representation of the solution set. To be efficient, the value of Dstop – which is
considered as the dimension of the input problem for compacting techniques – should be
small, for instance, Dstop = 1 or Dstop = 2.

In general, the UCA6+ algorithm provides improvements to previously available search
techniques in case the solution set contains continuums of solutions, often by an order of
magnitude, while keeping the same procedure/performance as bisection-based techniques (i.e.,
DMBC) in case solutions are isolated. In the former case, the UCA6+ algorithm provides inner
and outer approximations w.r.t. a predefined interval-based precision ε and a feasibility checker
(Definition 4.10). Moreover, a large percentage of provided approximations are often proved
to be sound solutions (see Definition 2.47). Our experiments show that the new technique
– the UCA6+ algorithm – improves the efficiency as well as the conciseness of the solution
representation.

Additionally, we have also presented a general view on existing techniques such as feasibility
checkers, domain reduction operators, complementary boxing operators, and splitting operators
(see the sections 4.3.3, 4.4.1, 4.4.2, 4.4.3). That brings out a uniform view on existing search
techniques and the position of domain reduction techniques in complete methods.

March 14, 2005

Chapter 5

Modification and Abstraction
of Inclusion Techniques

Note: This chapter includes the research conducted jointly with Djamila Sam-Haroud, Hermann Schichl,
and Boi Faltings in [Vu et al. 2004b,c]. This is necessary for Chapter 6 and Chapter 7.

5.1. Introduction

In this chapter, we present some modifications and improvements to the standard versions of
interval arithmetic and affine arithmetic for the purpose of constraint propagation in Chapter 6
and Chapter 7. We also propose an abstract inclusion concept in order to present a novel generic
scheme for constraint propagation concisely and uniformly in Chapter 7.

First, we presents in Section 5.2 a consistent way to extend the functions that are only
defined on subsets of the real set R for specific situations in constraint propagation. We then
revise, in Section 5.3, the concept of an interval form for extended functions. An example on
the revision of the division in interval arithmetic is also given in Section 5.3. The revised version
of interval arithmetic allows obtaining slightly tighter enclosures in constraint propagation.

Second, we revise, in Section 5.4, the standard version of affine arithmetic for the purpose
of constraint propagation. Affine forms are revised such that the number of noise variables will
not increase during computations; hence, it is potentially useful for long-running computations.
We point out that Kolev generalized affine arithmetic (Section 2.2.3.4) on revised affine forms
is about two times faster than that on Kolev affine forms. Moreover, we propose a new formula
for the product of two affine forms, which reduces the complexity O(n2) of the multiplication
in affine arithmetic and Kolev generalized affine arithmetic to O(n). This formula provides
tighter enclosures than the most recent version in Kolev affine arithmetic (Section 2.2.3.4)
while keeping the same number of real operations. We also propose, in Section 5.4, a generic
procedure to compute Chebyshev affine approximations in a rigorous manner. When applied
to elementary operations, rigorous affine approximations can be obtained for virtually any
factorable function which is composed of the elementary operations.

Finally, we propose, in Section 5.5, an abstract inclusion concept, called the real inclusion
representation. This abstract concept does not result in new inclusion techniques, but provides
a common view into inclusion techniques. It facilitates presenting a novel generic scheme for
constraint propagation proposed in Chapter 7. Some common properties of inclusion techniques
are also drawn out formally in Section 5.5.

129

130 5. Modification and Abstraction of Inclusion Techniques

5.2. Extended Functions

In practice, we sometimes encounter functions of the form f : D → Rm, where D ⊂ Rn.
For example, a division by zero, such as 1 ÷ 0, is not defined. Consequently, the division of
two intervals is not defined in (standard) interval arithmetic when the denominator contains
zero. In such cases, many implementations of interval arithmetic give, by convention, the
universe interval [−∞,∞] as the result. This is an extension of (standard) interval arithmetic
for all purposes, in order to preserve the inclusion property. If we use these implementations
to evaluate the range of the function f : D ⊂ Rn → Rm, we will often get unnecessarily
overestimated bounds of the form [−∞,∞] if the denominators of f contain zero. In order
to avoid such an overestimation when using interval arithmetic, we have to extend functions
in accordance with the use in specific computations. Hereafter, we give a way, in accordance
with the concept of a multifunction, to extend functions that are only defined on subsets of
Rn. First, we recall the definition of a multifunction from [Singh et al. 1997, p. 34].

Definition 5.1 (Multifunction, Values, Fibers). Let X and Y be two sets. A multi-
function F from X to Y , denoted by F : X → Y , is a subset F ⊆ X × Y . The inverse of
F is a multifunction F−1 : Y → X defined by the rule: (y, x) ∈ F−1 ⇔ (x, y) ∈ F . We
define the values of F at x be F (x) ≡ {y ∈ Y | (x, y) ∈ F}, and the fibers of F for y ∈ Y be
F−1(y) ≡ {x ∈ X | (x, y) ∈ F}.

In Definition 5.1, if for some x ∈ X there is no y ∈ Y such that (x, y) ∈ F , we assume that
F (x) ≡ ∅. From Definition 5.1 we can see that a function is, in fact, a special multifunction
that is single-valued. Second, the concepts of an image and an inverse image (of a set) under
a multifunction are similar to those under a normal function.

Definition 5.2 (Image, Inverse Image). Let X and Y be two sets, F : X → Y a multi-
function. The image of a subset A ⊆ X under F is defined and denoted by

F (A) ≡
⋃

x∈A

F (x) ≡ {y ∈ F−1 | F−1(y) ∩A 6= ∅}. (5.1)

The inverse image of a subset B ⊆ Y under F is defined and denoted by

F−1(B) ≡
⋃

y∈B

F−1(y) ≡ {x ∈ F | F (x) ∩B 6= ∅}. (5.2)

Next, we define a special class of multifunctions.

Definition 5.3 (Extended Function). Let f be a function from a set X to a set Y , X ′ a
superset of X, and Z a set of some subsets of Y possibly including ∅. A Z-extended function
over X ′ of f is a multifunction F : X ′ → Y such that

∀x ∈ X : F (x) = {f(x)}, (5.3)
∀x ∈ X ′ \X : F (x) ∈ Z. (5.4)

March 14, 2005

5.2. Extended Functions 131

Note 5.4. When we do not care about Z in Definition 5.3, we just call F an extended
function over X ′ of f .

Notation 5.5. For simplicity, in Definition 5.3, for all x ∈ X we write F (x) = f(x) when no
confusion may arise.

A Z-extended function F , as defined in Definition 5.3, corresponds to a function g : X ′ →
Y ∪ Z defined as

g(x) ≡
{

f(x) if x ∈ X,
F (x) otherwise.

(5.5)

If X ′ = X, then f(x) = g(x) for all x in X. The following theorem follows from Definition 5.3.

Theorem 5.6. Let f , F and other notations be as in Definition 5.3. Then, for every subset
S of X ′, we have

f(S) ≡ {f(x) | x ∈ S ∩X} ⊆ F (S). (5.6)

Consider the case X = D ⊆ Rn, Y = Rm. It is easy to see that, for any function f : D ⊆
Rn → Rm, there is only one Z-extended function from Rn to Rm if Z has only one element,
for example, when Z is either {∅} or {R}.
Example 5.7. The domain of the standard division x÷ y is D÷ = {(x, y) ∈ R2 | y 6= 0}. The
unique {∅}-extended function over R of the standard division is defined as

÷∅(x, y) ≡ x÷∅ y ≡
{

x/y if y 6= 0,
∅ otherwise.

(5.7)

The unique {R}-extended function over R of the standard division is defined as

÷R(x, y) ≡ x÷R y ≡
{

x/y if y 6= 0,
R otherwise.

(5.8)

The following is a {∅,R}-extended function over R of the standard division:

÷?(x, y) ≡ x÷? y ≡




x/y if y 6= 0,
∅ if x 6= 0, y = 0,
R otherwise.

(5.9)
♣

Example 5.8. The domain of the standard square root
√

x is D√ = [0,+∞]. The unique
{∅}-extended function over R of the standard square root is defined as

√
x
∅ ≡

{ √
x if x ≥ 0,

∅ otherwise.
(5.10)

The unique {R}-extended function over R of the standard square root is defined as

√
x
R ≡

{ √
x if x ≥ 0,

R otherwise.
(5.11)

♣

March 14, 2005

132 5. Modification and Abstraction of Inclusion Techniques

5.3. Modification to Interval Arithmetic

The interval form concept for a function (Definition 2.80) is extended to that for a multifunction
in the next definition. Consequently, the concept of an interval form is also defined for extended
functions because an extended function is a special instance of multifunctions.

Definition 5.9 (Interval Form of Multifunctions). Let F : D ⊆ Rn → Rm be a multi-
function. A function [F] : In → Im is called an interval form of F (or for F) if the inclusion
property holds; that is,

∀x ∈ D, ∀x ∈ In : x ∈ x ⇒ F (x) ⊆ [F](x). (5.12)

The natural interval form of f (see Section A.2.1) is an instance of interval forms. The
following theorem sates the inclusion property of interval form of multifunctions.

Theorem 5.10. Let f : D ⊆ Rn → Rm be a function and F : D′ ⊇ D → Rm an extended
function over D′ of f . Then every interval form of F is an interval form of f .

Proof. Let [F] : In → Im be an interval form of F . Then for every x ∈ D and every box x ∈ In
containing x, we have f(x) ∈ {f(x)} = F (x) ⊆ [F](x). ¥

Definition 5.11 (Interval Division: [÷∅], [÷R], [÷?]). Let x = [x, x] and y = [y, y].
Here we give three natural interval forms for the divisions defined by (5.7), (5.8) and (5.9),
respectively:

[÷∅](x,y) ≡ x[÷∅]y ≡





∅ if y = [0, 0],
[0, 0] else if x = [0, 0],
x÷ y else if 0 /∈ y (see (2.24)),
[x/y, +∞] else if x ≥ 0 ∧ y = 0,

[−∞, x/y] else if x ≥ 0 ∧ y = 0,

[−∞, x/y] else if x ≤ 0 ∧ y = 0,

[x/y, +∞] else if x ≤ 0 ∧ y = 0,

[−∞, +∞] otherwise;

(5.13)

[÷R](x,y) ≡ x[÷R]y ≡
{

x÷ y if 0 /∈ y,
[−∞, +∞] otherwise;

(5.14)

[÷?](x,y) ≡ x[÷?]y ≡
{

x[÷∅]y if 0 /∈ x ∨ 0 /∈ y,
[−∞, +∞] otherwise.

(5.15)

In literature, for instance [Hickey et al. 2001], we can find the tightest range of the division
of two intervals; however, the result is not always an interval.

Theorem 5.12. For any two intervals x and y in I, we have x[÷∅]y ⊆ x[÷?]y ⊆ x[÷R]y.

Proof. It follows from Definition 5.11. ¥

March 14, 2005

5.4. Revised Affine Arithmetic 133

Theorem 5.13. Let x, y, and z be three real numbers living in three intervals x, y, and z
in I, respectively. Then we have

x = y ∗ z ⇒ z ∈ x ¦ y for all ¦ ∈ {[÷?], [÷R]}, (5.16)
z = x/y ⇒ z ∈ x ¦ y for all ¦ ∈ {[÷∅], [÷?], [÷R]}. (5.17)

Proof. The proof follows from Definition 5.11, with noticing that from a given equality x = y∗z
we can deduce that

(i) If y 6= 0, then z = x/y;
(ii) If y = 0, then x = 0 and z can take an arbitrary value. ¥

On one hand, Theorem 5.13 shows that, when given the relation x = y ∗ z, it is safe to
use the domain reduction z := x ¦ y for any ¦ ∈ {[÷?], [÷R]}. On the other hand, if the
equality z = x/y is given, we can safely reduce the domain of z by the rule z := x ¦ y for any
¦ ∈ {[÷R], [÷?], [÷∅]}, because the case y = 0 is not admitted by definition.

Theorem 5.12 and Theorem 5.13 show that the tightness of a natural interval form of a
function defined on a subset of Rn might be dependent of the underlying extended function. In
turn, the extended functions to be used depend on the context of computations. Unfortunately,
some interval implementations, such as the one in [Walster et al. 2000], use the division [÷R],
while it is safe to use the division [÷∅] in some computations such as forward evaluation and
use the division [÷?] in some computations such as backward propagation, as described in
Section 6.3 (see also Section 3.2.2.2).

5.4. Revised Affine Arithmetic

In the standard version, affine arithmetic (defined on affine forms) has several limitations in
performance when used in long-running computations. The well-known limitation of affine
forms and affine arithmetic is that the number of noise variables grows quickly during com-
putations since each nonlinear operation adds a new noise variable. In general, the cost of
operations in affine arithmetic heavily depends on the number of noise variables (e.g., linearly
or quadratically). The computations in which affine arithmetic is used to generate linear relax-
ations and linear programming is used to reduce domains even suffer from this limitation much
more than the operations in affine arithmetic do. Another obvious limitation of affine forms is
that they are not capable of handling half-lines of the form [−∞, a] and [a, +∞], while this is
needed in many computation methods such as constraint propagation and exhaustive search.
For the purpose of constraint propagation and search, we propose some slight modifications
and improvements to affine form and affine arithmetic. It is to make affine arithmetic more
suitable for specific types of computations. These modifications and improvements are very
useful for the constraint propagation technique proposed in Chapter 7. Hereafter, we present
these modifications and improvements.

5.4.1. Revised Affine Form

Inspired by the ideas of Messine affine arithmetic and Kolev generalized affine arithmetic (see
Section 2.2.3.4), we propose a kind of affine form, called revised affine form, which is similar

March 14, 2005

134 5. Modification and Abstraction of Inclusion Techniques

to the affine form (2.35); namely, it is similar to

ẑ ≡ z0 + z1ε1 + · · ·+ znεn + znewεnew (5.18)

but the new term znewεnew is replaced with a symmetric interval ez[−1, 1], called the accumu-
lative error, that bounds the maximum error of non-affine operations. Namely, a revised affine
form of a real-valued quantity/variable x is defined as

x̂ = x0 + x1ε1 + · · ·+ xnεn + ex[−1, 1]. (5.19)

This form consists of two separated parts: an affine part of length n and an interval part; thus,
it is said to be of length n. This form is similar to, but more concise than, the Messine affine
form (2.45). The magnitude of the accumulative error, ex ≥ 0, is identified by the interval
part. We write x ∈ x̂ if, for each real value x of the quantity x̂, there exist εx ∈ [−1, 1] and
εi ∈ [−1, 1] (for i = 1, . . . , n) such that x = x0 + x1ε1 + · · ·+ xnεn + exεx.

In fact, revised affine form (5.19) is a special case of Kolev affine/interval form (see De-
finition 2.83). The two parts of a revised affine form are computed separately in an affine
operation. For example, an affine operation on two revised affine forms are now defined as

ẑ ≡ αx̂ + βŷ + γ = (αx0 + βy0 + γ) +
n∑

i=1

(αxi + βyi)εi + (|α|ex + |β|ey)[−1, 1]. (5.20)

Therefore, during long-running computations the lengths of revised affine forms will not exceed
the number of noise symbols at the beginning (which equals the number of variables of the input
constraint system). Note that we should implement special affine operations separately to gain
in speed. In rigorous computing, ez is used to accumulate the rounding errors in floating-point
arithmetic; namely, (5.20) can be interpreted as follows:

z0 = 〈αx0 + βy0 + γ〉 ± e0, (5.21a)
zi = 〈αxi + βyi〉 ± ei, (5.21b)

ez = d|α|ex + |β|ey +
n∑

i=0

eie (5.21c)

Theorem 5.14. The affine operation defined by (5.20) or (5.21) is an interval form of its
counterpart (i.e., the real-valued operation).

Proof. This theorem is obvious; hence, the proof is omitted. ¥

We propose to associate each quantity x̂ with a data field x∞ ∈ {−1, 0, +1} to represent
the half-lines of the form [−∞, a] and [a,+∞]. The revised affine form is then interpreted as
follows:1

x̂ ≡





[−∞,+∞] if ex = +∞,
[−∞, x0] else if x∞ = −1,
[x0, +∞] else if x∞ = +1,
x0 + x1ε1 + · · ·+ xnεn + ex[−1, 1] otherwise.

(5.22)

1 For simplicity, we allow zero coefficients in the formulae here, however in implementation one should keep only
nonzero coefficients and their indices.

March 14, 2005

5.4. Revised Affine Arithmetic 135

Remark 5.15. In an operation, if the domain of a variable is unbounded (i.e., in the first
three cases of (5.22)), the other variables are converted into interval forms for that operation
performed in interval arithmetic, then the result is converted back to revised affine form.
Therefore, we only need to discuss about the last case of (5.22) in the rest of this thesis.

Notation 5.16. We denote by Â the set of all affine forms and by A the set of all revised
affine forms of the form (5.22).

5.4.2. Multiplication

Since every revised affine form of the form (5.19) is a special case of Kolev affine/interval forms
(see Definition 2.83), we can apply Kolev generalized affine arithmetic to revised affine forms.
Indeed, by letting the radius (vi) of all noise variables in (2.43) be 1, the multiplication of
revised affine forms in Kolev generalized affine arithmetic, ẑ := x̂ ∗ ŷ, is defined as follows:

z0 ≡ x0y0 +
1
2

n∑

i=1

xiyi, (5.23a)

zi ≡ x0yi + y0xi (for i = 1, . . . , n), (5.23b)

ez ≡ exey + |x0|ey + |y0|ex + ey

n∑

i=1

|xi|+ ex

n∑

i=1

|yi|+
∑

1≤i,j≤n; i6=j

|xiyj |+ 1
2

n∑

i=1

|xiyi|. (5.23c)

The number of real additions in (5.23) is n2 + 4n + 2, which is the same as that in (2.43).
However, the number of real multiplications is n2 + 2n + 8, which is less than that number,
3n2 +4n+8, of (2.43). The total number of operations is 2n2 +6n+10; hence, it is about two
times less than that number, 4n2 + 8n + 10, of (2.43). Roughly speaking, the multiplication in
Kolev generalized affine arithmetic is about two times slower than its simplification (5.23) for
revised affine forms.

Moreover, we propose a faster multiplication in which the product of two revised affine
forms x̂ = x0 +x1ε1 + · · ·+xnεn + ex[−1, 1] and ŷ = y0 +y1ε1 + · · ·+ynεn + ey[−1, 1] is another
revised affine form ẑ = z0 + z1ε1 + · · ·+ znεn + ez[−1, 1] defined as follows:

Sx ≡
n∑

i=1

|xi|, Sy ≡
n∑

i=1

|yi|, S1 ≡ 0.5
n∑

i=1; xiyi≥0

xiyi, S2 ≡ 0.5
n∑

i=1; xiyi<0

xiyi, (5.24a)

z0 ≡ x0y0 + (S1 + S2), (5.24b)
zi ≡ x0yi + y0xi (for i = 1, . . . , n), (5.24c)
ez ≡ exey + ey(|x0|+ Sx) + ex(|y0|+ Sy) + SxSy − (S1 − S2). (5.24d)

The number of real additions in (5.24) is 4n+5, the number of real multiplications in (5.24) is
3n+7. The total number of real operations in (5.24) is 7n+12. This is the same as in Kolev’s
multiplication (2.55) (see Section 2.2.3.4). It however provides tighter enclosures than what
provided by Kolev’s multiplication (2.55) (see Section 2.2.3.4), because |P | = 0.5|∑n

i=1 xiyi| ≤
0.5

∑n
i=1 |xiyi| = (S1 − S2). Note that in [Vu et al. 2004b], we proposed another version of the

March 14, 2005

136 5. Modification and Abstraction of Inclusion Techniques

multiplication (5.24) with the same tightness and the cost 8n + 10, but with simpler formulas.
These improvements can be easily transferred to other variants of affine arithmetic
such as Kolev generalized affine arithmetic in Section 2.2.3.4. In rigorous computations,
we use the following formulas with error rounding controls:

Sx ≡ d
n∑

i=1

|xi|e, Sy ≡ d
n∑

i=1

|yi|e, (5.25a)

S1 ≡ 〈0.5
n∑

i=1; xiyi≥0

xiyi〉 ± en+1, S2 ≡ 〈0.5
n∑

i=1; xiyi<0

xiyi〉 ± en+2, (5.25b)

z0 ≡ 〈x0y0 + (S1 + S2)〉 ± e0, (5.25c)
zi ≡ 〈x0yi + y0xi〉 ± ei (for i = 1, . . . , n), (5.25d)

ez ≡ dexey + ey(|x0|+ Sx) + ex(|y0|+ Sy) + SxSy + (S2 − S1) +
n+2∑

i=0

eie. (5.25e)

Theorem 5.17. The multiplication defined by (5.24) (or by (5.25)) is an interval form of
the real multiplication; that is, ∀x ∈ x̂,∀y ∈ ŷ : xy ∈ ẑ ≡ x̂ŷ.

Proof. Let x ∈ x̂ and y ∈ ŷ be two revised affine forms as defined in (5.24) or (5.25). By
definition, there exist two real numbers ex, ey ∈ [−1, 1] such that

x = x0 +
n∑

i=1

xiεi + exεx, y = y0 +
n∑

i=1

yiεi + eyεy.

Let e ≡ [−1, 1]. Since aε2i ∈ 1
2(a + |a|e) for all a ∈ R and i ∈ {1, . . . , n}, we have

xy = x0y0 +
n∑

i=1

(x0yi + xiy0)εi + x0eyεy + y0exεx + exeyεxεy +

ey

n∑

i=1

xiεyεi + ex

n∑

i=1

yiεxεi +
∑

1≤i,j≤n; i 6=j

xiyjεiεi +
n∑

i=1

xiyiε
2
i

∈ x0y0 +
n∑

i=1

(x0yi + xiy0)εi + |x0|eye + |y0|exe + exeye +

ey

n∑

i=1

|xi|e + ex

n∑

i=1

|yi|e +
∑

1≤i,j≤n; i6=j

|xiyj |e +
1
2

n∑

i=1

(xiyi + |xiyi|e)

= (x0y0 +
1
2

n∑

i=1

xiyi) +
n∑

i=1

(x0yi + xiy0)εi +

e×
(

exey + ey

n∑

i=0

|xi|+ ex

n∑

i=0

|yi|+
n∑

i=1

|xi|
n∑

i=1

|yi| − 1
2

n∑

i=1

|xiyi|
)

⊆ z0 +
n∑

i=1

ziεi + eze = ẑ (It follows from (5.24) or (5.25)).

That is, ∀x ∈ x̂,∀y ∈ ŷ : xy ∈ ẑ ≡ x̂× ŷ. The proof is hence completed. ¥

March 14, 2005

5.4. Revised Affine Arithmetic 137

5.4.3. Division

The division x̂/ŷ can be written as x̂∗(1/ŷ), hence can be computed by a reciprocal and a mul-
tiplication. It is worth mentioning that Kolev [2002] proposed an improvement for computing
the reciprocal 1/ŷ, hence for computing x̂/ŷ := x̂∗ (1/ŷ). This has an interesting property that
x̂/x̂ = 1, which does not hold for interval arithmetic. Miyajima et al. [2003] also proposed new
methods to compute x̂/ŷ. However, these methods are too complicated to be presented here.
The reader should find the details in [Kolev 2002; Miyajima et al. 2003].

5.4.4. Non-Affine Unary Operations

First, we recall the fundamental result in affine arithmetic, which is a result in Chebyshev
approximation theory (see [Stolfi and de Figueiredo 1997, Theorem 2]).

Theorem 5.18. Let f be a bounded and twice differentiable function defined on some in-
terval [a, b] of which the second derivative f ′′ does not change sign inside [a, b], where a < b.
Let fa(x) = αx + β be its minimax affine approximation in [a, b]. Then

• The coefficient α is (f(b)− f(a))/(b− a), the slope of the line l(x) that interpolates the
points (a, f(a)) and (b, f(b));

• The maximum absolute error will occur twice (with the same sign) at the endpoints a
and b of the range, and once (with the opposite sign) at every interior point c of [a, b],
where f ′(c) = α;

• The independent term β is such that αc+β = (f(c)+l(c))/2 and the maximum absolute
error is δ = |f(c)− l(c)|/2.

Second, we propose the following constructive theorem, which is inspired by Theorem 5.18
and the related procedures in [Stolfi and de Figueiredo 1997], that serves as a basis to compute
affine approximations of elementary univariate functions in a rigorous manner.

Theorem 5.19 (Chebyshev Affine Approximation). Let f be a differentiable function
on [a, b], where a and b are real numbers and a ≤ b; that is, f ∈ C1([a, b]). Denote dα(x) ≡
f(x)− αx. Then

1. (a) If ∀x ∈ [a, b] : α ≥ f ′(x), then ∀x ∈ [a, b] : αx + dα(b) ≤ f(x) ≤ αx + dα(a);
(b) If ∀x ∈ [a, b] : α ≤ f ′(x), then ∀x ∈ [a, b] : αx + dα(a) ≤ f(x) ≤ αx + dα(b).

2. If f ′ is continuous and monotone increasing on [a, b], we have

(a) ∀α ∈ [f ′(a), f ′(b)],∃c ∈ [a, b] : f ′(c) = α;
(b) Let g : R→ R be a function such that g(α) = dα(c), then

∀x ∈ [a, b] : αx + g(α) ≤ f(x) ≤ αx + max{dα(a), dα(b)}.

3. If f ′ is continuous and monotone decreasing on [a, b], we have

(a) ∀α ∈ [f ′(b), f ′(a)],∃c ∈ [a, b] : f ′(c) = α;
(b) Let g : R→ R be a function such that g(α) = dα(c), then

∀x ∈ [a, b] : αx + min{dα(a), dα(b)} ≤ f(x) ≤ αx + g(α).

March 14, 2005

138 5. Modification and Abstraction of Inclusion Techniques

Proof. Hereafter, we prove the results for the cases 1a and 2. The proof is analogous for the
other cases. Considering the case 1a, we have

f(x)− (αx + dα(b))
= f(x)− (αx + f(b)− αb)
= (f(x)− f(b))− α(x− b)
= f ′(ξ)(x− b)− α(x− b) for some ξ ∈ [x, b] (by the mean value theorem)
= (x− b)(f ′(ξ)− α) ≥ 0 since x ≤ b, f ′(ξ) ≤ α

By a similar argument, we also have f(x)− (αx + dα(a)) ≤ 0. Hence, the proof of the case 1a
is completed.

Because α ∈ [f ′(b), f ′(a)] and f ′ is continuous on [a, b] then there exists c ∈ [a, b] as required
by the case 2a. The proof is then completed for the case 2a. Here we give the proof of the
case 2b. For all x ∈ [a, b] we have

f(x)− (αx + g(α))
= f(x)− (αx + f(c)− αc)
= (f(x)− f(c))− α(x− c)
= f ′(ξ)(x− c)− α(x− c) for some ξ between x and c (the mean value theorem)
= (x− c)(f ′(ξ)− f ′(c)) since α = f ′(c)
≥ 0 since ξ is between x and c, and f ′ is increasing

Moreover, if x ∈ [a, c], we have

f(x)− (αx + dα(a))
= f(x)− (αx + f(a)− αa)
= (f(x)− f(a))− α(x− a)
= f ′(η)(x− a)− α(x− a) for some η ∈ [a, x] (by the mean value theorem)
= (x− a)(f ′(η)− f ′(c)) since α = f ′(c)
≤ 0 since η ≤ c, f ′ is monotone increasing

By a similar argument, we have f(x) − (αx + dα(b)) ≤ 0 for all x ∈ [c, b]. Hence, we have
f(x) ≤ αx + max{dα(a), dα(b)} for all x ∈ [a, b]. The proof is then completed. ¥

To illustrate the usefulness of Theorem 5.19, we give in Table 5.1 the derivative f ′ and
function g for some elementary operations. In Algorithm 5.1, we also propose an algorithm,
called SafeChebyshevApprox↑, to find a safe Chebyshev affine approximation of a function
f ∈ C1([a, b]) such that f ′ is monotone, when given the function g satisfying the conditions
in Theorem 5.19. The following theorem guarantees the rigor of the SafeChebyshevApprox↑

algorithm, even in the presence of rounding errors.

Theorem 5.20. Let αx̂+β+δ[−1, 1] be the revised affine form produced by the SafeCheby-
shevApprox↑ algorithm in Algorithm 5.1, where [a, b] is a closed interval containing x̂ ∈ A.
Suppose f ∈ C1([u, v]) and f ′ is monotone on [u, v], where [u, v] ⊇ [a, b], such that
f ′(v) ≥ df ′(b)e if f ′ is monotone increasing or such that f ′(u) ≥ df ′(a)e if f ′ is monotone
decreasing. Then

∀x ∈ x̂ : f(x) ∈ αx̂ + β + δ[−1, 1]. (5.26)

March 14, 2005

5.4. Revised Affine Arithmetic 139

Table 5.1. Examples of functions f ∈ C1([a, b]) satisfying the conditions of Theorem 5.19.

f(x) [a, b] is a subset of f ′(x) f ′ g(α)
x2 [−∞, +∞] 2x ↑ −α2/4√

x [0, +∞] 1/(2
√

x) ↓ 1/(4α) : α > 0
ex [−∞, +∞] ex ↑ α(1− log α) : α > 0
log x]0, +∞] 1/x ↓ −(1 + log α) : α > 0
1/x [−∞, 0[−1/x2 ↓ −2

√−α : α < 0
1/x]0, +∞] −1/x2 ↑ 2

√−α : α < 0
xn : n ≥ 2 is even [−∞, +∞] nxn−1 ↑ (1− n) n−1

√
(α/n)n

xn : n ≥ 3 is odd [−∞, 0] nxn−1 ↓ (n− 1) n−1
√

(α/n)n : α ≥ 0
xn : n ≥ 3 is odd [0, +∞] nxn−1 ↑ (1− n) n−1

√
(α/n)n : α ≥ 0

1/xn : n ≥ 2 is even [−∞, 0[;]0,+∞] −n/xn+1 ↑ (n + 1) n+1
√

(−α/n)n

1/xn : n ≥ 1 is odd [−∞, 0[−n/xn+1 ↓ −(n + 1) n+1
√

(−α/n)n : α < 0
1/xn : n ≥ 1 is odd]0, +∞] −n/xn+1 ↑ (n + 1) n+1

√
(−α/n)n : α < 0

xr : r /∈ [0, 1]]0, +∞] rxr−1 ↑ (1− r)(α/r)(r/(r−1)) : αr > 0
xr : r ∈ (0, 1)]0, +∞] rxr−1 ↓ (1− r)(α/r)(r/(r−1)) : α > 0

Algorithm 5.1: The SafeChebyshevApprox↑ algorithm
Input: x̂ ∈ A, f ∈ C1([a, b]), f ′, g as defined in Theorem 5.19.
Output: a revised affine form αx̂ + β + δ[−1, 1].
fa := bf(a)c; fb := df(b)e; α := d(fb − fa)/(b− a)e;
if f ′ is monotone increasing on [a, b] then

da := df(a)e − bαac;
if α > df ′(b)e then1

dmin := bf(b)c − dαbe; dmax := da;
else2

dmin := bg(α)c; dmax := max{da, fb − bαbc};
end

else J f ′ is monotone decreasing on [a, b]

db := bf(b)c − dαbe;
if α > df ′(a)e then

dmin := db; dmax := df(a)e − bαac;
else

dmin := min{fa − dαae, db}; dmax := dg(α)e;
end

end
β := mid([dmin, dmax]); δ := rad([dmin, dmax]);

Proof. By the mean value theorem, there exists c∗ ∈ [a, b] such that

α∗ ≡ f ′(c∗) = (f(b)− f(a))/(b− a)
⇒ α∗ ≤ d(df(b)e − bf(a)c)/(b− a)e = α

⇒ α ≥ f ′(c∗) ≥ min{f ′(a), f ′(b)} (since f ′ is monotone).

Hereafter, we give a proof for the case that f ′ is monotone increasing. The proof for the case
that f ′ is monotone decreasing is similar, where (a, u) and (b, v) exchange their roles with each

March 14, 2005

140 5. Modification and Abstraction of Inclusion Techniques

other. In case α > df ′(b)e, we have α > f ′(x) for all x ∈ [a, b]. Hence, according to the case 1a
of Theorem 5.19, for all x ∈ [a, b], we have

αx + (f(b)− αb) = αx + dα(b) ≤ f(x) ≤ αx + dα(a) = αx + (f(a)− αa)
⇒ αx + dmin ≤ αx + dα(b) ≤ f(x) ≤ αx + dα(a) ≤ αx + dmax,

because dmin = bf(b)c − dαbe and dmax = df(a)e − bαac (see Line 1 in Algorithm 5.1). In case
α ≤ f ′(b), it follows from the case 2 of Theorem 5.19 and Line 2 in Algorithm 5.1 that

αx + dmin ≤ αx + g(α) ≤ f(x) ≤ max{dα(a), dα(b)} ≤ αx + dmax.

In the rest, we consider the case f ′(b) < α ≤ df ′(b)e. According to the case 1a of Theorem 5.19,
for all x ∈ [a, b], we have αx + dα(b) ≤ f(x) ≤ αx + dα(a). Moreover, applying the case 2 of
Theorem 5.19 to [b, v], we have

x ∈ [b, v] : αx + g(α) ≤ f(x)
⇔ x ∈ [b, v] : g(α) ≤ f(x)− αx

⇒ g(α) ≤ f(b)− αb = dα(b).

Therefore, for all x ∈ [a, b], we have

αx + g(α) ≤ f(x) ≤ αx + dα(a) ≤ max{αx + dα(a), αx + dα(b)}
⇒ αx + dmin ≤ f(x) ≤ αx + dmax. (See Line 2 in Algorithm 5.1.)

As a result, in all cases, we have αx + dmin ≤ f(x) ≤ αx + dmax for all x ∈ [a, b], thus,
∀x ∈ x̂ : f(x) ∈ αx̂ + β + δ[−1, 1]. The proof is hence completed. ¥

Algorithm 5.2: The SafeChebyshevApprox↓ algorithm
Input: x̂ ∈ A, f ∈ C1([a, b]), f ′, g as defined in Theorem 5.19.
Output: a revised affine form αx̂ + β + δ[−1, 1].
fa := df(a)e; fb := bf(b)c; α := b(fb − fa)/(b− a)c;
if f ′ is monotone increasing on [a, b] then

db := df(b)e − bαbc;
if α < bf ′(a)c then1

dmin := bf(a)c − dαae; dmax := db;
else2

dmin := bg(α)c; dmax := max{fa − bαac, db};
end

else J f ′ is monotone decreasing on [a, b]

da := bf(a)c − dαae;
if α < bf ′(b)c then

dmin := da; dmax := df(b)e − bαbc;
else

dmin := min{da, fb − dαbe}; dmax := dg(α)e;
end

end
β := mid([dmin, dmax]); δ := rad([dmin, dmax]);

The rigor of the SafeChebyshevApprox↑ algorithm requires that f ′(v) ≥ df ′(b)e if f ′ is
monotone increasing, or f ′(u) ≥ df ′(a)e if f ′ is monotone decreasing (see Theorem 5.20). In

March 14, 2005

5.5. Abstraction of Inclusion Concepts 141

very special cases, the domain of f may not be extended in the required side, we can use the
SafeChebyshevApprox↓ algorithm in Algorithm 5.2 as an alternative. These two algorithms
are sufficient for the standard elementary operations.

The following theorem states the rigor of the SafeChebyshevApprox↓ algorithm.

Theorem 5.21. Let αx̂+β+δ[−1, 1] be the revised affine form produced by the SafeCheby-
shevApprox↓ algorithm in Algorithm 5.2, where [a, b] is a closed interval containing x̂ ∈ A.
Suppose f ∈ C1([u, v]) and f ′ is monotone on [u, v], where [u, v] ⊇ [a, b], such that
f ′(u) ≤ bf ′(a)c if f ′ is monotone increasing or such that f ′(v) ≤ bf ′(b)c if f ′ is monotone
decreasing. Then

∀x ∈ x̂ : f(x) ∈ αx̂ + β + δ[−1, 1]. (5.27)

Proof. The proof is similar to the proof of Theorem 5.20, but (a, u) and (b, v) exchange
their roles with each other. For example, the interval [b, v] is replaced with the interval [u, a],
in the last part of the proof of Theorem 5.20. Note that the first result is replaced with
α ≤ α∗ = f ′(c∗) ≤ max{f ′(a), f ′(b)}. ¥

5.5. Abstraction of Inclusion Concepts

5.5.1. Inclusion Representations

Hereafter, we generalize the concepts related to the concept of an interval form (see the de-
finitions 2.80, 2.81, and 5.9) into a common view in order to facilitate presenting a novel
combination scheme for constraint propagation in Chapter 7.

Definition 5.22 (Inclusion Representation). Given a set A. A couple I ≡ (R, µ), where
R is a nonempty set and µ is a function fromR to 2A∪{∅}, is called an inclusion representation
of A if there exists a function ζ : 2A ∪ {∅} → R such that µ(ζ(∅)) = ∅ and, for all S ⊆ A,
we have S ⊆ µ(ζ(S)). In this case, each T ∈ R is called a representation object in I, R is
called the representation set in I, ζ is called a representing function of I, and µ is called the
evaluating function of I.

The function ζ in Definition 5.22 is to say that each subset of A can be “included” in at
least one representation object in R. The next definition identifies a special class of inclusion
representations for use in practice, in particular, in Chapter 7.

Definition 5.23 (Real Inclusion Representation, Real Representation). Let I ≡
(R, µ) be an inclusion representation of R. It is called a real inclusion representation (of
the real set R) if each representation object T ∈ R is a tuple consisting of real numbers, and
the value of µ at T can be written as

µ(T) ≡ {fT (VT) | VT ∈ DT [VT]}, (5.28)

where fT is a real-valued function (with T as a tuple of parameters) on a finite sequence
VT of variables taking values in the projection DT [VT] of DT on VT (Definition 2.24), where
DT is defined on VT and other auxiliary variables. The representation (5.28) is called a real
representation of µ; fT is called the real evaluation generator of T .

March 14, 2005

142 5. Modification and Abstraction of Inclusion Techniques

The domains in DT can be explicitly given by constant domains such as an interval [a, b],
or implicitly given by constraints. Note that the set of variables of DT must contain VT . If DT

is given by

DT =
m⋂

i=1

{fi,T (Vi,T) | Vi,T ∈ Di,T [Vi,T]}, (5.29)

and fT is an identity function, we then have

µ(T) ≡ {x | x ∈ DT [x]} =
m⋂

i=1

{fi,T (Vi,T) | Vi,T ∈ Di,T [Vi,T]}. (5.30)

This seems to be a generalized form of (5.28), but it is in fact equivalent to (5.28). Therefore,
in some cases we can use the form (5.30) directly instead of (5.28), for short. Hereafter, we
give some examples to illustrate the concept of a real inclusion representation.

Example 5.24. Obviously, the standard representation of reals is directly equivalent to, al-
though not exactly, a real inclusion representation of R; where T = (x), VT = (x), fT is an
identity function, and DT = {x}. ♣

Example 5.25. It is easy to see that the representation of intervals in the form

a ≤ x ≤ b (5.31)

is equivalent to a real inclusion representation of the form (5.28), called the interval represen-
tation, by defining that

T = (a, b) ∈ R2, (5.32a)
VT = (x), (5.32b)
DT = [a, b], (5.32c)

fT (VT) = x, (5.32d)
µ(T) ≡ {x | x ∈ [a, b]}. (5.32e)

The function fT in (5.32) is an identity function. ♣

Example 5.26. The union form of intervals can also be viewed as a real inclusion represen-
tation. For example, the union

⋃m
i=1[ai, bi] can be interpreted by

T = (a1, b1, . . . , am, bm), (5.33a)
VT = (x), (5.33b)

DT =
m⋃

i=1

[ai, bi], (5.33c)

fT (VT) = x, (5.33d)

µ(T) ≡
{

x

∣∣∣∣∣ x ∈
m⋃

i=1

[ai, bi]

}
. (5.33e)

The function fT in (5.33) is an identity function. ♣

March 14, 2005

5.5. Abstraction of Inclusion Concepts 143

Example 5.27. The affine forms of the form (2.31), namely x̂ ≡ x0 + x1ε1 + · · · + xnεn, can
also be seen as a real inclusion representation of the form (5.28), called the standard affine
representation, by defining that

T = (x0, . . . , xn), (5.34a)
VT = (ε1, . . . , εn), (5.34b)
DT = [−1, 1]n, (5.34c)

fT (VT) = x0 +
n∑

i=1

xiεi, (5.34d)

µ(T) ≡
{

x0 +
n∑

i=1

xiεi

∣∣∣∣∣ (ε1, . . . , εn) ∈ [−1, 1]n
}

. (5.34e)

The function fT in (5.34) is a linear function on VT . Another real representation of the form
(5.28) for the above real inclusion representation is defined as follows:

T = (x0, . . . , xn), (5.35a)
VT = (x), (5.35b)

DT =

{
x0 +

n∑

i=1

xiεi

∣∣∣∣∣ (ε1, . . . , εn) ∈ [−1, 1]n
}

, (5.35c)

fT (VT) = x, (5.35d)
µ(T) ≡ {x | x ∈ DT }, (5.35e)

where DT is implicitly given via its variables. Although both (5.34) and (5.35) represent the
same set, in the latter, the function fT is an identity function. ♣

Example 5.28. Similarly to the affine forms, the revised affine forms defined by (5.19) can
also be seen as a real inclusion representation of the form (5.28), called the revised affine
representation, by defining that

T = (x0, . . . , xn, ex), (5.36a)
VT = (ε1, . . . , εn, εx), (5.36b)
DT = [−1, 1]n+1, (5.36c)

fT (VT) = x0 +
n∑

i=1

xiεi + exεx, (5.36d)

µ(T) ≡
{

x0 +
n∑

i=1

xiεi + exεx

∣∣∣∣∣ (ε1, . . . , εn, εx) ∈ [−1, 1]n+1

}
. (5.36e)

The function fT in (5.36) is a linear function on (n + 1) variables in VT . ♣

Example 5.29. The Kolev affine form (see Definition 2.83), a generalization of interval and
affine form, is also a real inclusion representation. Namely, the Kolev affine form (2.40) can be
defined as an affine function on the variables κi:

x̃ = cx +
n∑

i=1

xiκi + κx, κi ∈ vi, κx ∈ vx, (5.37)

March 14, 2005

144 5. Modification and Abstraction of Inclusion Techniques

where vi ≡ [−vi, vi] (for all i = 1, . . . , n) and vx ≡ [−vx, vx] are symmetric intervals, xi (for all
i = 1, . . . , n) are real coefficients, and cx ∈ R. Similarly to revised affine forms, Kolev affine
forms can also be interpreted as a real inclusion representation (5.28), called the Kolev affine
representation, by defining that

T = (cx, x1, . . . , xn, v1, . . . , vn, vx), (5.38a)
VT = (κ1, . . . , κn, κx), (5.38b)
DT = [−v1, v1]× · · · × [−vn, vn]× [−vx, vx], (5.38c)

fT (VT) = cx +
n∑

i=1

xiκi + κx, (5.38d)

µ(T) ≡
{

cx +
n∑

i=1

xiκi + κx

∣∣∣∣∣ (κ1, . . . , κn, κx) ∈ DT

}
. (5.38e)

The function fT in (5.38) is a linear function on (n + 1) variables in VT . ♣

Example 5.30. Hansen’s generalized interval [Hansen 1975] is given as follows

x̃ = [cx, cx] +
n∑

i=1

[xi, xi]κi, (5.39)

where the notations are the same as in the Kolev affine form (5.37). Hansen’s generalize interval
can be interpreted as a real inclusion representation, called the Hansen interval representation,
by defining that

T = (cx, cx, x1, x1, . . . , xn, xn, v1, . . . , vn), (5.40a)
VT = (κ1, . . . , κn, cx, x1, . . . , xn), (5.40b)
DT = [−v1, v1]× · · · × [−vn, vn]× [−vx, vx]× [x1, x1]× . . . [xn, xn], (5.40c)

fT (VT) = cx +
n∑

i=1

xiκi, (5.40d)

µ(T) ≡
{

cx +
n∑

i=1

xiκi

∣∣∣∣∣ (κ1, . . . , κn, cx, x1, . . . , xn) ∈ DT

}
. (5.40e)

Note that the function fT in (5.40) is a quadratic function on (2n + 1) variables in VT . ♣

Example 5.31. Linear relaxations and (convex) polyhedral enclosures can also be viewed as
real inclusion representations. Indeed, they are given as the intersection of m half-spaces

Hi ≡ {(x1, . . . , xn) | ai0 +
n∑

j=1

aijxj ≤ 0} (for i = 1, . . . , m),

and is often restricted to a domain B that is usually a box. We can therefore obtain a real
inclusion representation (5.30), called the linear relaxation representation, by defining that

T = (a10, . . . , a1n, . . . , am0, . . . , amn), (5.41a)
VT = (xk), for some k ∈ {1, . . . , n} (5.41b)

DT = B ∩
m⋂

i=1

Hi, (5.41c)

March 14, 2005

5.5. Abstraction of Inclusion Concepts 145

fT (VT) = xk, (5.41d)

µ(T) ≡ {xk | xk ∈ DT [xk]} = B ∩
m⋂

i=1

Hi. (5.41e)

This is the intersection of B and the convex polyhedron
⋂m

i=1 Hi. ♣

By a similar argument, one could see that the new concept of an inclusion representation
covers almost all existing inclusions for real numbers. However, it does not introduce a new
inclusion technique, but provides an abstraction of different existing inclusion techniques.

Note 5.32. In practice, a representation object T in the above affine forms often contains
many zero coefficients; hence, we should store only nonzero coefficients and their indices
instead of all coefficients. For example, an affine form 0.1 + 2.1ε2 + 9.1ε9 should be stored in
T by (0.1, 2.1, 9.1; 2, 9) instead of (0.1, 0.0, 2.1, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 9.1).

The following theorems characterize properties of inclusion representations.

Theorem 5.33. Let A be a nonempty set and A′ a subset of A. Suppose I ≡ (R, µ) is an
inclusion representation of A. Then the couple I ′ ≡ (R′, µ′) is an inclusion representation of
A′, where

R′ := {T ∈ R | µ(T) 6= ∅ ⇒ µ(T) ∩ A′ 6= ∅}, (5.42a)
µ′(T) := µ(T) ∩ A′ for all T ∈ R′. (5.42b)

Proof. By Definition 5.22, there exists a representing function ζ of I that maps from 2A∪{∅}
to R. We define a function ζ ′ : 2A′ ∪ {∅} → R simply by the rule ζ ′(S) := ζ(S) for all
S ∈ 2A′ ∪ {∅}. It follows from (5.42) that ζ ′(S) ∈ R′ because µ(ζ ′(S)) = µ(ζ(S)) ⊇ S and
µ(ζ ′(∅)) = µ(ζ(∅)) = ∅. Hence, ζ ′ is a function from 2A′ ∪ {∅} to R′ as required. Moreover, for
all S ∈ 2A′ ∪ {∅}, we have µ′(ζ ′(S)) = µ(ζ(S)) ∩ A′ ⊇ S. ¥

Theorem 5.34. Let I ≡ (R, µ) and I ′ ≡ (R′, µ′) be inclusion representations of two sets A
and A′, respectively. Then I ′′ ≡ (R×R′, (µ, µ′)T) is an inclusion representation of A ×A′.
We denote I ′′ by I × I ′.

Proof. By Definition 5.22, there exist two representing functions ζ and ζ ′ of I and I ′, respec-
tively. The function ζ ′′ = (ζ, ζ ′)T is a representing function of I ′′. ¥

Notation 5.35. For simplicity, we will use I, Â, and A to refer to the representation sets
in the interval inclusion representation defined by (5.32), the standard affine representation
defined by (5.34), and the revised affine representation defined by (5.36), respectively, when no
confusion may arise. As a result, we will use 0.1+2.1ε2+9.1ε9 to refer the representation object
(0.1, 0.0, 2.1, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 9.1) in the standard affine representation (Â, µÂ) defined
by (5.34). Similarly, we will also use the form [1, 3] to refer to the representation object (1, 3)
in the interval representation (I, µI) defined by (5.32).

March 14, 2005

146 5. Modification and Abstraction of Inclusion Techniques

5.5.2. Inclusion Functions

Next, we generalize the concept of an interval form to accept the concept of an inclusion
representation.

Definition 5.36 (Inclusion Function of Functions). Given two nonempty sets X, Y and
a function f : X → Y . Let IX ≡ (RX , µX) and IY ≡ (RY , µY) be two inclusion represen-
tations of two supersets X+ ⊇ X and Y + ⊇ Y , respectively. A function F : RX → RY is
called an inclusion function of f (or for f) if we have

∀x ∈ X, ∀T ∈ RX : x ∈ µX(T) ⇒ f(x) ∈ µY (F (T)). (5.43)

One can see that the inclusion function defined in [Jaulin et al. 2001, p. 27] for intervals
is a special case of the new inclusion function concept in Definition 5.36. The new inclusion
function concept can also be extended to multifunctions similarly to Definition 5.9 and, in
particular, can be applied to extended functions.

Definition 5.37 (Inclusion Function of Multifunctions). Given two nonempty sets X,
Y and a multifunction f : X → Y . Let IX ≡ (RX , µX) and IY ≡ (RY , µY) be two
inclusion representations of two supersets X+ ⊇ X and Y + ⊇ Y , respectively. A function
F : RX →RY is called an inclusion function of f (or for f) if we have

∀x ∈ X, ∀T ∈ RX : x ∈ µX(T) ⇒ f(x) ⊆ µY (F (T)). (5.44)

It is easy to verify that both the condition (5.43) and the condition (5.44) can be replaced
with an equivalent condition, called the generalized inclusion property,

∀S ⊆ X, ∀T ∈ RX : S ⊆ µX(T) ⇒ f(x) ⊆ µY (F (T)). (5.45)

All interval forms of a function (or multifunction) f are inclusion functions of f when consid-
ering the interval representation (5.32) (see Section A.2 for typical interval forms). The new
inclusion function concept can also be extended to relations in a way similar to Definition 2.81.

Definition 5.38 (Inclusion Relation). Let X be a nonempty set and IX ≡ (RX , µX) an
inclusion representation of a superset X+ ⊇ X. Suppose R is a relation on X; that is, R ⊆ X.
A relation RX ⊆ RX satisfying the condition

∀r ∈ R, ∀T ∈ RX : r ∈ T ⇒ T ∈ RX (5.46)

is called an inclusion relation of R.

The result of Theorem 2.82 can be extended to inclusion relations as follows.

Theorem 5.39. Let f : D ⊆ Rn → Rm be a function, b ∈ Im, and I ≡ (R, µ) a real
inclusion representation. If F : Rn → Rm is an inclusion function of f . Then RI ≡
{T ∈ Rn | µ(F (T)) ∩ b 6= ∅} is an inclusion relation of the relation R ≡ {x ∈ D | f(x) ∈ b}.

March 14, 2005

5.5. Abstraction of Inclusion Concepts 147

Proof. For all r ∈ R and T ∈ Rn, if r ∈ T , then f(r) ∈ b, thus µ(F (T)) ∩ b 3 f(x). Hence,
T ∈ RI . The notation µ(F (T)) means performing µ in a componentwise manner. ¥

The result of Theorem 5.10 can also extended to inclusion functions as follows.

Theorem 5.40. Let F : X → Y be an extended function over X of a function f : X ′ ⊆
X → Y . Let IX ≡ (RX , µX) and IY ≡ (RY , µY) be inclusion representations of X and Y ,
respectively. Then each inclusion function [F] : RX → RY of F is an inclusion function of f .

Proof. For every x ∈ X ′ and every object T ∈ RX such that x ∈ µX(T), we have f(x) ∈
{f(x)} = F (x) ⊆ [F](T). Hence, [F] is an inclusion function of f . ¥

In practice, one often extends real-valued functions in a natural way to evaluate the ranges
of the real-valued functions. Hereafter, we define the concept of a natural extension for use
with the inclusion function concept in Definition 5.36.

Definition 5.41 (Natural Extension). Let f : Rn → Rm be a factorable function using
a finite set E of elementary operations defined over R. Suppose I = (R, µ) is an inclusion
representation of R such that there exists a set ER of elementary operations defined over R
and a bijection mapping η : E → ER. We then call ¦ ∈ E the real-valued counterpart of
η(¦) and vice versa. A function f : Rn →Rm is called the natural extension of f in I (using
operations in ER) if f is constructed from the recursive composition of f by replacing each
real variable (resp., each constant) by a variable taking values (resp., a constant) in R, and
replacing each occurrence of an elementary operation e ∈ E by the corresponding occurrence
of η(e). If f is also an inclusion function of f , we call f the natural inclusion function of f .

The natural interval form (see Definition A.1) is an example of the natural inclusion func-
tions, when considering the interval representation (5.32).

Example 5.42. In the composition of the real-valued function f(x) = x ∗ (x − 1), the real
variable x occurs twice. The set of elementary operations used in the composition of f is
E = {−, ∗}. The exact range f([0, 1]) = [−0.25, 0]. The natural extension of f in the interval
representation (I, µI) defined by (5.32) is a function f : I→ I defined as f(x) = x∗(x−1), where
1 = [1, 1] = 1. Consider the representation object T = (0, 1) in the interval representation
(I, µI), which corresponds to the interval [0, 1]. In interval arithmetic, the value of f at T is

f(T) = [0, 1] ∗ ([0, 1]− 1) = [0, 1] ∗ [−1, 0] = [−1, 0].

We have f([0, 1]) ⊆ f([0, 1]). Moreover, we can prove that ∀x ∈ x ∈ I : f(x) ∈ f(x). Hence, f
is the natural inclusion function of f in the interval arithmetic representation. ♣

Example 5.43. The natural extension of the real-valued function f(x) = x ∗ (x − 1) in the
standard affine representation is the function f̂(x̂) = x̂∗ (x̂− 1̂), where 1̂ = 1. A representation
object T = (0.5, 0.5) in the standard affine representation (Â, µÂ) defined by (5.34), which
corresponds to the affine form 0.5 + 0.5ε1, has the real evaluation at T

µÂ(T) = {0.5 + 0.5ε1 | ε1 ∈ [−1, 1]} = [0, 1].

March 14, 2005

148 5. Modification and Abstraction of Inclusion Techniques

In affine arithmetic, the value of f̂ at T = 0.5 + 0.5ε1 is

f̂(T) = (0.5 + 0.5ε1) ∗ ((0.5 + 0.5ε1)− 1)
= (0.5 + 0.5ε1) ∗ (−0.5 + 0.5ε1)
= −0.25 + 0.25εnew,

where εnew is a new noise variable taking its value in [−1, 1]. Hence, f̂(T) has the real evaluation
µÂ(−0.25 + 0.25εnew) = [−0.5, 0]. We can prove that the natural extension f̂ is the natural
inclusion function of f in (Â, µÂ), w.r.t. affine arithmetic.

Note that in revised affine arithmetic, f̂(T) = −0.125 + 0.125εnew. Hence, it has the real
evaluation µA(−0.125 + 0.125εnew) = [−0.25, 0]. This evaluation provides a tighter enclosure
than what provided by affine arithmetic. ♣

Example 5.44. The natural extension of the real-valued function f(x) = x ∗ (x − 1) in the
revised affine representation is the function f̂(x̂) = x̂ ∗ (x̂− 1̂), where 1̂ = 1. A representation
object T = (0.5, 0.5, 0.0) in the revised affine representation (A, µA) defined by (5.36), which
corresponds to the revised affine form 0.5 + 0.5ε + 0[−1, 1], has the real evaluation at T

µA(T) = {0.5 + 0.5ε + 0[−1, 1] | ε ∈ [−1, 1]} = [0, 1].

In revised affine arithmetic, The value of f̂ at T is

f̂(T) = (0.5 + 0.5ε) ∗ ((0.5 + 0.5ε)− 1)
= (0.5 + 0.5ε) ∗ (−0.5 + 0.5ε)
= −0.125 + 0.125[−1, 1].

Hence, f̂(T) has the real evaluation µA(−0.125+0.125[−1, 1]) = [−0.25, 0]. We can prove that
the natural extension f̂ is the natural inclusion function of f in the revised affine representation,
w.r.t. revised affine arithmetic. ♣

Next, we define a concept of converting from an inclusion representation to another inclusion
representation without loss of the inclusion property.

Definition 5.45 (Inclusion Conversion). Let I1 = (R1, µ1) and I2 = (R2, µ2) be two
inclusion representations of the same set. A function c : R1 → R2 is called an inclusion
converter from I1 to I2 if for all T ∈ R1 we have µ1(T) ⊆ µ2(c(T)).

Example 5.46. Converting the object 3 + 2ε1 + 1ε2 of the standard affine representation into
the interval representation, we get interval [0, 6]. When converting [0, 6] into the standard affine
representation; however, we get 3 + 3εnew, where εnew is a new noise variable. ♣

Theorem 5.47 (Composite Inclusion Function). Let IX = (RX , µX), IY = (RY , µY)
and IZ = (RZ , µZ) be inclusion representations of three sets X, Y and Z, respectively. If
F : RX → RY and G : RY → RZ are inclusion functions of two functions f : X → Y and
g : Y → Z respectively, then the composite function G ◦ F is an inclusion function of the
composite function g ◦ f .

March 14, 2005

5.6. Conclusion 149

Proof. Let T ∈ RX , U = F (T), V = G(U) and S ⊆ X ∩ µX(T). By Definition 5.36,
we have f(S) ⊆ µY (U), thus, f(S) ⊆ Y ∩ µY (U). Therefore, also by Definition 5.36, we have
g(f(S)) ⊆ µZ(G(U)) = µZ(V). That is, g◦f(S) ⊆ µZ(G◦F (T)) holds for every S ⊆ X∩µX(T).
That is, G ◦ F is an inclusion function of g ◦ f . ¥

Corollary 5.48. Let I = (R, µ) be an inclusion representation of R. If elementary operations
defined over R are inclusion functions of their counterparts over R, then all factorable func-
tions built over R by using these elementary operations are also inclusion functions of their
counterparts over R. z

Proof. Corollary 5.48 is an obvious consequence of Theorem 5.47. Therefore, the proof is
omitted. ¥

In implementation, the elementary operations in interval arithmetic and affine arithmetic
are constructed to be inclusion functions of their real-valued counterparts. Therefore, it follows
from Corollary 5.48 that all the factorable operations/functions defined in interval arithmetic
(or affine arithmetic) by using these elementary operations are also inclusion functions of their
real-valued counterparts.

5.6. Conclusion

Our contributions in this chapter include the following (minor and major) changes:

1. In Section 5.2, we present a consistent way to extend the functions that are only defined
on subsets of the real set, for specific situations in constraint propagation. This serves as
a basis for the results in Section 5.3, Section 5.5, Chapter 6, and Chapter 7.

2. In Section 5.3, we revise the concept of an interval form for extended functions. The
revision of the division in interval arithmetic is given in Section 5.3 as an example. The
revised version of interval arithmetic allows obtaining tighter enclosures at each stage in
constraint propagation (see Chapter 6).

3. In Section 5.4, we revise and improve the standard version of affine arithmetic for the
purpose of constraint propagation (see Chapter 7). In particular,

(a) We revise affine forms such that the number of noise variables will not increase
during computations; hence, it is potentially useful for long-running computations.

(b) We point out that Kolev generalized affine arithmetic on revised affine forms is about
two times faster than that on Kolev affine forms. Namely, it reduces the number
of real operations in the multiplication, the most common but expensive operation,
from 4n2 + 8n + 10 to 2n2 + 6n + 10; where n is the number of noise variables.

(c) We propose a new formula for the product of two affine forms. The idea allows re-
ducing the complexity O(n2) of the tight multiplication in (revised) affine arithmetic
and Kolev generalized affine arithmetic to 7n+12 real operations. This formula also
provides tighter enclosures than the most recent version in Kolev affine arithmetic
while using the same number of real operations.

(d) We propose a generic procedure to compute Chebyshev affine approximations in a
rigorous manner. When applied to elementary operations/functions, rigorous affine
approximations can be obtained for virtually any factorable function.

March 14, 2005

150 5. Modification and Abstraction of Inclusion Techniques

4. In Section 5.5, we propose an abstract inclusion concept, called the real inclusion repre-
sentation. Although it does not results in new inclusion techniques, it provides a com-
mon view into inclusion techniques. This facilitates presenting a novel generic scheme
for constraint propagation proposed in Chapter 7. Some common properties of inclusion
techniques needed for constraint propagation are also presented formally.

March 14, 2005

Chapter 6

Numerical Constraint Propagation
on Directed Acyclic Graphs

Note: This chapter includes the research conducted jointly with Djamila Sam-Haroud and Hermann
Schichl in [Vu et al. 2004c]. This is a significant contribution of the thesis.

6.1. Introduction

Numerical constraints are often equalities or inequalities expressed in the factorable form (see
Section 2.1.3.3). Many techniques have been proposed to solve numerical CSPs (see Chapter 3).
They often exploit the factorability of numerical constraints. To achieve the full mathematical
rigor when dealing with floating-point numbers, most solution techniques have been based on
interval arithmetic or its variants (see Section 2.2.2 and Section 2.2.3).

During the last twenty years, a lot of work has been done to devise domain reduction
techniques based on interval arithmetic (see Chapter 3). In the early nineties, an interesting
approach, called interval constraint propagation, has been developed in constraint programming
(see [Benhamou and Older 1992, 1997; Van Hentenryck 1997], Section 2.3.3, and Section 3.2.2).
This approach associates constraint propagation techniques in artificial intelligence with inter-
val analytic methods. Recently, a domain reduction technique, called HC4, was proposed by
Benhamou et al. [1999], which performs forward evaluations and backward propagations on the
tree representation of individual numerical constraints in combination with a simplification of
arc consistency to obtain the effect of domain reduction (see Section 3.2.2.2). This technique is
referred to as the forward-backward propagation. More recently, a fundamental framework for
interval analysis on directed acyclic graphs (DAGs) has been proposed by Schichl and Neumaier
[2004b]. Among the proposals, this framework shows that the above forward evaluation and
backward propagation can also be performed on DAGs. Replacing trees by DAGs potentially
reduces the number of computations in the forward-backward propagation.

This chapter presents a constraint propagation technique following the DAG-based frame-
work proposed by [Schichl and Neumaier 2004b]. The contribution is twofold. First, we show
how the DAG-based framework can be made efficient and practical for performing constraint
propagation on DAGs (Section 6.3, Section 6.4, and Section 6.5). Second, we propose a new
algorithm to coordinate constraint propagation and exhaustive search on DAGs (Section 6.6).
In particular, we propose an algorithm to perform a kind of forward-backward propagation
on DAGs, which is able to work on partial DAG representations. This algorithm restricts the

151

152 6. Numerical Constraint Propagation on Directed Acyclic Graphs

work to relevant subsets of constraints while keeping the DAG representation of the initial
problem. Another specificity of our forward-backward propagation technique is that it makes
it possible to flexibly choose different interval forms at different stages of the propagation. We
also propose a solution technique, which coordinates our partial forward-backward propagation
on DAGs and exhaustive search, in the branch-and-prune framework. The experiments carried
out on various problems show that the new approach outperforms previously available prop-
agation techniques by 1 to 2 orders of magnitude or more in speed, while being roughly the
same quality w.r.t. enclosure properties for unbiasedly chosen benchmarks (see Section 6.7).

6.2. DAG Representations for Numerical CSPs

6.2.1. Basic Concepts of Directed Acyclic Graphs

For completeness, we recall hereafter some fundamental concepts in graph theory related to the
concept of a DAG representation, which was originated in the foundational paper by Schichl
and Neumaier [2004b], of a constraint system.

Definition 6.1 (Directed Multigraph). A directed multigraph G ≡ (V,E, f) consists of a
finite set V of vertices (also called nodes), a finite set E of edges (also called arcs), and a
mapping f ≡ (fs, ft)T : E → V × V such that for all e ∈ E we have fs(e) 6= ft(e). For every
edge e ∈ E, we define the source of e as fs(e) and the target of e as ft(e).

In the above definition, if we replace f with a function that maps each edge to an unordered
pair of vertices, we then obtain the definition of a multigraph. In addition to that, if we allow
the source and target of an edge be the same, then the obtained one is called a pseudograph.
We can also obtain the concept of a directed pseudograph in the same way.

Definition 6.2 (In-Edges, Out-Edges). Using the notations in Definition 6.1, we define
the set of all in-edges of a vertex v ∈ V as in-edges(v) ≡ {e | ft(e) = v}. Similarly, we define
the set of all out-edges of a vertex v ∈ V as out-edges(v) ≡ {e | fs(e) = v}.

In other words, in-edges(v) is the set of all edges having v as their target and out-edges(v)
is the set of all edges having v as their source. Similarly to a tree, the concepts of a leaf and a
root (node) in a directed multigraph are defined as follows.

Definition 6.3 (Leaf, Root). Consider a directed multigraph G. A vertex v of G is called
a leaf of G if in-edges(v) = ∅. A vertex v of G is called a root of G if out-edges(v) = ∅.

Unlike a (directed) tree, a directed multigraph may have many roots (and many leaves).

Definition 6.4 (Directed Path, Cycle, Directed Acyclic Multigraph). Consider a
directed multigraph G ≡ (V, E, f), where f ≡ (fs, ft)T. A directed path from a vertex v1 ∈ V
to a vertex v2 ∈ V is a sequence (ei)n

i=1 of edges, where n ≥ 2, such that v1 = fs(e1),
v2 = ft(en), and ft(ei) = fs(ei+1) for all i = 1, . . . , n− 1. This directed path is called a cycle
if v1 = v2. G is called a directed acyclic multigraph if it does not contain a cycle.

March 14, 2005

6.2. DAG Representations for Numerical CSPs 153

Definition 6.5 (Parent, Child, Ancestor, Descendant). Consider a directed acyclic
multigraph G ≡ (V,E, f). Let v1 and v2 be two vertices in V . We say that v2 is a par-
ent of v1 and that v1 is a child of v2 if there exists an edge e ∈ E such that f(e) = (v1, v2)T.
The set of all parents (respectively, all children) of a vertex v ∈ V is denoted by parents(v)
(respectively, by children(v)). We say that v2 is an ancestor of v1 and that v1 is a descendant
of v2 if there exists a directed path from v1 to v2. The set of all ancestors (respectively, all
descendants) of a vertex v ∈ V is denoted by ancestors(v) (respectively, by descendants(v)).

The following result is fundamental, which illustrates the precedence relationship of nodes
in a directed acyclic multigraph.

Theorem 6.6. For every directed acyclic multigraph (V, E, f), there exists a total order ¹
on the vertices V such that for every v ∈ V and every u ∈ ancestors(v), we have v ¹ u.

Proof. See the proof of Proposition 4.7 in [Schichl 2003]; or see Procedure NodeLevel on
page 163, which is is a simple algorithm for assigning a level to each node such that any sort
in descending order of the obtained levels will result in a required order. ¥

Definition 6.7 (Directed Multigraph with Ordered Edges). A directed multigraph
with ordered edges is a quadruple (V, E, f,≤) such that (V,E, f) is a directed multigraph
and (E,≤) is a totally ordered set.

6.2.2. DAG Representations

As proposed by Schichl and Neumaier [2004b], a directed acyclic multigraph with ordered
edges, abbreviated to DAG , can be used to represent a factorable numerical CSP of the form

f(x) ∈ b, (6.1)

where x is a vector of n real variables taking values in a box x ∈ In, b ≡ (b1,b2, . . . ,bm)T is
an interval vector in Im, and f = (f1, f2, . . . , fm)T is a function from D ⊆ Rn to Rm. Since
the system (6.1) is factorable, the function f can be composed of a sequence of elementary
operations/functions such as +, ∗, /, log, exp, sqr, and sqrt. In this composition, each variable
is represented by a leaf. Each elementary operation/function φ : D ⊆ Rk → R that takes as
input k subexpressions x1, . . . , xk is represented by a node N with k edges, each of which runs
from the node representing xi to the node N, where 1 ≤ i ≤ k. These k edges represent the
computational flow in the natural composition of the operation φ. The obtained representation
is called the DAG representation of the considered problem.

Notation 6.8. Each node N in a DAG representation is associated with an interval, denoted
by τN and called the node range of N, in which the exact range of the associated subexpression
must lie. The node N is also associated with a real variable, denoted by ϑN, that represents
the value of the subexpression represented by N.

March 14, 2005

154 6. Numerical Constraint Propagation on Directed Acyclic Graphs

For efficiency and compactness, the standard elementary operations in a DAG representa-
tion are replaced with more general operations. For example, multiple applications of binary
elementary operations of the forms in {x + y, x− y, x + a, a + x, x− a, a− x, ax} are re-
placed with a k-ary operation a0+a1x1+ · · ·+akxk, which is interpreted as a k-ary operation +
(see Figure 6.1a), where 1 ≤ k ∈ N. Similarly, multiple applications of the binary multipli-
cation x ∗ y are replaced with a k-ary multiplication (or product) a0 ∗ x1 ∗ · · · ∗ xk, which is
interpreted as the k-ary operation ∗ (see Figure 6.1b), where 2 ≤ k ∈ N. In general, each edge
of a DAG representation is associated with a respective coefficient of the operation represented
by its target. When not specified in figures, this coefficient equals to 1. The other constants
involving an operation are stored at the node representing the operation (see Figure 6.1). At
a result, the DAG representation does not contain nodes representing constants as the corre-
sponding tree representation does (see Section 3.2.2.2). Much more detailed descriptions of
DAG representations can be found in Section 4.1 and Section 5.3 of [Schichl 2003].

+ *

a1

xi

ai ak

a0

xkx1 xi

a0

xkx1

(a) (b)

? ? ? ?

Figure 6.1. A node and its computational flows in a DAG representation.

In practice, we have to use multigraphs instead of simple graphs for DAG representations
because some special operations can take the same input more than once. For example, the
expression xx can be represented by the power operation xy. Hence, we do not need a univariate
operation xx for this purpose. In all cases, a normal directed acyclic graph is sufficient to
represent a numerical CSP (NCSP) if we allow introducing new elementary operations such as
the univariate function xx. The ordering of edges is needed for non-commutative operations
like the division. For convenience, a virtual ground node, called G, is added to each DAG
representation to be the parent of all nodes that represents constraints. In fact, the ground
node can be interpreted as the logical AND operation.

Example 6.9. Consider the following constraint system




√
x + 2

√
xy + 2

√
y ≤ 7,

0 ≤ x2√y − 2xy + 3
√

y ≤ 2,
x ∈ [1, 16], y ∈ [1, 16],

which can be written into the form (6.1) as follows




√
x + 2

√
xy + 2

√
y ∈ [−∞, 7],

x2√y − 2xy + 3
√

y ∈ [0, 2],
x ∈ [1, 16], y ∈ [1, 16].

(6.2)

The DAG representation of the constraint system (6.2) is depicted in Figure 6.2. Two con-
straints of the system (6.2) are represented by two nodes N9 and N10. Two variables, x and

March 14, 2005

6.3. Forward-Backward Propagation on DAG Representations 155

Figure 6.2. The DAG representation of the constraint system (6.2).

y, are represented by two nodes N1 and N2, respectively. The sequence (N1,N2, . . . ,N10) of
nodes given in Figure 6.2 is an example of an ordering as stated in Theorem 6.6. ♣

For the same constraint system, the DAG representation is clearly more concise than the
tree representation described in Section 3.2.2.2.

6.3. Forward-Backward Propagation on DAG Representations

When proposing the concept of a DAG representation, Schichl and Neumaier [2004b] suggested
to adapt the concepts of a forward evaluation and a backward propagation defined on tree
representations of individual constraints of a constraint system (see Section 3.2.2.2) to those
defined on DAG representations of whole constraint systems. The forward evaluation at a
node, N, is to evaluate the node range of N based on the node ranges of the children of N.
The backward propagation at a node, N, is concerned with reducing the node range of each
child of N based on the node range of N and on the node ranges of the other children of N.

The original forward-backward propagation algorithm, called HC4, in [Benhamou et al.
1999] was designed to use natural interval forms in two processes, a recursive forward evaluation
and a recursive backward propagation, as described in Section 3.2.2.2. Each of these two
processes is performed at all nodes of the tree representation of a constraint at a time rather
than at a single node at a time. In this section, we refine the concepts of a forward evaluation
and a backward propagation to adaptively use them at individual nodes. This allows using
different interval forms at different stages of the propagation process. Moreover, this refinement
serves as a basis for a new constraint propagation algorithm, called FBPD, we propose in
Section 6.5. Note that, in in this section, we use the notations defined in Notation 6.8.

March 14, 2005

156 6. Numerical Constraint Propagation on Directed Acyclic Graphs

6.3.1. Forward Evaluation on DAG Representations

Consider the DAG representation of a factorable constraint system of the form (6.1). Let N
be a node that is not the ground node and that has k children: C1, . . . , Ck. The operation
represented by N is a function h : Dh ⊆ Rk → R. The relation between N and its children is
given by ϑN = h(ϑC1 , . . . , ϑCk

). We define the forward evaluation at a node as follows.

Definition 6.10 (Forward Evaluation Rule). Consider the node N and its operation, h,
as above described. Let [h] be an interval form of the {∅}-extended function over R of h. The
forward evaluation using the interval form [h] at node N is defined and denoted by

FE(N, [h]) ≡ (τN := τN ∩ [h](τC1 , . . . , τCk
)). (6.3)

Example 6.11. Consider the node N7 in Figure 6.2, h(z) ≡ √
z, where z ≡ ϑN5 . We can use

any interval form [h] of the {∅}-extended function over R of h (i.e., the function
√

z
∅ defined

by (5.10)) for the forward evaluation (6.3). For example, we can use the natural interval form
h(z) ≡ √

z in place of [h] in (6.3). ♣

Remark 6.12. We can also replace the interval form [h] in (6.3) with an interval form of the
recursive subexpression of which the variables are user’s ones. For instance, we can replace
the interval form [h] of the node N7 in Figure 6.2 with the natural interval form of the
recursive subexpression (

√
xy) composed of the nodes N7, N4, N1, and N2. That is, we can

replace [h] with the bivariate interval function
√

xy.

In our implementation, we use the natural interval form for simplicity. The natural interval
form of the function h(x1, . . . , xk) = a0 +a1x1 + · · ·+akxk is the function h(x1, . . . ,xk) = a0 +
a1x1+· · ·+akxk.1 Similarly, the natural interval form of the function h(x1, . . . , xk) = ax1 . . . xk

is the function h(x1, . . . ,xk) = ax1 . . .xk. The division of two reals has not only one but many
natural interval forms because it is originally not defined when the denominator is zero (see
Section 5.2 and Section 5.3). In Definition 5.11, we have pointed out three versions that can
be called the natural interval form of the standard real division: [÷∅], [÷?], and [÷R]. They all
can be used in the forward evaluation (6.3) if h is the division.

The following theorem states the correctness of the forward evaluation in Definition 6.10.

Theorem 6.13. Consider the DAG representation of a factorable numerical CSP of the form
(6.1). The forward evaluation defined in Definition 6.10, when applied to any node, never
discard a solution of the considered problem.

Proof. For every solution of the considered problem, there exists an assignment of values
from the intervals τN, τC1 , . . . , τCk

to the variables ϑN, ϑC1 , . . . , ϑCk
, respectively, such that

ϑN = h(ϑC1 , . . . , ϑCk
). Because [h] is an interval form of the {∅}-extended function over R

of h, it follows from Theorem 5.10 that h(ϑC1 , . . . , ϑCk
) ∈ [h](τC1 , . . . , τCk

). Hence, ϑN ∈
τN ∩ [h](τC1 , . . . , τCk

). The proof is thus completed. ¥
1 Note that if the coefficients a0, . . . , ak are real and we working on the floating-point number system, we can

replace each ai in h with the smallest interval containing it, where 1 ≤ i ≤ k.

March 14, 2005

6.3. Forward-Backward Propagation on DAG Representations 157

6.3.2. Backward Propagation on DAG Representations

Consider the DAG representation of a factorable constraint system of the form (6.1). Let N
be a node that is not the ground node and that has k children: C1, . . . , Ck. The operation
represented by N is a function h : Dh ⊆ Rk → R. The backward propagation attempts to prune
each node range τCi of Ci based on the node range τN of N and on the node ranges of the
other children, where 1 ≤ i ≤ k. In other words, for each child Ci, the backward propagation
attempts to encloses the i-th projection of the relation ϑN = h(ϑC1 , . . . , ϑCk

) on the variable
ϑCi in a tight interval. This procedure is called the i-th backward propagation at N and
denoted by BP(N,Ci). We define the following as the backward propagation at N:

BP(N) = {BP(N,C1), . . . , BP(N,Ck)}. (6.4)

Although the exact projection of a relation is expensive, in general, an enclosure of the exact
projection of an elementary operation can often be obtained at low cost. Indeed, suppose that,
from the relation ϑN = h(ϑC1 , . . . , ϑCk

), we can infer an equivalent relation

ϑCi = gi(ϑN, ϑC1 , . . . , ϑCi−1 , ϑCi+1 , . . . , ϑCk
)

for some i ∈ {1, . . . , k}, where gi is a function from Dg ⊆ Rk to R such that

Dg ⊇ τN × τC1 × · · · × τCi−1 × τCi+1 × · · · × τCk
.

Let [gi] be an interval form of the {∅}-extended function over R of gi. The i-th backward
propagation, denoted BP(N,Ci), can then be defined as

BP(N,Ci) ≡ (τCi := τCi ∩ [gi](τN, τC1 , . . . , τCi−1 , τCi+1 , . . . , τCk
)). (6.5)

In case we cannot infer such a function gi, more complicated rules have to be constructed
in order to obtain the i-th projection of the relation N = f(C1, . . . ,Ck) if the cost is low,
alternatively the relation can be ignored. Fortunately, we can enclose such projections for most
elementary operations at low cost, as shown in Definition 6.16.

Remark 6.14. In general, the relation x = y ∗z and the relation z = x/y are not equivalent
because the latter discards the case y = 0 while the former does not.

Example 6.15. Consider the node N10 in Figure 6.2. The relation given at N10 is ϑN10 =
h(ϑN5 , ϑN6 , ϑN8), where the function h is defined as h(x1, x2, x3) ≡ −2x1+3x2+x3. Therefore,
we can infer three equivalent relations:

ϑN5 = g1(ϑN10 , ϑN6 , ϑN8),
ϑN6 = g2(ϑN10 , ϑN5 , ϑN8),
ϑN8 = g3(ϑN10 , ϑN5 , ϑN6),

where three functions g1, g2, and g3 are defined as follows:

g1(x1, x2, x3) ≡ (−x1 + 3x2 + x3)/2,

g2(x1, x2, x3) ≡ (x1 + 2x2 − x3)/3,

g3(x1, x2, x3) ≡ x1 + 2x2 − 3x3. ♣

March 14, 2005

158 6. Numerical Constraint Propagation on Directed Acyclic Graphs

Definition 6.16 (Backward Propagation Rule). Let h be the elementary operation rep-
resented by N, as discussed above. We use the notation ® to mean that either the division
[÷?] or the division [÷R] can be used at the place the notation ® appears, but the former is
better. The rules for the backward propagation are given as follows:

1. If h is a univariate function such as sqr, sqrt, exp, and log and if [h] is an interval form
of the {∅}-extended function of h, we define

BP(N,C1) ≡
(
τC1 := τC1 ∩ [h−1](τN)

)
,

where the notation of interval form, [h−1](x), to denote the union of some intervals that
contains the inverse image h−1(x);

2. If h is defined as h(x1, . . . , xk) ≡ a0 + a1x1 + · · ·+ akxk, we define

BP(N,Ci) ≡

τCi := τCi ∩


(τN − a0 −

k∑

j=1; j 6=i

aj ∗ τCj)® ai





 (for i = 1, . . . , k);

3. If h is defined as h(x1, . . . , xk) ≡ ax1 . . . xk, we define

BP(N,Ci) ≡

τCi := τCi ∩


τN ® (a ∗

k∏

j=1; j 6=i

τCj)





 (for i = 1, . . . , k);

4. If h is defined as h(x, y) ≡ x/y (i.e., k = 2), we define

BP(N,C1) ≡ (τC1 := τC1 ∩ (τN ∗ τC2)) ,

BP(N,C2) ≡ (τC2 := τC2 ∩ (τC1 ® τN)) .

The following theorem states the correctness of the backward propagation rules given in
Definition 6.16.

Theorem 6.17. Consider the DAG representation of a factorable numerical CSP of the form
(6.1). The backward propagation defined in Definition 6.16, when applied to any node, never
discard any solution of the considered problem.

Proof. By an argument similar to the proof of Theorem 6.13, we have that the first result is
due to the definition of h−1 in Definition 5.2, and the other results are due to Theorem 5.13
and the inclusion property of the operations +, −, and ∗ in (standard) interval arithmetic. ¥

6.4. Partial DAG Representations for Numerical CSPs

The complete solution to numerical CSPs (NCSPs) is essentially based on the branch-and-prune
framework (see Section 3.2.2), where the solving process is performed by repeatedly interleaving

March 14, 2005

6.4. Partial DAG Representations for Numerical CSPs 159

a pruning step with a branching step. The former often uses domain reduction techniques, such
as constraint propagation, to reduce variable domains, while the latter splits a problem into
subproblems. Each subproblem, which needs to be solved, often consists of (i) a subset, called
the set of running constraints, of the set of initial constraints; and (ii) subdomains of the
initial variable domains. If DAG representation is used in the pruning steps, each instance of
it needs to be constructed for a considered subproblem. Therefore, the simplest way consists
of explicitly constructing a new DAG to represent each subproblem. However, the total cost
of creating such DAGs is potentially high, since there are often a huge number of branching
steps during a complete solving process.

Alternatively, we propose to attach a piece of restriction information to the initial DAG,
which is the DAG representation of the initial problem, in order to make the initial DAG
interpreted as the DAG representation of a subproblem without the necessity of creating a
new DAG. Using the piece of information, it is possible to perform forward evaluation and
backward propagation on the DAG representation of the initial problem without increasing
much the time and space needed for the propagation. A combination of a piece of restriction
information and the DAG representation of the initial problem is called a (respectively, the)
partial DAG representation of the initial problem (respectively, the considered subproblem).
For example, partial DAG representations of the problem (6.2) are depicted in Figure 6.3. We
use partial DAG representations in our new constraint propagation algorithm (see Section 6.5).

SQR

x y

SQRT

2

&

3

[1, 16]

[0, 2]
+

SQRT

*

*

1
1

SQRT

2

-2

+

[1, 16]

(b)

N6(2) N7(2) N8(2)

N1(4) N2(4)

N3(3) N4(3) N5(3)

N10(1)N9(1)

G(0)

[1, 256] [1, 256] [1, 4]

[1, 1024]

SQR

x y

SQRT

2

&

3

[1, 16]

[5, 7]

+

SQRT

*

*

1
1

SQRT

2

-2

+

[1, 16]

(a)

N6(2) N7(2) N8(2)

N1(4) N2(4)

N3(3) N4(3) N5(3)

N10(1)N9(1)

G(0)

[1, 256] [1, 4]

[1, 16][1, 4]

Figure 6.3. Partial DAG representations of the problem (6.2) in the cases: (a) the first constraint
is the unique running constraint; and (b) the second constraint is the unique running constraint. The
grey nodes are not counted, hence ignored in computations. The dotted edges are redundant. The node
levels (in the brackets) are not updated.

In order to represent a subproblem with a set of running constraints without having to
create a new DAG, we use a vector Voc of which the size equals to the number of nodes in the

March 14, 2005

160 6. Numerical Constraint Propagation on Directed Acyclic Graphs

DAG representation, D(G), of the initial problem. For each node N of D(G), we use the entry
Voc[N] to count the number of occurrences of N in the recursive composition of the running
constraints. We present a simple recursive procedure, called NodeOccurrences, on page 160 to
compute such a vector. If we invoke Procedure NodeOccurrences at all the nodes representing
the running constraints, each entry Voc[N] will contains the number of occurrences of N in the
recursive composition of the running constraints. In particular, we have Voc[N] = 0 holds if
and only if N is not in the representation of the running constraints. Therefore, by combining
D(G) with a vector Voc, we have the so-called partial DAG representation for a subproblem.
In computations, we can use partial DAG representations in a way similar to the way we use
DAG representations, except that we ignore every node N with Voc[N] = 0. Figure 6.3 shows
partial DAG representations of the problem (6.2).

Procedure NodeOccurrences(in: a node N; in/out: a vector Voc)

foreach C ∈ children(N) do
Voc[C] := Voc[C] + 1;
NodeOccurrences(C, Voc);

end

6.5. Constraint Propagation on Partial DAG Representations

We recall that each step of the original forward-backward propagation algorithm, called HC4
and proposed by Benhamou et al. [1999], consists of two processes: a recursive forward eval-
uation and a recursive backward propagation (see Section 3.2.2.2). Each of these processes
is recursively performed on the whole tree at a time rather than at individual nodes. In this
section, we show how this propagation can be enhanced by a flexible choice of individual nodes
for performing the forward evaluation and the backward propagation. The nature of the newly
proposed method enables the use of different interval forms at different propagation stages. For
efficiency, the new forward-backward propagation is performed on partial DAG representations
of the initial problem. In other words, it is a partial forward-backward propagation on the
initial DAG. We then devise, in Section 6.6, a detailed search algorithm in combination with
the forward-backward propagation on partial DAG representations.

Inspired by the recursive forward evaluation and recursive backward propagation in the
HC4 algorithm, we devise a new algorithm for numerical constraint propagation, which is based
on partial DAG representations instead of tree representations. The new algorithm is called
the forward-backward propagation on DAGs, and is abbreviated to FBPD. The main steps of
FBPD is presented in Algorithm 6.2. Like the HC4 algorithm, the main body of the FBPD
algorithm has two principal processes: forward evaluation and backward propagation. Unlike
the HC4 algorithm, the FBPD algorithm, however, performs these processes for a single node
instead of all nodes at once. Therefore, in the FBPD algorithm, the choice of the next node
for further processing can be adaptively made based on the results of the previous processes.
Moreover, in the FBPD algorithm, the choice of the interval form [h] of an operation h for the
forward evaluation and the backward propagation is not necessarily fixed. The interval form [h]
can be chosen statically or dynamically based on the nature of h at the current context. This
issue will be addressed elsewhere as a continued work. In the next paragraphs, we describe in
detail the procedures that are not made explicit in Algorithm 6.2.

March 14, 2005

6.5. Constraint Propagation on Partial DAG Representations 161

Algorithm 6.2: The FBPD algorithm – a constraint propagation on DAGs
Input: a DAG D(G) with the ground G, variable domains D, running constraints C.
Output: new domains D.
Reset all node ranges of D(G) to [−∞,∞];
Set the node ranges of variables & constraints to D & the constraint ranges of C, resp.;
Lf := ∅; Lb := ∅; Voc := (0, . . . , 0); Vch := (0, . . . , 0);
Vlvl := (0, . . . , 0); J This can be made optional together with Line 2.1

foreach node C representing a running constraint in C do
NodeOccurrences(C, Voc); J On page 160.

NodeLevel(C, Vlvl); J This can be made optional together with Line 1. On page 163.2

ReForwardEvaluation(C, Vch, Lb); J A full recursive forward evaluation. On page 162.3

if the infeasible status was detected then return D := ∅;
end
while Lb 6= ∅ ∨ Lf 6= ∅ do

N := getNextNode(Lb,Lf);4

if N was taken from Lb then
foreach child C of N do

BP(N,C); J See Definition 6.16.5

if τC = ∅ then return D := ∅; J The infeasible status was detected.

if τC was changed enough for forward evaluation then6

foreach P ∈ parents(C) \ {N,G} do
if Voc[P] > 0 then Put P into Lf; J P occurs in a running constraint.

end
end
if τC was changed enough for backward propagation then7

Put C into Lb;
end

end
else J N was taken from Lf.

FE(N, [h]); J h is the operator at N, [h] is an interval form of h, see Definition 6.10.8

if τN = ∅ then return D := ∅; J The infeasible status was detected.

if τN was changed enough for forward evaluation then9

foreach P ∈ parents(N) \ {G} do
if Voc[P] > 0 then Put P into Lf; J P occurs in some running constraint.

end
end
if τN was changed enough for backward propagation then10

Put N into Lb;
end

end
end
Update D with the node ranges of the variables;

Recursive Forward Evaluation. Similarly to the HC4 algorithm, we perform a recursive
forward evaluation at the initialization phase (Line 3 in Algorithm 6.2) to evaluate the node
ranges of all nodes in a partial DAG representation, that is, the nodes with nonzero entries
in Voc. Procedure ReForwardEvaluation (on page 162) provides such an algorithm. In order

March 14, 2005

162 6. Numerical Constraint Propagation on Directed Acyclic Graphs

to avoid evaluating the same subexpressions many times, we use a vector, Vch, to mark the
caching status of node ranges. A node N is marked as “cached”, by setting Vch[N] := 1, if its
node range has already been computed. The result of the recursive forward evaluation of the
constraint system (6.2) is depicted in Figure 6.4 (for the case both constraints are running)
and Figure 6.3 (for the case only one constraint is running).

Procedure ReForwardEvaluation(in: a node N; in/out: a vector Vch, a list Lb)

if N is a leaf or Vch[N] = 1 then return ; J N is a leaf or has been cached.

foreach C ∈ children(N) do
ReForwardEvaluation(C, Vch, Lb);

end
if N = G then return ;
FE(N, [h]); J This is similar to Line 8 in Algorithm 6.2.
Vch[N] := 1; J The node range of N is cached.

if τN = ∅ then return infeasible;
if τN was changed enough for backward propagation then11

Put C into Lb;
end

SQR

x y

SQRT

2

&

3

[1, 16]

[0, 2][5, 7]
+

SQRT

*

*

1
1

SQRT

2

-2

+

[1, 16]

N6(2) N7(2) N8(2)

N1(4) N2(4)

N3(3) N4(3) N5(3)

N10(1)N9(1)

G(0)

[1, 256] [1, 256] [1, 4]

[1, 4] [1, 16] [1, 1024]

Figure 6.4. The DAG representation of the system (6.2) after a recursive forward evaluation.

Get the Next Node for Further Processing. The FBPD algorithm uses two waiting
lists, Lf and Lb, to store the nodes waiting for further processing. The first list, Lf, is a
list of nodes that is scheduled for forward evaluation, that is, for evaluating its node range
based on the node ranges of its children. The second list, Lb, is a list of nodes that is waiting
for backward propagation, that is, for pruning the node ranges of its children based on its

March 14, 2005

6.5. Constraint Propagation on Partial DAG Representations 163

Procedure NodeLevel(in: a node N; in/out: a vector Vlvl)

foreach child C of node N do
Vlvl[C] := max{Vlvl[C], Vlvl[N] + 1};
NodeLevel(C, Vlvl);

end

SQR

x y

SQRT

2

&

3

[1, 16]

[0, 2]
+

SQRT *

1
1

SQRT

2 -2

+

[1, 16]

(b)

N6(2) N7(2) N8(2)

N1(4) N2(4)

N3(3)

N4(2)

N5(3)

N10(1)N9(1)

G(0)

[1, 256]

[1, 256]

[1, 4]

[1, 1024]

*

SQR

x y

2

&

3

[1, 16]

[5, 7]

+

SQRT

*

*

1
1

SQRT

2

-2

+

[1, 16]

(a)

N6(2) N7(2) N8(2)

N1(4) N2(4)

N3(3) N4(3)

N5(2)

N10(1)N9(1)

G(0)

[1, 256]

[1, 4][1, 16]

SQRT

[1, 4]

Figure 6.5. The node levels are updated at each call to the FBPD algorithm

node range. In general, when Lf contains many nodes, the nodes should be sorted such that
the forward evaluation at a node is performed after the forward evaluations at its children.
Analogously, the nodes in Lb should be sorted such that the backward propagation at a node
is performed before the backward propagations at its children. Procedure NodeLevel assigns
to each node a node level such that the node level of an arbitrary node is smaller than the node
levels of its descendants (see Theorem 6.6). We then sort the nodes of Lb and Lf in ascending
order and descending order of node levels, respectively, to meet the above requirements.

The call to Procedure NodeLevel at Line 2 in Algorithm 6.2 can be made optional as
follows. The first option allows invoking Procedure NodeLevel only at the first call to the
FBPD algorithm. The node levels of the initial DAG still meet the requirements on the
ordering of the waiting lists. The numbers in brackets next to the node names in Figure 6.3
are the node levels computed for the initial DAG. Figure 6.5 illustrates the second option
that allows invoking Procedure NodeLevel at Line 2 in Algorithm 6.2 every time the FBPD
algorithm is invoked.

The function getNextNode at Line 4 in Algorithm 6.2 chooses one of the two nodes at
the beginning of Lb and Lf. The choosing strategy we use in our implementation is backward
propagation first, that is, taking the node at the beginning of Lb whenever Lb is not empty.
Of course, other choosing strategies can also be used.

March 14, 2005

164 6. Numerical Constraint Propagation on Directed Acyclic Graphs

When Are the Changes of Node Ranges Enough? For simplicity, in Algorithm 6.2 (cf.
the lines 6, 7, 9, 10) we only briefly present the procedures to check whether the node ranges
have been changed enough for further processing. Hereafter, we detail them. Let M denote the
node C at Line 5 or the node N at Line 5 (in Algorithm 6.2). In Algorithm 6.2, the backward
propagation at Line 5 and forward evaluation at Line 8 are of the form

τM := τM ∩ y, (6.6)

where y is the interval computed by the forward evaluation or backward propagation before
intersecting with τM.

Let Wold and Wnew be the widths of τM and τM∩y, respectively. In practice, the change of
τM after performing (6.6) is considered enough for doing the forward evaluation at its parents
if both the conditions Wnew < rf ∗Wold and Wnew +df ≤ Wold hold, where rf is a real parameter
in]0, 1[and df is a small positive real parameter. The numbers rf and df can be predetermined
or dynamically computed. Similarly, the change of τM after performing (6.6) is considered
enough for doing the backward propagation at M if both the conditions Wnew < rb ∗Wold and
Wnew + db ≤ Wold hold, where rb is a real parameter in]0, 1[and db is a small positive real
parameter. Moreover, if y is computed by the forward evaluation (at Line 8), an additional
condition that y * τM must also hold.

The FBPD algorithm is contractive and correct in the following sense.

Theorem 6.18. Let define a function Φ : In → In to represent the FBPD algorithm. This
function takes as input the variable domains in the form of a box x ∈ In and returns a box
in In, denoted by Φ(x), that represents the variable domains of the output of the FBPD
algorithm. If the input problem contains only the operations h defined in Definition 6.10 and
Definition 6.16, then the FBPD algorithm terminates at a finite number of iterations and the
following properties hold:

(Contractiveness) Φ(x) ⊆ x, (6.7)
(Correctness) Φ(x) ⊇ x ∩ S, (6.8)

where S is the exact solution set of the input problem.

Proof. All the node ranges in the DAG representation of the considered problem are never
inflated at each step of the FBPD algorithm; hence, the FBPD algorithm must terminate at a
finite number of iterations because of the finite nature of floating-point numbers. In particular,
the ranges of the nodes representing the variables are never inflated; hence, the property
(6.7) holds. Moreover, the forward evaluations and backward propagations used in the FBPD
algorithm are defined in Definition 6.10 and Definition 6.16. It follows from Theorem 6.13 and
Theorem 6.17 that they never discard a solution. Therefore, the property (6.8) also holds. ¥

6.6. Coordinating Constraint Propagation and Search

We now tackle the issue of coordinating constraint propagation and search for solving NCSPs
under the branch-and-prune framework, the most common framework for exhaustively solving
NCSPs. The most widely used algorithm for search is bisection-based, hence called the bisection
search. It is suitable for problems with isolated solutions. However, it is often inefficient for

March 14, 2005

6.7. Experiments 165

Algorithm 6.5: The BnPSearch algorithm – a generic branch-and-prune search
Input: a CSP P ≡ (V,D, C).
Output: L∀, Lε. J Lists of inner and undiscernible boxes, respectively.

Construct the DAG representation D(G) of the initial problem P;
FPBD(D(G), C,D); J Prune the domains in D by using Algorithm 6.2.

if D = ∅ then return infeasible;
if the domains in D are small enough then

Lε := Lε ∪ {(D, C)};
return ;

end
WaitingList := {(D, C)};
while WaitingList 6= ∅ do

Get a couple (D0, C0) from WaitingList; H/* Di=1,k ⊆ D0, Ci=1,k ⊆ C0. */

Split the CSP (V,D0, C0) into sub-CSPs {(V,D1, C1), . . . , (V,Dk, Ck)};
for i := 1, . . . , k do

if Ci = ∅ then
L∀ := L∀ ∪ {Di}; J All points in Di are solutions.

continue for;
end
FPBD(D(G), Ci,Di); J Prune the domains in Di by using Algorithm 6.2.

if Di = ∅ then continue for;
if the domains in Di are small enough then

Lε := Lε ∪ {(Di, Ci)}; J This CSP is not amenable for further splitting.

end
WaitingList := WaitingList ∪ {(Di, Ci)};

end
end

problems with continuums of solutions, for instance, problems with inequalities. For problems
with continuums of solutions, therefore, we need more advanced search techniques like UCA5,
UCA6 and UCA6+ (see Chapter 4). They all can be viewed as instances of a more generic
branch-and-prune search algorithm, called BnPSearch, described in Algorithm 6.5.

In general, the BnPSearch algorithm produces two lists: L∀, Lε. The first list, L∀, consists
of completely feasible subdomains. The second list, Lε, consists of tuples, each of which consists
of (i) a box, which is smaller than the required resolution/precision ε or is canonical, playing
the role of domains; and (ii) a set of running constraints in the corresponding box.

Because of the finite nature of floating-point numbers, it is easy to prove that the branch-
and-prune search presented in Algorithm 6.5 can obtain the predefined positive precision ε (i.e.,
L becomes empty) after a finite number of steps. Moreover, this branch-and-prune search is a
complete solution technique, w.r.t. the feasibility checker used for classifying ε-bounded boxes
(see Chapter 4), because the FBPD algorithm is correct and contractive.

6.7. Experiments

We have carried out experiments on the FBPD algorithm and two other well-known state-of-
the-art interval constraint propagation techniques. The first one is an efficient implementation
of box consistency (see Section 2.3.3.3) in a well-known commercial product named ILOG Solver

March 14, 2005

166 6. Numerical Constraint Propagation on Directed Acyclic Graphs

(v6.0, 11/2003), hereafter denoted by BOX. The second one is the HC4 algorithm [Benhamou
et al. 1999] (see Section 3.2.2.2). The experiments are carried out on 33 problems, which are
unbiasedly chosen and divided into five test cases to analyze the empirical results:

• The test case T1 consists of eight easy problems with isolated solutions. These problems
are solvable in short time by the search using the three propagators. (See Section C.2.)

• The test case T2 consists of four average problems with isolated solutions. These problems
are solvable by the search using FBPD and BOX and cause the search using HC4 being
out of time without reaching 106 splits. (See Section C.3.)

• The test case T3 consists of eight hard problems with isolated solutions. These problems
cause the search using FBPD being stopped due to running more than 106 splits, cause
the search using HC4 being out of time without reaching 106 splits, and cause the search
using BOX either being out of time or being stopped due to running more than 106 splits.
(See Section C.4.)

• The test case T4 consists of seven easy problems with a continuum of solutions. These
problems are solvable in short time at the predefined precision 10−2. (See Section C.5.)

• The test case T5 consists of six hard problems with a continuum of solutions. These
problems are solvable in short time at the predefined precision 10−1. (See Section C.6.)

The timeout value is set to 10 hours for all the test cases. The timeout values will be
used as the running time for the techniques that are out of time in the next result
analysis (i.e., we are in favor of slow techniques). For the first three test cases, the precision
is 10−4 and the search to be used is the bisection search. For the last two test cases, the search
to be used is a search technique, called UCA6, for inequality constraints (see Chapter 4). The
comparison of the interval propagation techniques is based on the following measures:

• The running time: The relative ratio of the running time of each propagator to that of
FBPD is called the relative time ratio.

• The number of boxes: The relative ratio of the number of boxes in the output of each
propagator to that of FBPD is called the relative cluster ratio.

• The number of splits/iterations: The number of splits in search needed to solve the
problems. The relative ratio of the number of splits used by each propagator to that of
FBPD is called the relative iteration ratio.

• The volume of boxes (only for T1, T2, T3): We consider the reduction per dimension
d
√

V/D; where d is the dimension of the problem, V is the total volume of the output
boxes, D is the volume of the initial domains. The relative ratio of the reduction gained
by each propagator to that of FBPD is called the relative reduction ratio.

• The volume of inner boxes (only for T4, T5): The ratio of the volume of inner boxes to
the volume of all output boxes is called the inner volume ratio.

The lower the relative ratio is, the better the performance/quality is; and the higher the inner
volume ratio is, the better the quality is.

March 14, 2005

6.7. Experiments 167

The overviews of results in our experiments are given in Table 6.1 and Table 6.2. In
Table 6.3, we give the overrun ratio of each propagator for the test case T1. The overrun ratio
is defined as ε/ d

√
V/N ; where ε is the required precision, d is the dimension of the problem, V

is the total volume of the output boxes, N is the number of output boxes.

Table 6.1. A comparison of three constraint propagation techniques FBPD, BOX, and HC4 in solving
NCSPs. In the section (a), the averages of the relative time ratios are taken over all the problems in
the test cases T1, T2, T3; and the averages of the other relative ratios are taken over the problems in the
test case T1 (i.e., taken over the problems that are solvable by all the techniques). In the section (b),
the averages of the relative ratios are taken over all the problems in the test cases T4, T5.

(a) Isolated Solutions (b) Continuum of Solutions

Propagator
H

Relative
time
ratio

Relative
reduction

ratio

Relative
cluster
ratio

Relative
iteration

ratio

Relative
time
ratio

Inner
volume
ratio

Relative
cluster
ratio

Relative
iteration

ratio

FBPD 1.000 1.000 1.000 1.000 1.000 0.922 1.000 1.000
BOX 20.863 0.625 0.342 0.731 20.919 0.944 0.873 0.854
HC4 203.285 0.906 1.266 0.988 403.915 0.941 0.896 0.879

Table 6.2. The averages of the relative time ratios are taken over the problems in each test case.

Propagator (a) Isolated Solutions (b) Continuum of Solutions
H Test case T1 Test case T2 Test case T3 Test case T4 Test case T5

FBPD 1.00 1.00 1.00 1.00 1.00
BOX 24.21 28.98 13.45 11.55 31.85
HC4 94.42 691.24 68.17 191.86 651.31

Table 6.3. The overrun ratios for the test case T1. (An overrun ratio greater than 1 would satisfy the
requirements of applications.)

Problem I BIF3 REI3 WIN3 ECO5 ECO6 NEU6 ECO7 ECO8 Average

FBPD 1.626 1.360 2.075 1.711 1.676 3.198 1.513 1.455 1.827
BOX 2.957 1.974 3.080 1.579 1.660 6.748 1.521 1.485 2.625
HC4 2.229 1.914 1.492 1.647 1.679 4.949 1.488 1.449 2.106

Clearly, FBPD outperforms both BOX and HC4 by 1 to 2 orders of magnitude or more
in speed, at least for the unbiasedly chosen benchmarks, while being roughly the same quality
w.r.t. enclosure properties in case where the solution set to be enclosed by boxes of macroscopic
size (i.e., for continuums of solutions). For isolated solutions, very narrow boxes are produced
by any technique in comparison to the required precision. However, the new technique is about
1.1–2.0 times less tight than the other techniques in the measure on reduction per dimension
(which hardly matters in applications). In comparison with HC4 (we recall that HC4 is a
constraint propagation technique that is similar to FBPD but works on the tree representation
instead of DAGs), FBPD is clearly more suitable for applications.

March 14, 2005

168 6. Numerical Constraint Propagation on Directed Acyclic Graphs

6.8. Conclusion

We propose a new constraint propagation technique, called FBPD, which makes the funda-
mental framework of interval analysis on DAGs [Schichl and Neumaier 2004b] efficient and
practical for numerical constraint propagation. We also propose a method to coordinate con-
straint propagation (FBPD) and exhaustive search on partial DAG representations, where only
one DAG for each problem is needed for the whole solving process. The experiments carried
out on various problems show that the new approach outperforms previously available propa-
gation techniques by 1 to 2 orders of magnitude or more in speed for a set of unbiasedly chosen
benchmarks, while being roughly the same quality w.r.t. enclosure properties (they all still
satisfy the requirements of applications). The experiments also show that the advance gained
for under-constrained problems is better than that for well-constrained problems. Moreover,
the design nature of the FBPD algorithm is similar to that of the HC4 algorithm [Benhamou
et al. 1999]. Therefore, we can use the FBPD algorithm in many applications and combination
techniques that use the HC4 algorithm.

In other views, the FBPD algorithm can be viewed as a special instance of our generic
combination scheme for combining multiple inclusion techniques in numerical constraint prop-
agation, called CIRD (see Chapter 7). Our experiments show that the strengths of the FBPD
algorithm and the CIRD[ai] algorithm (an instance of the CIRD scheme that uses affine arith-
metic and interval arithmetic) in Chapter 7 are complementary when considering problems
with isolated or problems with non-isolated solutions. Therefore, combining and unifying the
strengths of FBPD and CIRD[ai] to solve problems with either isolated or non-isolated solu-
tions is a straightforward direction for further research.

March 14, 2005

Chapter 7

Combination of Inclusion Techniques
in Constraint Propagation

Note: This chapter includes the research conducted jointly with Djamila Sam-Haroud and Boi Faltings
in [Vu et al. 2004b]. This is the ultimate contribution of the thesis.

7.1. Introduction

Most complete solution techniques follow the branch-and-prune framework, which repeatedly
interleaves pruning steps with branching steps (see Section 3.2.2). The pruning steps often
perform a kind of domain reduction. In early nineties of the twentieth century, an approach,
called interval constraint propagation [Benhamou and Older 1992, 1997], in constraint pro-
gramming was proposed for domain reduction. Most domain reduction techniques following
this approach are based on, extended from, or similar to several fundamental notations such
as kB-consistency [Lhomme 1993], box consistency [Benhamou et al. 1994], and hull consis-
tency [Benhamou and Older 1992, 1997]. In particular, these methods aim at computing box
enclosures of the solution set of a numerical CSP (see Section 2.3.3 and Section 3.2.2).

Recently, linear relaxations (or linear enclosures) have also been used in constraint pro-
gramming to enclose solutions of numerical CSPs. For example, a domain reduction technique
in [Lebbah et al. 2003a,b] use linear relaxations in combination with a constraint propagation
technique. This technique resorts to linear programming techniques in order to prune variable
domains. Whereas, mathematical solution techniques in [Kolev 2001, 2002] use generalized
interval and affine arithmetic to generate linear enclosures/relaxations, and then use an it-
erative fixed point reduction rule to narrow variable domains directly instead of resorting to
linear programming techniques. The reader can find concise descriptions of several recent linear
relaxation based methods, including the above methods, in Section 3.3.

On one hand, different domain reduction techniques have different strengths that are of-
ten complementary, in general. Consequently, combining the strengths of different domain
reduction techniques is the subject of many intensive research efforts aiming at improving the
pruning steps (see Section 3.2.3). On the other hand, the performance of domain reduction
techniques significantly depends on strengths of underlying inclusion techniques1. Therefore,
the combination of different inclusion techniques is also considered as an alternative to the
combination of domain reduction techniques.

1 An inclusion technique is to include a set of interest into enclosures. It is also called an enclosure technique.

169

170 7. Combination of Inclusion Techniques in Constraint Propagation

In this chapter, we propose a novel generic scheme and several specific strategies to com-
bine multiple inclusion techniques in numerical constraint propagation. Our contributions is
described in Section 7.2 and Section 7.3. Namely, we present, in Section 7.2, a novel generic
scheme that allows devising new combination strategies for numerical constraint propagation
in a flexible way. This scheme enables performing the propagation using different inclusion
techniques on (partial) DAG representations of numerical CSPs (see Chapter 6). Moreover,
this scheme is applicable to virtually any factorable constraint system. Its goal is to provide a
combination scheme that is efficient and flexible but still general enough to bring different in-
clusion techniques coming from different areas (e.g., constraint programming and mathematical
programming) into the framework of constraint propagation. In order to illustrate the flexi-
bility and efficiency of the generic scheme, we base on this scheme and devise, in Section 7.3,
several new combination strategies. Theses strategies are based on emerging techniques such as
interval constraint propagation, interval arithmetic, affine arithmetic, and linear programming.
In Section 7.4, our experiments show that the devised technique is superior than the recent in-
terval propagation methods in performance and quality. It even outperforms some very recent
mathematical and constraint programming techniques, which are specially designed to solve
special constraint systems. The potential directions for future are presented in Section 7.5.
The conclusion is finally given in Section 7.6.

7.2. A Combination Scheme for Constraint Propagation

In Section 5.5, we propose an abstraction of inclusion techniques by using the concept of an
inclusion representation. Using this abstract inclusion concept, we propose in this section a
novel generic scheme to perform constraint propagation on (partial) DAG representations. This
scheme allows inclusion techniques to work in cooperation in order to obtain the effect of domain
reduction. Choosing a node for constraint propagation is based on representation objects
(i.e., the computational data) of this node. This scheme can be viewed as a generalization of
the forward-backward propagation on DAGs (FBPD) algorithm in Chapter 6. Some specific
strategies for use in this scheme are described in Section 7.3. They are based on interval
arithmetic, affine arithmetic, interval constraint propagation, and linear programming.

Recall that, in Chapter 6, we present the concept of (partial) DAG representations of
factorable constraint systems or numerical CSPs (NCSPs). The techniques in this chapter
are applicable to both the DAG representation and partial DAG representation notions. For
simplicity, we only present these technique for DAG representations, but it is easy to transfer
the ideas to partial DAG representations, in the same way we did in Chapter 6. Note that, in
this chapter, we use the notations and concepts in Chapter 5, Chapter 6, and Notation 6.8.

7.2.1. Node Range Evaluations

The following constraint system, an NCSP, is used in examples throughout this chapter.

Example 7.1. The DAG representation of the following NCSP is depicted in Figure 7.1:

〈x2 − 2xy +
√

y = 0, 4x + 3xy + 2
√

y ≤ 9; x ∈ [1, 3], y ∈ [1, 9]〉.

The sequence (N1,N2,N3,N4,N5,N6,N7) is an ordering of nodes as stated in Theorem 6.6.♣

Consider the DAG representation of a factorable NCSP. Aiming at combining multiple
inclusion techniques in constraint propagation, we use multiple inclusion representations at

March 14, 2005

7.2. A Combination Scheme for Constraint Propagation 171

Figure 7.1. The DAG representation: (a) before interval evaluations; and (b) after interval evaluations.

each node N of the DAG representation. The computational data stored at N consist of a
constraint range τN and multiple representation objects.

Notation 7.2. For each real inclusion representation I = (R, µ) under consideration, one
representation object, denoted by R(N), in I is stored at N.

Notation 7.3. Let I = (R, µ) be a real inclusion representation, T ∈ R, T ′ ∈ R, and x ⊆ R.
The notation T e x denotes some object T ′′ ∈ R such that µ(T) ∩ x ⊆ µ(T ′′) holds and either
µ(T ′′) ⊆ µ(T) or µ(T ′′) ⊆ x holds. The notation T e T ′ denotes some object T ′′ ∈ R such that
µ(T) ∩ µ(T ′) ⊆ µ(T ′′) holds and either µ(T ′′) ⊆ µ(T) or µ(T ′′) ⊆ µ(T ′) holds.

During computations, the inclusion property at each node will be maintained. That is, the
exact value of the subexpression at a node N always lives in the node range τN and in the image
µ(R(N)) of every representation object R(N) stored at N. Hereafter, we present a concept
that allows reducing the node range of a node basing on the node ranges of its children. This
concept is a generalization of the idea of forward evaluation [Benhamou et al. 1999].

Definition 7.4 (Node Evaluation, NEV). Consider the DAG representation of a constraint
system and a finite set S of real inclusion representations. Let N be a node, (Ci)k

i=1 the
children of N, and h : Dh ⊆ Rk → R the operation represented by N. Suppose hI : Rk → R
is an inclusion function of the {∅}-extended function over R of h. If N is not the ground,
then the following assignment is called the node evaluation at N in I:

NEV(N, I) ≡
{
R(N) := (hI(R(C1), . . . ,R(Ck)) e τN) eR(N);
τN := τN ∩ µ(R(N));

}
.

March 14, 2005

172 7. Combination of Inclusion Techniques in Constraint Propagation

Example 7.5. Consider the problem in Example 7.1 and the notations in Figure 7.1. At the
beginning, we have (see Figure 7.1a):

τN1 = I(N1) = [1, 3]; A(N1) = Â(N1) = 2 + ε1;
τN2 = I(N2) = [1, 9]; A(N2) = Â(N2) = 5 + 4ε2;
τNi = I(Ni) = [−∞, +∞]; A(Ni) = Â(Ni) = [−∞, +∞] (i = 3, 4, 5);
τN6 = I(N6) = [0, 0]; A(N6) = Â(N6) = 0;
τN7 = I(N7) = [−∞, 9]; A(N7) = Â(N7) = [−∞, 9];

The operation corresponding to N3 is the square operation; therefore, we have

NEV(N3, I) ≡
{
I(N3) :=

(
(I(N1))2 e τN3

)
e I(N3);

τN3 := τN3 ∩ I(N3);

}
,

NEV(N3, Â) ≡
{
Â(N3) :=

(
(Â(N1))2 e τN3

)
e Â(N3);

τN3 := τN3 ∩ µÂ(Â(N3));

}
,

NEV(N3,A) ≡
{
A(N3) :=

(
(A(N1))2 e τN3

)
e A(N3);

τN3 := τN3 ∩ µA(A(N3));

}
.

After the node evaluation NEV(N3, I), we have

I(N3) =
(
([1, 3])2 e [−∞, +∞]

)
e [−∞, +∞] = [1, 9],

τN3 = [−∞, +∞] ∩ [1, 9] = [1, 9].

After performing NEV(N3, Â) and NEV(N3,A) by using affine arithmetic and revised affine arith-
metic, we have

Â(N3) =
(
(2 + ε1)2 e [1, 9]

)
e [−∞, +∞] = 4.5 + 4ε1 + 0.5ε3,

τN3 = [1, 9] ∩ µÂ(4.5 + 4ε1 + 0.5ε3) = [1, 9],
A(N3) =

(
(2 + ε1)2 e [1, 9]

)
e [−∞, +∞] = 4.5 + 4ε1 + 0.5[−1, 1],

τN3 = [1, 9] ∩ µA(4.5 + 4ε1 + 0.5[−1, 1]) = [1, 9].

Similarly, after performing node evaluations at the other nodes we have

I(N4) = τN4 = [1, 27], Â(N4) = 10 + 5ε1 + 8ε2 + 4ε4,

A(N4) = 10 + 5ε1 + 8ε2 + 4[−1, 1],
I(N5) = τN5 = [1, 3], Â(N5) = 2.125 + ε2 + 0.125ε5,

A(N5) = 2.125 + ε2 + 0.125[−1, 1],
I(N6) = τN6 = [0, 0], Â(N6) = −13.375− 6ε1 − 15ε2 + 0.5ε3 − 8ε4 + 0.125ε5,

A(N6) = −13.375− 6ε1 − 15ε2 + 8.625[−1, 1],
I(N7) = τN7 = [9, 9], Â(N7) = 42.25 + 19ε1 + 26ε2 + 12ε4 + 0.25ε5,

A(N7) = 42.25 + 19ε1 + 26ε2 + 12.25[−1, 1].

In practice, the node range τN and the interval object I(N) should be merged into one object
because they are of the same type. ♣

March 14, 2005

7.2. A Combination Scheme for Constraint Propagation 173

7.2.2. Induced Constraint Systems for Domain Reduction

In order to present the concept of a pruning constraint system concisely (in Definition 7.9), we
rely on the following concept.

Definition 7.6 (Inclusion Constraint System, ICS). Let N be a node of the DAG rep-
resentation of a constraint system. Suppose (R, µ) is a real inclusion representation defined
by (5.28), namely, µ(T) ≡ {fT (VT) | VT ∈ DT [VT]}. The inclusion constraint system induced
by a representation object T ≡ R(N) and a constraint range D ⊆ R is defined as

ICS(T, D) ≡
{
{ϑN ∈ DT [ϑN] ∩D;} if fT is identity, where VT ≡ (ϑN);
{fT (VT) = ϑN; VT ∈ DT [VT]; ϑN ∈ D;} otherwise;

where the set of variables of ICS(T, D) consists of the variable ϑN, the variables in VT , and
the auxiliary variables used for describing DT .

Roughly speaking, the inclusion constraint system induced by a representation object T at
a node N is a set of constraints that can be inferred from the property that the exact value
ϑN of the subexpression represented by N can be generated by the real evaluation generator
fT at T (because the inclusion ϑN ∈ µ(T) must hold).

Example 7.7. The followings are some examples of inclusion constraint systems for different
inclusion representations:

• An inclusion constraint system for the interval form (5.32):

ICS(T, [c, d]) ≡ {ϑN ∈ [c, d] ∩ [a, b]} ,

where the set of variables is {ϑN}. This system is conjunctive and has the form of bound
constraint.

• An inclusion constraint system for the interval union form (5.33):

ICS(T, [c, d]) ≡
{

ϑN ∈ [c, d]; ϑN ∈
m⋃

i=1

[ai, bi]

}
,

where the set of variables is {ϑN}. This system has the form of the disjunction of bound
constraints.

• An inclusion constraint system for the affine form (5.34):

ICS(T, [c, d]) ≡
{

x0 +
n∑

i=1

xiεi = ϑN; (ε1, . . . , εn) ∈ [−1, 1]n; ϑN ∈ [c, d]

}
,

where the set of variables is {ε1, . . . , εn, ϑN}. This system is conjunctive and linear.

• An inclusion constraint system for the revised affine form (5.36):

ICS(T, [c, d]) ≡
{

x0 +
n∑

i=1

xiεi + exεx = ϑN; (ε1, . . . , εn, εx) ∈ [−1, 1]n+1; ϑN ∈ [c, d]

}
,

where the set of variables is {ε1, . . . , εn, εx, ϑN}. This system is conjunctive and linear.

March 14, 2005

174 7. Combination of Inclusion Techniques in Constraint Propagation

• An inclusion constraint system for the Kolev affine form (5.38):

ICS(T, [c, d]) ≡
{

cx +
n∑

i=1

xiκi + κx = ϑN; κi ∈ [−vi, vi]; κx ∈ [−vx, vx]; ϑN ∈ [c, d]

}
,

where the set of variables is {κ1, . . . , κn, κx, ϑN}. This system is conjunctive and linear.

• An inclusion constraint system for the Hansen interval form (5.40):

ICS(T, [c, d]) ≡
{

cx +
n∑

i=1

xiκi = ϑN; κi ∈ [−vi, vi]; cx ∈ [cx, cx]; xi ∈ [xi, xi]; ϑN ∈ [c, d]

}
,

where the set of variables is {κ1, . . . , κn, cx, x1, . . . , xn, ϑN}. This system is conjunctive
and quadratic.

• An inclusion constraint system for the linear relaxations/polyhedral enclosures (5.41):

ICS(T, [c, d]) ≡


ai0 +

n∑

j=1

aijxj ≤ 0 (i = 1, . . . , m); ϑN ≡ xk ∈ [c, d]; (x1, . . . , xn) ∈ B



,

where the set of variables is {x1, . . . , xn}. This system is conjunctive and linear. Note
that ϑN is one of the variables x1, . . . , xn. ♣

Notation 7.8. In the rest of this chapter, we will abuse the notations I and A to denote the
real inclusion representations, (I, µI) and (A, µA), respectively defined by (5.32) (for interval
arithmetic) and by (5.36) (for revised affine arithmetic).

In the next definition, we construct a constraint system, which is used for pruning node
ranges, using the representation objects stored at related nodes.

Definition 7.9 (Pruning Constraint System, PCS). Let N be a node of the DAG rep-
resentation of a constraint system, (Ci)k

i=1 the children of N, h : Rk → R the operation
represented by N, and S a finite set of real inclusion representations. The following con-
straint system is called the pruning constraint system induced by S at N:

PCS(N,S) ≡





{∧k
i=1 ICS(R(Ci), τCi);} if N is ground,




h(ϑC1 , . . . , ϑCk
) = ϑN;

∧
(R,µ)∈S PCSub(N,R, µ);



 otherwise;

where PCSub(N,R, µ) is a pruning constraint subsystem defined as

PCSub(N,R, µ) ≡
(
ICS(R(N), τN) ∧

k∧

i=1

ICS(R(Ci), τCi)

)
.

March 14, 2005

7.2. A Combination Scheme for Constraint Propagation 175

Figure 7.2. A pruning constraint system at N: (a) in case N is not the ground, all ICS systems and the
relation h on the nodes N,C1, . . . ,Ck are included; and (b) in case N is the ground, only ICS systems
on the child nodes C1, . . . ,Ck are included.

Roughly speaking, the pruning constraint system induced by S at N includes all inclusion
constraint systems induced by all representation objects (in S) stored at N and the children
of N. The operation h is a constraint itself in the pruning constraint system. The concept of
a pruning constraint system is depicted in Figure 7.2.

Example 7.10. Let consider the problem in Example 7.1 and continue the computations in
Example 7.5. We have, for instance, the following inclusion constraint systems:

ICS(I(N1), τN1) ≡ {ϑN1 ∈ [1, 3]};
ICS(I(N2), τN2) ≡ {ϑN2 ∈ [1, 9]};
ICS(I(N3), τN3) ≡ {ϑN3 ∈ [1, 9]};
ICS(I(N4), τN4) ≡ {ϑN4 ∈ [1, 27]};
ICS(I(N5), τN5) ≡ {ϑN5 ∈ [1, 3]};
ICS(I(N6), τN6) ≡ {ϑN6 ∈ [0, 0]};
ICS(I(N7), τN7) ≡ {ϑN7 ∈ [9, 9]};
ICS(Â(N1), τN1) ≡

{
2 + ε1 = ϑN1 ;
ϑN1 ∈ [1, 3]; ε1 ∈ [−1, 1];

}
;

ICS(Â(N2), τN2) ≡
{

5 + 4ε2 = ϑN2 ;
ϑN2 ∈ [1, 9]; ε2 ∈ [−1, 1];

}
;

ICS(Â(N3), τN3) ≡
{

4.5 + 4ε1 + 0.5ε3 = ϑN3 ;
ϑN3 ∈ [1, 9]; εi ∈ [−1, 1] (i = 1, 3);

}
;

ICS(Â(N4), τN4) ≡
{

10 + 5ε1 + 8ε2 + 4ε4 = ϑN4 ;
ϑN4 ∈ [1, 27]; εi ∈ [−1, 1] (i = 1, 2, 4);

}
;

ICS(Â(N5), τN5) ≡
{

2.125 + ε2 + 0.125ε5 = ϑN5 ;
ϑN5 ∈ [1, 3]; εi ∈ [−1, 1] (i = 2, 5);

}
;

ICS(Â(N6), τN6) ≡
{ −13.375− 6ε1 − 15ε2 + 0.5ε3 − 8ε4 + 0.125ε5 = ϑN6 ;

ϑN6 ∈ [0, 0]; εi ∈ [−1, 1] (i = 1, . . . , 5);

}
;

ICS(Â(N7), τN7) ≡
{

42.25 + 19ε1 + 26ε2 + 12ε4 + 0.25ε5 = ϑN7 ;
ϑN7 ∈ [9, 9]; εi ∈ [−1, 1] (i = 1, 2, 4, 5);

}
;

ICS(A(N1), τN1) ≡
{

2 + ε1 = ϑN1 ;
ϑN1 ∈ [1, 3]; ε1 ∈ [−1, 1];

}
;

March 14, 2005

176 7. Combination of Inclusion Techniques in Constraint Propagation

ICS(A(N2), τN2) ≡
{

5 + 4ε2 = ϑN2 ;
ϑN2 ∈ [1, 9]; ε2 ∈ [−1, 1];

}
;

ICS(A(N3), τN3) ≡
{

4.5 + 4ε1 + 0.5εN3 = ϑN3 ;
ϑN3 ∈ [1, 9]; (ε1, εN3) ∈ [−1, 1]2;

}
;

ICS(A(N4), τN4) ≡
{

10 + 5ε1 + 8ε2 + 4εN4 = ϑN4 ;
ϑN4 ∈ [1, 27]; (ε1, ε2, εN4) ∈ [−1, 1]3;

}
;

ICS(A(N5), τN5) ≡
{

2.125 + ε2 + 0.125εN5 = ϑN5 ;
ϑN5 ∈ [1, 3]; (ε2, εN5) ∈ [−1, 1]2;

}
;

ICS(A(N6), τN6) ≡
{ −13.375− 6ε1 − 15ε2 + 8.625εN6 = ϑN6 ;

ϑN6 ∈ [0, 0]; (ε1, ε2, εN6) ∈ [−1, 1]3;

}
;

ICS(A(N7), τN7) ≡
{

42.25 + 19ε1 + 26ε2 + 12.25εN7 = ϑN7 ;
ϑN7 ∈ [9, 9]; (ε1, ε2, εN7) ∈ [−1, 1]3;

}
.

Therefore, we can draw the following pruning constraint systems as examples:

PCS(G, {Â}) ≡



−13.375− 6ε1 − 15ε2 + 0.5ε3 − 8ε4 + 0.125ε5 = ϑN6 ;
42.25 + 19ε1 + 26ε2 + 12ε4 + 0.25ε5 = ϑN7 ;
ϑN6 ∈ [0, 0]; ϑN7 ∈ [9, 9]; εi ∈ [−1, 1] (i = 1, . . . , 5);

PCS(G, {A}) ≡



−13.375− 6ε1 − 15ε2 + 8.625εN6 = ϑN6 ;
42.25 + 19ε1 + 26ε2 + 12.25εN7 = ϑN7 ;
ϑN6 ∈ [0, 0]; ϑN7 ∈ [9, 9]; (ε1, ε2, εN6 , εN7) ∈ [−1, 1]4;

PCS(N6, {I}) ≡
{

ϑN3 − 2ϑN4 + ϑN5 = ϑN6 ;
ϑN3 ∈ [1, 9]; ϑN4 ∈ [1, 27]; ϑN5 ∈ [1, 3]; ϑN6 ∈ [0, 0];

PCS(N6, {Â}) ≡





ϑN3 − 2ϑN4 + ϑN5 = ϑN6 ;
4.5 + 4ε1 + 0.5ε3 = ϑN3 ;
10 + 5ε1 + 8ε2 + 4ε4 = ϑN4 ;
2.125 + ε2 + 0.125ε5 = ϑN5 ;
−13.375− 6ε1 − 15ε2 + 0.5ε3 − 8ε4 + 0.125ε5 = ϑN6 ;
ϑN3 ∈ [1, 9]; ϑN4 ∈ [1, 27]; ϑN5 ∈ [1, 3]; ϑN6 ∈ [0, 0];
(ε1, . . . , ε5) ∈ [−1, 1]5;

PCS(N6, {A}) ≡





ϑN3 − 2ϑN4 + ϑN5 = ϑN6 ;
4.5 + 4ε1 + 0.5εN3 = ϑN3 ;
10 + 5ε1 + 8ε2 + 4εN4 = ϑN4 ;
2.125 + ε2 + 0.125εN5 = ϑN5 ;
−13.375− 6ε1 − 15ε2 + 8.625εN6 = ϑN6 ;
ϑN3 ∈ [1, 9]; ϑN4 ∈ [1, 27];ϑN5 ∈ [1, 3]; ϑN6 ∈ [0, 0];
(ε1, ε2, εN3 , εN4 , εN5 , εN6) ∈ [−1, 1]6;

PCS(N7, {I}) ≡
{

4ϑN1 + 3ϑN4 + 2ϑN5 = ϑN7 ;
ϑN1 ∈ [1, 3]; ϑN4 ∈ [1, 27]; ϑN5 ∈ [1, 3]; ϑN7 ∈ [9, 9];

PCS(N7, {Â}) ≡





4ϑN1 + 3ϑN4 + 2ϑN5 = ϑN7 ;
2 + ε1 = ϑN1 ;
10 + 5ε1 + 8ε2 + 4ε4 = ϑN4 ;
2.125 + ε2 + 0.125ε5 = ϑN5 ;
42.25 + 19ε1 + 26ε2 + 12ε4 + 0.25ε5 = ϑN7 ;
ϑN1 ∈ [1, 3]; ϑN4 ∈ [1, 27]; ϑN5 ∈ [1, 3]; ϑN7 ∈ [9, 9];
εi ∈ [−1, 1] (i = 1, 2, 4, 5);

March 14, 2005

7.2. A Combination Scheme for Constraint Propagation 177

PCS(N7, {A}) ≡





4ϑN1 + 3ϑN4 + 2ϑN5 = ϑN7 ;
2 + ε1 = ϑN1 ;
10 + 5ε1 + 8ε2 + 4εN4 = ϑN4 ;
2.125 + ε2 + 0.125εN5 = ϑN5 ;
42.25 + 19ε1 + 26ε2 + 12.25εN7 = ϑN7 ;
ϑN1 ∈ [1, 3]; ϑN4 ∈ [1, 27]; ϑN5 ∈ [1, 3]; ϑN7 ∈ [9, 9];
(ε1, ε2, εN4 , εN5 , εN7) ∈ [−1, 1]5.

We will see later that, from either PCS(N7, {I}) or PCS(N7, {A}), we have ϑN1 = 1, ϑN4 = 1,
and ϑN5 = 1. Therefore, the system has a unique solution (x, y) = (1, 1). ♣

7.2.3. CIRD – A Generic Combination Scheme

In this section, we describe a generic combination scheme that combines different real inclusion
representations (and related techniques) in constraint propagation. In this scheme, each input
constraint system, an NCSP, is represented by a DAG as described in Section 6.2 or Section 6.4.
The computational data stored at each node are representation objects as described in Sec-
tion 7.2.2. In principle, the scheme uses node evaluations and pruning constraint systems,
which are defined in Section 7.2.2, and uses relevant domain reduction techniques to reduce
node ranges and, in particular, variable domains.

Let G be the DAG representation of the input constraint system. The proposed scheme,
called CIRD, uses two waiting lists. The first waiting list, Le, stores the nodes waiting for node
evaluation. The second waiting list, Lp, stores the nodes waiting for node range pruning. Note
that each node can only appear once at a time in one waiting list, but may appear in both
the waiting lists at a time. The set of real inclusion representations for use in the scheme is
denoted by E . Suppose each real inclusion representation in E provides elementary operations
that are inclusion functions of their real-valued counterparts. In Algorithm 7.1, we present the
main steps of the CIRD scheme with inline detailed descriptions.

Example 7.11. Figure 7.3 illustrates the distribution of auxiliary variables (ε1 and ε2) when
using affine arithmetic and interval arithmetic to perform node evaluations on the DAG repre-
sentation of the problem in Example 7.1. The sets S and T in Algorithm 7.1 can be chosen as
follows: S = T = {I,A}. The set T can be partitioned into two subsets: U1 = {I}, U2 = {A}.
Example 7.10 gives the pruning constraint systems (PCS) for each node.

Consider the node N7 (Figure 7.3a). Applying a linear programming technique to the
system PCS(N7, {A}), we get ε1 = 1 and ε2 = 1. Any node involving an auxiliary variable
of which the domain has just been reduced, ε1 or ε2, will be in the set K in Algorithm 7.1,
namely, K = {N1, . . . ,N7}. Of course, only a subset H of K should be considered for node
range updates. More details are described in Section 7.3.5.2. This shows that, in some cases,
every node in a DAG representation may be chosen for a node range update, not
only the descendants of the current node. Therefore, combination strategies based on
the CIRD scheme can freely choose the set H of nodes for node range updates, depending on
the nature of the underlying inclusion techniques.

Consider the node N6 (Figure 7.3b). Suppose we do not applying linear programming tech-
niques to PCS(N6, {A}), but use some symbolic reasoning. For example, from the first equation
of PCS(N6, {A}), we have an equivalent equation: ϑN3 = 2ϑN4 −ϑN5 +ϑN6 . Substituting ϑN4 ,
ϑN5 , and ϑN6 from the last three equations of PCS(N6, {A}) into this equation, we will see that
ϑN3 contains not only the auxiliary variable ε1 but also the auxiliary variable ε2, in general.

March 14, 2005

178 7. Combination of Inclusion Techniques in Constraint Propagation

Algorithm 7.1: CIRD – a scheme for combining inclusion representations on DAGs

1. Initialization Phase.

(a) Initial Node Evaluation. Traverse the DAG representation G in an order described in
Theorem 6.6. When visiting a node N ∈ G, perform the node evaluation NEV(N, I) for each
I ∈ E . It is encouraged to merge the assignments of multiple NEV(N, I), where I ∈ E , into
a single process to avoid repeating the same assignments or computations.

(b) Initialization of Waiting Lists. Set Le := ∅ and Lp := {the list of all nodes representing
the running constraints together with all the real inclusion representations of E}.

2. Propagation Phase. Repeat this step until both Le and Lp become empty or the limit, if any,
on the number of iterations is reached.

(a) Getting the Next Node. Get a node N (and the set S of real inclusion representations
associated with N in the corresponding list) from the two waiting lists Le and Lp, according
to some choosing strategy.

(b) Node Evaluation. Do this step only if N was taken from Le at Step 2a.
For each I = (R, µ) ∈ S, do the following steps (with noticing that combining several
inclusion representations, by using inclusion converters, for obtaining better node evaluations
is also a good option to consider):

i. Perform the node evaluation NEV(N, I). If this returns an empty set, the algorithm
terminates with an infeasible status.

ii. If the changes of R(N) and τN at Step 2(b)i are considered enough to re-evaluate the
parents of N, then put each node in parents(N) (associated with I) into Le, if N is not
the ground node, or into Lp, otherwise.

iii. If the changes of R(N) and τN at Step 2(b)i are considered enough to do a node pruning
at N again, then put (N, I) into Lp.

(c) Node Pruning. Do this step only if N was taken from Lp at Step 2a.

i. Choose a subset T ⊆ S such that, for each I ∈ T , there are efficient domain reduction
techniques for the constraint system PCS(N, I).

ii. Partition T into subsets such that, for each subset U of the partition, choose a domain
reduction technique which may efficiently reduce the domains of the variables of the
system (or a subsystem of) PCS(N,U). Afterwards, apply the chosen domain reduction
technique to each system (or a subsystem of) PCS(N,U) in a certain order. If this
process returns an empty set, the algorithm terminates with an infeasible status.

iii. Let K be the set of all nodes of which the evaluating functions in the form (5.28) contain
some variables of which the domains were reduced at Step 2(c)ii. Choose a subset H
of K for node range updates, for example, such that each node M in the set H is a
descendant of N.
Node Range Update: For each node M in H and each real inclusion representation
I = (R, µ) ∈ E such that the representation of µ(R(M)) in the form (5.28) contains
some variables (in VT) of which the domains have just been reduced at Step 2(c)ii,
updateR(M) by using these newly reduced domains, then update τM := τM∩µ(R(M)).
If an empty is obtained, the algorithm terminates with an infeasible status.
A. If the changes of R(M) and τM are considered enough to re-evaluate the parents

of M, put each node in parents(M) associated with I into Le.
B. If the changes of R(M) and τM are considered enough to do a node pruning at M,

put (M, I) into Lp.

March 14, 2005

7.3. Specific Combination Strategies as Instances of CIRD 179

This shows that the distribution of auxiliary variables in a DAG representation may
be changed during computations. ♣

*SQR

+

x y

SQRT

-2
1

+

3
2

&

1

[1, 3] [1, 9]

[0, 0] [9, 9]
N6 N7

N3 N4 N5

N1 N2

[1, 9]

4

[1, 27] [1, 3]

G

?1, ?2

(a) (b)

?1, ?2

?1, ?2 ?2
?1

?1 ?2

*SQR

+

x y

SQRT

-2
1

+

3
2

&

1

[1, 3] [1, 9]

[0, 0] [9, 9]
N6 N7

N3 N4 N5

N1 N2

[1, 9]

4

[1, 27] [1, 3]

G

?1, ?2 ?1, ?2

?1, ?2 ?2

?1 ?2

?1, ?2

Figure 7.3. The distribution of auxiliary variables (ε1, ε2) in the DAG representation in Example 7.1:
the grey nodes are the nodes involving a pruning constraint system (PCS): (a) at N7; and (b) at N6.

7.3. Specific Combination Strategies as Instances of CIRD

In general, the performance of a particular constraint propagation technique following the
CIRD scheme depends on the design of each step in this scheme. In this section, we propose
some simple strategies for each step in the CIRD scheme. These strategies are based on two
inclusion representations, I and A. Note that by combining different strategies at all the steps
we get different combination strategies in constraint propagation.

7.3.1. Step 1a: Initial Node Evaluation

A post-order visiting or a recursive evaluation starting from the nodes that represent the
running constraints can be used for the traverse at Step 1a. In our implementation, we use
a recursive evaluation procedure given in Procedure RecursiveNodeEvaluation (page 179) for
this purpose. If this procedure exits with an infeasible status, the main algorithm invoking it
will terminate with an infeasible status.

Procedure RecursiveNodeEvaluation(in: a node N)
if N is a leaf or N has been visited then return ;
foreach C ∈ children(N) do RecursiveNodeEvaluation(C);

J E is the set of real inclusion representations.foreach I ∈ E do NEV(N, I);
Mark N as visited;
if infeasible status is detected then exit(infeasible);

March 14, 2005

180 7. Combination of Inclusion Techniques in Constraint Propagation

Example 7.12. We continue to consider the problem in Example 7.1. Similarly to Exam-
ple 7.5, after performing the initial node evaluation by using interval arithmetic and revised
affine arithmetic, we have:

τN3 = I(N3) = [1, 9]; A(N3) = 4.5 + 4ε1 + 0.5[−1, 1];
τN4 = I(N4) = [1, 27]; A(N4) = 10 + 5ε1 + 8ε2 + 4[−1, 1];
τN5 = I(N5) = [1, 3]; A(N5) = 2.125 + ε2 + 0.125[−1, 1];
τN6 = I(N6) = [0, 0]; A(N6) = −13.375− 6ε1 − 15ε2 + 8.625[−1, 1];
τN7 = I(N7) = [9, 9]; A(N7) = 42.25 + 19ε1 + 26ε2 + 12.25[−1, 1];

See the distribution of auxiliary variables in Figure 7.3. ♣

7.3.2. Step 1b: Initialization of Waiting Lists

We use the process described in the CIRD scheme in Algorithm 7.1.

Example 7.13. Consider Example 7.1. After performing this step with S = {I,A}, we have:

Le = ∅;
Lp = {(N6; I,A), (N7; I,A)}. ♣

7.3.3. Step 2a: Getting the Next Node

At first, we assign a node level to each node in the DAG representation of the considered
constraint system such that each node has a level smaller than the levels of their descendants.
Hence, an ordering in Theorem 6.6 can be obtained easily by sorting the levels of nodes.

Procedure NodeLevel (on page 163) is a simple algorithm for computing a vector Vlvl

of node levels if this procedure is invoked at all nodes representing the running constraints.
Figure 7.1 illustrates the node levels for the constraint system given in Example 7.1. The node
levels are given in brackets next to the node names. Figure 7.3 illustrates the distribution of
auxiliary variables. The list Lp is sorted in the ascending order of node levels. This ensures that
each node will be taken into pruning processes before its descendants, thus reducing redundant
computations. Similarly, the list Le is sorted in the descending order of node levels to ensure
that each node will be evaluated before its ancestors.

There are three simple choosing strategies to get the next node from the union of two
waiting lists, Le ∪ Lp:

• Get the next node from Lp whenever Lp is not empty. This strategy is called the pruning-
first strategy, which gives the priority to the pruning phase.

• Get the next node from one of the two waiting lists until it becomes empty, then switch
to the other list. This strategy is called the loyal choosing strategy.

• Get the next node from one of the two waiting lists in a rotational manner. This strategy
is called the rotational choosing strategy.

In our implementation, we use the pruning-first strategy. More complicated strategies for
choosing the next node can be used as alternatives, for example, based on the pruning efficiency
of nodes. A choosing strategy based on learning tools may also be useful.

March 14, 2005

7.3. Specific Combination Strategies as Instances of CIRD 181

7.3.4. Step 2b: Node Evaluation

For the node evaluation at each node N, we can perform NEV(N,A) and NEV(N, I) in any order,
if N is not the ground node. At Step 2(b)ii, Step 2(b)iii and Step 2(c)iii, we only count on the
change of τN in our current implementation. The change of τN is often considered enough if
the ratio of the new width to the old width is less than a number predefined rw ∈ (0, 1) and
the difference between the old width and the new width is greater than a predefined number
dw > 0 (see Section 6.5 for an argument on a similar case). More complicated criteria that
have been used in constraint programming can be used as alternatives.

7.3.5. Step 2c: Node Pruning

The subset T (in the CIRD) at this step can be chosen as {I,A}. For node pruning, we use
PCS(N, {I}) and a linear subsystem of PCS(N, {A}) defined as follows:

PCS(N, {I}) ≡




f(ϑC1 , . . . , ϑCk
) = ϑN;

ϑN ∈ τN;∧k
i=1(ϑCi ∈ τCi);



 if N is not ground;

PCSL(N, {A}) ≡




{∧k
i=1 ICS(A(Ci), τCi)

}
if N is ground,{

ICS(A(N), τN) ∧∧k
i=1 ICS(A(Ci), τCi)

}
otherwise;

where the inclusion constraint systems are defined as

ICS(A(M), D) ≡




xM,0 +
∑k

i=1 xM,iεi + eMεM = ϑM;
εi ∈ [−1, 1] (i = 1, . . . , n);
εM ∈ [−1, 1];ϑM ∈ D;



 .

In general, we have
PCS(N, {A}) ≡ PCS(N, {I}) ∧ PCSL(N, {A}).

The system PCSL(N, {A}) contains the linear constraints of PCS(N, {A}).
Example 7.14. Consider the problem in Example 7.1, it is depicted in Figure 7.1. Some
examples of pruning constraint systems are given in Example 7.10. We then have:

PCSL(G, {A}) ≡





−13.375− 6ε1 − 15ε2 + 8.625εN6 = ϑN6 ;
42.25 + 19ε1 + 26ε2 + 12.25εN7 = ϑN7 ;
ϑN6 ∈ [0, 0];ϑN7 ∈ [9, 9];
(ε1, ε2, εN6 , εN7) ∈ [−1, 1]4;

PCSL(N6, {A}) ≡





4.5 + 4ε1 + 0.5εN3 = ϑN3 ;
10 + 5ε1 + 8ε2 + 4εN4 = ϑN4 ;
2.125 + ε2 + 0.125εN5 = ϑN5 ;
−13.375− 6ε1 − 15ε2 + 8.625εN6 = ϑN6 ;
ϑN3 ∈ [1, 9]; ϑN4 ∈ [1, 27]; ϑN5 ∈ [1, 3]; ϑN6 ∈ [0, 0];
(ε1, ε2, εN3 , εN4 , εN5 , εN6) ∈ [−1, 1]6;

PCSL(N7, {A}) ≡





2 + ε1 = ϑN1 ;
10 + 5ε1 + 8ε2 + 4εN4 = ϑN4 ;
2.125 + ε2 + 0.125εN5 = ϑN5 ;
42.25 + 19ε1 + 26ε2 + 12.25εN7 = ϑN7 ;
ϑN1 ∈ [1, 3]; ϑN4 ∈ [1, 27]; ϑN5 ∈ [1, 3]; ϑN7 ∈ [9, 9];
(ε1, ε2, εN4 , εN5 , εN7) ∈ [−1, 1]5;

March 14, 2005

182 7. Combination of Inclusion Techniques in Constraint Propagation

All these systems are linear; hence, we can use linear programming techniques to reduce variable
domains, as described in Section 3.3. Tight safe bounds can often be obtained by using the
technique proposed by Neumaier and Shcherbina [2004]. ♣

The combination of the following backward propagation and affine pruning techniques
results in different strategies for the node pruning phase in the CIRD scheme.

7.3.5.1. Backward Propagation

If N is not the ground, the domains of the variables of the constraint system PCS(N, {I}) can
be pruned by a domain reduction technique that is called backward propagation, as described
in Section 6.3.2. In brief, let h be the elementary operation represented by a node N, we then
have the relation ϑN = f(ϑC1 , . . . , ϑCk

). The purpose of backward propagation is to compute,
at a low cost, an enclosure of the i-th projection of the relation ϑN = f(ϑC1 , . . . , ϑCk

) onto
ϑCi by using interval arithmetic. Only k nodes C1, . . . ,Ck possibly contain the variables of
which the domains are pruned in the above backward propagation. Hence, after performing
this backward propagation, at Step 2(c)iii we only need to consider k nodes H = {C1, . . . ,Ck}
for node range updates and for putting into the waiting lists.

7.3.5.2. Affine Pruning

In revise affine arithmetic, A, each variable of the input constraint system is associated with
one noise symbol εi (for i = 1, . . . , n). The system PCSL(N, {A}) is a linear constraint system;
therefore, the domains of the variables of PCSL(N, {A}) can be pruned by using a linear pro-
gramming technique supplemented with the technique proposed by Neumaier and Shcherbina
[2004] (see Section 3.3). If the operation represented by N is linear, we can apply a linear
programming technique to PCS(N, {A}), instead of PCSL(N, {A}), to get tighter bounds on the
variables. For efficiency, only the domains of the variables ϑC1 , . . . , ϑCk

and/or ε1, . . . , εn are
needed to be pruned. We can devise three possible pruning strategies for Step 2(c)iii:

1. The first strategy only requires to prune the domains of ϑC1 , . . . , ϑCk
;

2. The second strategy only requires to prune the domains of auxiliary variables ε1, . . . , εn;
3. The third strategy is to prune the domains of both {ϑC1 , . . . , ϑCk

} and {ε1, . . . , εn}.
For the first strategy, we only need to consider H = {C1, . . . ,Ck} for node range updates. For
the last two strategies, the set H can be chosen as any subset of the set of descendants(N)
of which the noise variables in µA have just been pruned. In our implementation, we use the
second pruning strategy with two options for H: (i) the set descendants(N); and (ii) the set of
initial variables associated with ε1, . . . , εn.

If, for each i ∈ {1, . . . , n}, the new domain of the noise variable εi is [ai, bi] ⊆ [−1, 1], then
the node range update at M ∈ H will be

τM := τM ∩
(

xM
0 +

n∑

i=1

xM
i [ai, bi] + eM[−1, 1]

)
, (7.1)

where A(M) = xM
0 +

∑n
i=1 xM

i εi + eM[−1, 1], and xM
i (for i = 1, . . . , n) are real numbers. It

seems that Kolev affine forms (Section 2.2.3.4) are more suitable for the node range update
(7.1) than revised affine forms are because the radius of the domain of a noise variable is
allowed to be less than 1. Hence, Kolev affine forms do not need to use the domain [−1, 1]
when restarting the computations at M. In this case, we only need to replace the previous
node range [ai, bi] with the smallest symmetric interval containing [ai, bi].

March 14, 2005

7.4. Experiments 183

Remark 7.15. The cost of linear programming is high; therefore, we should use the affine
pruning technique only if the pruning ratio is predicted to be high. For this, we propose
to use the affine pruning technique only if the absolute accumulative error eM of each node
M involving the above linear systems is small enough. That is, the value of the operation
represented by M lies in a thin slot between two hyperplanes, xM

0 +
∑n

i=1 xM
i εi − eM and

xM
0 +

∑n
i=1 xM

i εi + eM, in the space of the noise variables (ε1, . . . , εn). Moreover, the affine
pruning should only be used for nodes at low levels (i.e., the nodes near roots).

7.4. Experiments

7.4.1. Comparisons with Interval Constraint Propagation Techniques

We have carried out experiments on an implementation of the CIRD[ai] algorithm (an instance
of the CIRD scheme using affine arithmetic, interval arithmetic, interval constraint propaga-
tion, and linear programming) and two other well-known state-of-the-art interval constraint
propagation techniques. The first one is a variant of box consistency [Benhamou et al. 1994]
in a well-known commercial product named ILOG Solver (v6.0, 11/2003), hereafter denoted by
BOX. The second one is the HC4 algorithm [Benhamou et al. 1999] (see Section 3.2.2.2). The
experiments are carried out on 33 problems that are unbiasedly chosen and divided into five
test cases to analyze the empirical results:

• The test case T1 consists of eight easy problems with isolated solutions. These problems
are solvable in short time by the search using the three propagators. (See Section C.2.)

• The test case T2 consists of four average problems with isolated solutions. These problems
are solvable by the search using CIRD[ai] and BOX and cause the search using HC4 being
out of time without reaching 106 splits. (See Section C.3.)

• The test case T3 consists of eight hard problems with isolated solutions. These problems
cause the search using HC4 being out of time without reaching 106 splits and cause the
search using BOX either being out of time or being stopped due to running more than 106

splits. The search using CIRD[ai] accomplishes the solving for six of eight problems in
this test case and runs more than 106 splits for the other two problems. (See Section C.4.)

• The test case T4 consists of seven easy problems with a continuum of solutions. These
problems are solvable in short time at the predefined precision 10−2. (See Section C.5.)

• The test case T5 consists of six hard problems with a continuum of solutions. These
problems are solvable in short time at the predefined precision 10−1. (See Section C.6.)

The timeout value is set to 10 hours for all the test cases. The timeout values will
be used as the running time for the techniques that are out of time in the next
result analysis (i.e., we are in favor of slow techniques). For the first three test cases, the
precision is 10−4 and the search to be used is the bisection search. For the last two test cases,
the search technique to be used is the UCA6 algorithm for NCSPs with inequality constraints
(see Chapter 4). The comparison of interval constraint propagation techniques is based on the
following measures:

March 14, 2005

184 7. Combination of Inclusion Techniques in Constraint Propagation

• The running time: The relative ratio of the running time of each propagator to that of
CIRD[ai] is called the relative time ratio.

• The number of boxes: The relative ratio of the number of boxes in the output of each
propagator to that of CIRD[ai] is called the relative cluster ratio.

• The number of splits: The number of splits in search needed to solve the problems. The
relative ratio of the number of splits used by each propagator to that of CIRD[ai] is called
the relative iteration ratio.

• The volume of boxes (only for T1, T2, T3): We consider the reduction per dimension
d
√

V/D; where d is the dimension, V is the total volume of the output boxes, D is
the volume of the initial domains. The relative ratio of the reduction gained by each
propagator to that of CIRD[ai] is called the relative reduction ratio.

• The volume of inner boxes (only for T4, T5): The ratio of the volume of inner boxes to
the volume of all output boxes is called the inner volume ratio.

The lower the relative ratio is, the better the performance/quality is; and the higher the inner
volume ratio is, the better the quality is.

The overviews of results in our experiments are given in Table 7.1 and Table 7.2. Clearly,
CIRD[ai] is superior than BOX and HC4 in performance and quality measures for the problems
with isolated solutions in the unbiasedly chosen benchmarks. CIRD[ai] still outperforms the
others for the problems with continuums of solutions in the benchmarks, while being a little
better than the others in quality measures. Note that the ratios for the test case T3 are in
fact much higher than shown because the solving processes using BOX and HC4 does not
terminates after 10 hours while the one using CIRD[ai] terminates in seconds or minutes.

Table 7.1. A comparison of three constraint propagation techniques CIRD[ai], BOX, and HC4 in
solving NCSPs. In the section (a), the averages of the relative time ratios are taken over all the
problems in the test cases T1, T2, T3; and the averages of the other relative ratios are taken over the
problems in the test case T1 (i.e., taken over the problems that are solvable by all the techniques). In
the section (b), the averages of the relative ratios are taken over all the problems in the test cases T4, T5.

(a) Isolated Solutions (b) Continuum of Solutions

Prop.
H

Relative
time
ratio

Relative
reduction

ratio

Relative
cluster
ratio

Relative
iteration

ratio

Relative
time
ratio

Inner
volume
ratio

Relative
cluster
ratio

Relative
iteration

ratio

CIRD[ai] 1.000 1.000 1.000 1.000 1.000 0.945 1.000 1.000
BOX 1429.660 5.323 30.206 4.263 3.414 0.944 1.102 1.056
HC4 17283.614 7.722 105.825 5.515 60.101 0.941 1.168 1.118

Table 7.2. The averages of the relative time ratios, which are taken over problems in each test case.

Propagator (a) Isolated Solutions (b) Continuum of Solutions
H Test case T1 Test case T2 Test case T3 Test case T4 Test case T5

CIRD[ai] 1.00 1.00 1.00 1.00 1.00
BOX 8.33 6097.45 517.10 2.33 4.68
HC4 54.47 83009.81 1649.66 31.42 93.56

March 14, 2005

7.4. Experiments 185

7.4.2. Comparisons with Linear Relaxation Based Techniques

Encouraged by the comparison in the previous section, we compare the proposed technique with
a very recent mathematical solution technique, called A2, in [Kolev 2002], which was specially
designed to solve a nonlinear equation system f(x) = 0. The A2 algorithm converts this system
into separable form g(x) = 0, and then uses Kolev affine arithmetic to evaluate g(x) and get a
linear form L(x, y) = −Ax+By + b, x ∈ x, y ∈ y; where A and B are real matrices, b is a real
vector, and x and y are interval vectors. This technique has to assume a posterior-condition
that the matrix A is invertible in order to use the domain reduction rule (3.115) of the form
x := x ∩ (A−1By + A−1b). The reader can find more details in Section 3.3.3.2. No rigorous
rounding control is found in [Kolev 2002]. We take the first problem in [Kolev 2002], which
was used for illustrating the power of the A2 algorithm in [Kolev 2002], for our comparison:




((4x3 + 3x6)x3 + 2x5)x3 + x4 = 0,
((4x2 + 3x6)x2 + 2x5)x2 + x4 = 0,
((4x1 + 3x6)x1 + 2x5)x1 + x4 = 0,
x4 + x5 + x6 + 1 = 0,
(((x2 + x6)x2 + x5)x2 + x4)x2 + (((x3 + x6)x3 + x5)x3 + x4)x3 = 0,
(((x1 + x6)x1 + x5)x1 + x4)x1 + (((x2 + x6)x2 + x5)x2 + x4)x3 = 0,
x1 ∈ [0.0333, 0.2173], x2 ∈ [0.4000, 0.6000],
x3 ∈ [0.7826, 0.9666], x4 ∈ [−0.3071,−0.1071],
x5 ∈ [1.1071, 1.3071], x6 ∈ [−2.1000,−1.9000].

(7.2)

This system has a unique solution. It is known to be very hard for interval constraint propaga-
tion techniques. To solve it on a 1.7 GHz Pentium PC at the precision 10−5 using a bisection
search; A2 has to perform 917 iterations in 3.46 seconds to reduce the problem to five boxes (see
[Kolev 2002]); while an instance of the CIRD scheme, called CIRD[ai], performs 54 iterations
in only 0.118 seconds to reduce the problem to three boxes. Hence, CIRD[ai] is about 29.3
times faster than A2 for the system (7.2), while it is more rigorous and accurate than A2.

Another technique to compare with is a very recent technique, called Quad, in [Lebbah et al.
2003b], which was specifically designed to process quadratic constraints, and then extended
to address power terms in [Lebbah et al. 2003a]. A short description of Quad is presented
in Section 3.3.1.1. Note that this technique only work on power terms, thus only applying
to the systems with (many) power terms. Again, we take as example two problems, called
Gough-Steward and Yama196, which were used to illustrate the power of Quad in [Lebbah
et al. 2003b] and [Lebbah et al. 2003a], respectively. Gough-Steward is a non-sparse quadratic
equation system of nine variables in robotics, which has four solutions [Lebbah et al. 2003b]:




x2
1 + y2

1 + z2
1 = 31,

x2
2 + y2

2 + z2
2 = 39,

x2
3 + y2

3 + z2
3 = 29,

x1x2 + y1y2 + z1z2 + 6x1 − 6x2 = 51,
x1x3 + y1y3 + z1z3 + 7x1 − 2y1 − 7x3 + 2y3 = 50,
x2x3 + y2y3 + z2z3 + x2 − 2y2 − x3 + 2y3 = 34,
−12x1 + 15y1 − 10x2 − 25y2 + 18x3 + 18y3 = −32,
−14x1 + 35y1 − 36x2 − 45y2 + 30x3 + 18y3 = 8,
2x1 + 2y1 − 14x2 − 2y2 + 8x3 − y3 = 20,
x1 ∈ [−2.00; 5.57], y1 ∈ [−5.57, 2.70], z1 ∈ [0.00, 5.57],
x2 ∈ [−6.25, 1.30], y2 ∈ [−6.25, 2.70], z2 ∈ [−2.00, 6.25],
x3 ∈ [−5.39, 0.70], y3 ∈ [−5.39, 3.11], z3 ∈ [−3.61, 5.39].

(7.3)

Yama196 is a series of high-dimensional sparse problems of n variables and n equations:

(n + 1)2xi−1 − 2(n + 1)2xi + (n + 1)2xi+1 + exi = 0, xi ∈ [−10, 10] (for i = 1, . . . , n),

March 14, 2005

186 7. Combination of Inclusion Techniques in Constraint Propagation

where x0 = xn+1 = 0. Similarly to [Lebbah et al. 2003a], we use the precision 10−8 for these
problems. Table 7.3 presents a preliminary comparison between CIRD[ai] and Quad.

Table 7.3. A preliminary comparison of Quad and CIRD[ai], n is the number of variables.

Propagator I Quad CIRD[ai] Time ratio

Problem
H #S #B Time

(sec.)

CPU speed
(GHz)

#S #B Time
(sec.)

CPU speed
(GHz)

Quad
CIRD[ai]

Gough-Steward (n = 9) 24 4 183.0 1.0 912 4 2.7 1.7 39.9
Yama196 (n = 30) 108 16 31.4 2.66 25 2 3.8 1.7 12.9
Yama196 (n = 60) n/a n/a n/a n/a 18 2 21.0 1.7 n/a
Yama196 (n = 100) n/a n/a n/a n/a 20 2 85.8 1.7 n/a
Yama196 (n = 200) n/a n/a n/a n/a 19 2 560.2 1.7 n/a
Yama196 (n = 300) n/a n/a n/a n/a 20 2 1878.1 1.7 n/a

The results of Quad in Table 7.3 are copied from [Lebbah et al. 2003a,b], except that the
ones in the cells filled with “n/a” are not yet available due to our limited access to the code of
Quad. In Table 7.3, #S denotes the number of splits and #B denotes the number of boxes in
the output.

Remark 7.16. We have also carried out experiments on the naive use of variants of affine
arithmetic as a replacement of interval arithmetic in interval constraint propagation. That
is, affine arithmetic is used only to get bounds on subexpression like in interval arithmetic.
However, the performance of obtained techniques (using affine arithmetic) is even (at least
two times) worse than their counterparts (using interval arithmetic).

7.5. Potential Directions for CIRD

The CIRD scheme opens several potential directions for future research:

• Replace the linear programming technique in the affine pruning (in CIRD[ai]) with any
domain reduction techniques for linear systems because linear programming is very ex-
pensive for this purpose. For example, we can use the Krawczyk iteration for linear
equations (Section 3.1.1.1), the interval Gauss-Seidel iteration (Section 3.1.1.2), the in-
terval Gauss elimination (Section 3.1.2.1), the hull method (Section 3.1.2.2), and all the
methods described in Section 3.3.

• Implement the new divisions for affine forms proposed by [Kolev 2002] and [Miyajima
et al. 2003] in place of the division x/y := x ∗ (1/y) implemented in CIRD[ai].

• Integrate Kolev generalized affine arithmetic (with the improvements of the multiplication
presented in Chapter 5) into the CIRD scheme. (See also Section 2.2.3.4.)

• Integrate linear relaxation techniques (e.g., the ones in [Hongthong and Kearfott 2004]
and [Borradaile and Van Hentenryck 2004]) into the CIRD scheme.

• Integrate the quadratic form proposed by [Messine 2002] and Quad into the CIRD scheme.

March 14, 2005

7.6. Conclusion 187

• Investigate intelligent choosing strategies of the CIRD scheme: choose the next node in
waiting lists based on the pruning efficiency of nodes. The idea is to follow the way of
predicting the convergence in [Lebbah and Lhomme 2002]. Learning the behavior of node
range reductions is also an interesting direction.

• Investigate the ability to integrate high-order inclusion techniques, such as the convex-
ification techniques proposed by [Jansson 2000] and [Tawarmalani and Sahinidis 2002],
into the CIRD scheme. Rigorous bounds on polynomials can be obtained by using the
technique proposed in [Garloff et al. 2003].

7.6. Conclusion

In summary, our contribution in this chapter is twofold:

1. We propose a novel generic scheme, called CIRD, to combine multiple inclusion
techniques in numerical constraint propagation. The scheme potentially allows
bringing into the constraint propagation framework the strengths of different techniques
coming from different fields. It uses real inclusion representations (proposed in Chapter 5)
on either DAG representations (proposed by Schichl and Neumaier [2004b], see Chapter 6)
or partial DAG representations (Chapter 6). This enables devising fine-grained and
flexible combination strategies for performing constraint propagation on virtually any
factorable constraint system, including numerical constraint satisfaction problems.

2. We devise from the generic scheme several specific combination strategies for nu-
merical constraint propagation. These strategies are designed to combine interval
constraint propagation, interval arithmetic, affine arithmetic, and linear programming
into the framework of constraint propagation. Our experiments on a particular strategy,
called CIRD[ai], show that the new approach outperforms previously available constraint
propagation techniques by 1 to 4 orders of magnitude or more in speed,2 while still be-
ing better in quality measures. It even outperforms some very recent techniques that
are specially designed to solve special constraint systems. The largest acceleration is for
well-constrained problems. This shows that the fine-grained structure made available
on (partial) DAG representations through the abstract inclusion concept, called the real
inclusion representation, is a very important and original contribution.

Additionally, our experiments show that the strengths of the FBPD algorithm (proposed
in Chapter 6) and the CIRD[ai] algorithm are complementary. Namely, the FBPD algorithm
outperforms the CIRD[ai] algorithm by an order of magnitude or more in speed when solving
NCSPs with continuums of solutions. Conversely, the CIRD[ai] algorithm is superior than
the FBPD algorithm by 1 to 3 orders of magnitude or more in speed when solving numerical
CSPs with isolated solutions. Theoretically, it is easy to combine these two algorithms to solve
numerical CSPs, in most cases, at the highest speed of both because the resulting combination
algorithm only need to heuristically predict if the constraints are equality then resort to the
CIRD[ai] algorithm, otherwise resort to the FBPD algorithm. A failure of this prediction does
not impact on the correctness of the combination algorithm, but only on the performance of
the algorithm. Further predictions can be based on the nature of real world applications.

2 Our observations show that the gain in speed quickly increases when the hardness of problems increases.

March 14, 2005

188 7. Combination of Inclusion Techniques in Constraint Propagation

March 14, 2005

Chapter 8

Clustering Techniques
for Disconnected Solution Sets

Note: This chapter includes the research conducted jointly with Djamila Sam-Haroud and Boi Faltings
in [Vu et al. 2004a]. This is a contribution of the thesis to promote interval constraint solvers.

8.1. Introduction

In practice, constraints can be equations or inequalities of arbitrary type, usually expressed by
using arithmetic and logical expressions. Numerical constraint satisfaction problems (NCSPs)
with continuums of solutions are often encountered in real-world engineering applications. In
such applications, a set of non-isolated solutions often expresses relevant alternatives that need
to be identified as precisely and as completely as possible. Interval constraint solvers take as
input an NCSP and generate a collection of boxes of which the union rigorously encloses the
solution set. They have shown their ability to solve some complex instances of NCSPs with
non-isolated solutions, especially in low dimensional space. However, they provide enclosures
that are still prohibitively verbose for further exploitations rather than just a simple query1.
More complex queries, on connectedness or intersection for example, are however central to
many applications. Although the running time of interval constraint solvers is getting gradually
improved, the space complexity (the number of boxes) is at least proportional to the number
of boxes needed to cover the boundary of the solution set, therefore still very verbose.

One of the applications of interval constraint solvers we are investigating is a cooperation
scheme of optimization and constraint satisfaction, where the verbose output data of the solvers
is usually simplified by imposing a limit on the number of boxes to be produced or by restricting
the solving process to a low predefined precision. However, in case the solution set is complex
and disconnected, the above simplifications affect significantly the quality of the output and
make it unsuitable for practical use. We propose to use fast clustering techniques to regroup a
large collection of output boxes into a reduced collection of boxes each of which tightly covers
one or several connected subsets.

The needs for progress on this direction are also ubiquitous in real-world applications such
as collision detection, self-collision detection in molecular dynamics and dynamic systems,
where the systems have multiple components in a low dimensional space and the reduced

1 In [Agarwal et al. 2001a], worst-case query time of a box-tree in d-dimensions is Θ(N1−1/d + k), where N is the
number of boxes and k is the number of boxes intersecting the query range.

189

190 8. Clustering Techniques for Disconnected Solution Sets

collection of boxes is useful for soon guaranteeing that systems have no collisions; hence, further
expensive computations can be avoided in many cases. To name a few, we cite some recent
works in collision detection [Fahn and Wang 1999, 2003; Ganovelli et al. 2000; Haverkort et al.
2002; Larsson and Akenine-Moller 2001; van den Bergen 1997; Zhou and Suri 1999] that have
showed that using bounding-volume techniques could gain good results. These techniques aim
at computing bounding boxes that are very similar to the output from interval constraint solvers
for NCSPs. In such applications, interval constraint solvers can be used to produce conservative
approximations of the solution sets within acceptable time and clustering techniques can be
used to bridge the gap between the verboseness in the output of interval constraint solvers and
the compactness required by the applications.

It is known that general computation of an optimal set of k clusters is NP-complete [Garey
and Johnson 1979]. Therefore, fast clusterings usually can be achieved only by using heuristic
algorithms or by restricting to approximations. Very recently, a fast clustering algorithm named
AntClust [Labroche et al. 2002] was proposed. This algorithm is close to, but still not suitable
for addressing our requirements. Though successful, the general clustering techniques are not
suitable for directly applying to our case because they are not guaranteed to be convergent and
the homogeneity information in our problems is not available as required. Therefore, specific
clustering techniques for the data produced by interval constraint solvers are needed.

This chapter considers the issue of post-processing the output of interval constraint solvers
for further exploitations when solving numerical CSPs with continuums of solutions. In par-
ticular, we first present in Section 8.3 a basic clustering algorithm, called Colonization, which
takes O(dN2) time to cluster N boxes in d-dimensions. The basic method computes homo-
geneity (i.e., the connectedness in this case) for each pair of boxes. Moreover, most search
techniques implemented in interval constraint solvers follow the branch-and-prune framework;
hence, they essentially produce boxes in the tree structure.2 Taking advantages of the tree
structure, we propose two approximate algorithms to cluster a large collection of boxes orga-
nized in the form of a tree. The first algorithm, called MCC, very quickly performs clusterings
such that no connected subsets are partitioned. The second algorithm, called SDC, generates
more adaptive clusterings in very short time. It can be seen as a further process of MCC. In
Section 8.3.5, we also discuss about combining the proposed algorithms in order to reduce the
running time of the basic algorithm. The conclusion is finally given in Section 8.5.

8.2. Goals of Clustering

8.2.1. Basic Concepts

When solving NCSPs with non-isolated solutions, interval-based search techniques following
the branch-and-prune framework produce a large collection of boxes that can be maintained in
a bounding-box tree, where child nodes represent for branchings in search. The bounding boxes
stored at search nodes are results of the pruning phase. In literature, there are some variants
of bounding-box tree like bounding-volume tree, interval tree, box-tree and AABB tree.

We call the boxes at the tree leaves that is produced by the solvers the primitive boxes.
In this paper, we use the concept of a hull of boxes to refer to the smallest box that contains
all the given boxes and, for convenience, also to refer to the collection of the involved boxes if
not confusing. A collection of primitive boxes is called connected if the union of the boxes is

2 Even if the tree structure is not available, we still can construct a good bounding-box tree from a list of boxes
in O(N log N) time [Agarwal et al. 2001a].

March 14, 2005

8.2. Goals of Clustering 191

a connected set. If this is the case, we say that the primitive boxes connect to each other. A
collection of primitive boxes is called max-connected (w.r.t to the set of all primitive boxes) if
it is connected and no other primitive boxes connect to the given boxes. A clustering is called
max-connected if each connected collection in a cluster is max-connected. A bounding-box tree
is called orthogonal-separable if every decomposition of each bounding-box into pairwise dis-
connected collections (of primitive boxes) can be performed by sequentially by using separating
hyper-planes that are orthogonal to axes (see Figure 8.1).

max-connected collections primitive boxes

(a) (b)

Figure 8.1. (a) This tree is orthogonal-separable: grey boxes are primitive boxes, they form two
max-connected collections; (b) This tree is not orthogonal-separable.

8.2.2. Goal Setting

We recall that a collection of sets representing points is called disjoint if every two objects have
no common points. Two sets are called hull-disjoint if the two hulls of them are disjoint. The
solution set of an NCSP with non-isolated solutions usually consists of one or more connected
subsets each of which is a continuum. In many applications, there is a need for enclosing the
solution set by a collection of disjoint bounding boxes such that each of the connected subsets
is contained in only one bounding box. To describe the connected subsets as well as possible,
the number of bounding boxes should be as big as possible.

Interval-based search techniques usually produce approximations that are either very poor
(if being stopped at low precision), or prohibitively verbose (if being stopped at medium/high
precision) when solving problems with non-isolated and disconnected solution sets. If a certain
quality is required, we obviously need to take the latter setting and then do a clustering on the
large collection of boxes. However, the exact solution set is unknown yet, only a collection of
primitive boxes is known. The above need is then translated into the need for a max-connected
clustering. If a max-connected clustering has the maximum number of clusters, we call it an
optimal max-connected clustering3. The optimal max-connected clustering of an orthogonal-
separable bounding-box tree provides pairwise hull-disjoint clusters each of which is a hull of
exact one max-connected collection of primitive boxes (see Figure 8.7a). In case the bounding-
box tree is not orthogonal-separable, the clusters in the optimal max-connected clustering may
be not hull-disjoint (see Figure 8.7b). In this case, we may need a further decomposition in
order to obtain hull-disjoint, if this property is required by applications (see Figure 8.7b).

In the next subsections, we propose three new algorithms and their combinations to address
different goals. The first subsection focuses on a basic algorithm that computes the optimal
max-connected clustering. It is however not very efficient in practice, we then incrementally

3 It is easy to prove that the optimal max-connected clustering exists uniquely.

March 14, 2005

192 8. Clustering Techniques for Disconnected Solution Sets

propose two alternative algorithms. Each algorithm has two phases, but they have the same first
phase. The second subsection describes this common phase. The third subsection describes an
algorithm for computing max-connected clusters that are hull-disjoint. The fourth subsection
gives an algorithm for computing more adaptive clusterings. In the last subsection, we discuss
about combining the proposed algorithms in order to reduce the running time of computing
the optimal max-connected clustering.

8.3. Algorithms

8.3.1. Optimal Max-Connected Clustering

As far as we know, there does not exist any algorithm that are suitable to find the optimal max-
connected clustering. Fortunately, there exists a recent clustering algorithm named AntClust
[Labroche et al. 2002] that exploits the phenomenon known as colonial closure of ants to create
homogeneous groups of individuals. The AntClust algorithm addresses the general clustering
problem in the way that we can borrow a part for addressing our goals. Inspired by Seidel’s
invasion algorithm [Tsang 1993] and some ideas in the AntClust algorithm, we propose a
simple deterministic algorithm, called Colonization, which is given in Figure 8.1 to compute
the optimal max-connected clustering. This basic algorithm check if each unprocessed box
connects to existing collections. The check is taken on each member box of each collection
to see if the unprocessed box connect to the collection. The other processes are described in
detailed in Figure 8.1.

It is easy to see that in the worst-case the first phase takes d(1 + 2 + · · · + (N − 1)) =
dN(N − 1)/2 checks for connectedness of two intervals, where N is the number of primitive
boxes in d-dimensions. As a result, the time complexity of the first phase is O(dN2). At the
end of the first phase, all produced collections are max-connected and they have no common

Algorithm 8.1: The Colonization algorithm – a naive clustering
J The first phase is to obtain the optimal max-connectedness.Phase 1 begin

L := ∅;
foreach box B not in any collection in L do

C := {B};
foreach Ci ∈ L do

if {B} ∪ Ci is connected then
C := C ∪ Ci;
L := L \ {Ci};

end
end
L := L ∪ {C};

end
end

J the optional phase to obtain the hull-disjointness.Phase 2 begin
Replace each collection by the hull of its primitive boxes;
while There exist two hulls that have nonempty intersection do

Combine the two hulls into a single hull;
end

end

March 14, 2005

8.3. Algorithms 193

points, but their hulls are not guaranteed to be disjoint. The number of collections produced
by the first phase is therefore equal to the maximum number, p, of max-connected collections.
The second phase is optional. It is only for the applications that requires hull-disjoint. The
second phase has the time complexity O(dp2). We obviously have p ≤ N ; hence, the total
time complexity of the Colonization algorithm is O(dN2), or O(N2) if d is fixed. In practice,
p ¿ N and p is bounded for fixed problems.

8.3.2. Separator Computation

In order to cluster the primitive boxes into a number of disjoint hulls, we can use hyper-planes
that are orthogonal to axes to separate the primitive boxes. We then define new notations for
computing such separating hyper-planes as follows.

Definition 8.1 (Separator, SPT). Given a hull, H, of primitive boxes, an axis x ∈ N, and
an interval, I ∈ I◦. The couple (x, I) is called a separator of H if I is a maximum interval
(w.r.t. the set inclusion) that satisfies the following condition for each primitive box, B, in
H: I ⊆ H|x ∧ I ∩ B|x = ∅. When this holds, I is called a separating interval and x is
called a separating axis. The set of all separators of H on axis x is denoted by SPT(H, x).
SPT(H) = ∪xSPT(H, x).

Definition 8.2 (Extension, EXT). Given a hull, H, of primitive boxes, an axis x ∈ N, and
a box B ⊆ H. A couple (x, I) is called an extension of B w.r.t. H (on axis x) if I is an
interval that is maximum w.r.t. the set inclusion in H|x \B|x. When this holds, I is called
an extending interval and x is called an extending axis. We denote by EXT(B, x) the set of
extensions of B (w.r.t. H) on axis x.

I3I1 I2x

Figure 8.2. The grey boxes are primitive; (x, I2) is a separator of B and H; (x, I1) and (x, I3) are
extensions of B to H on axis x.

Figure 8.2 gives an illustration of the two above concepts. It is easy to see that, on each
axis, a hull has at most two extensions w.r.t. its parent hull and that all separators of the hull
lie between the two extensions. In a bounding-box tree of primitive boxes, we do a process in
a bottom-up manner (e.g., in post-order) to make each bounding box to be the hull of its child
bounding boxes. Hence, the box at each node becomes the hull of primitive boxes contained in
it. A bounding-box tree of which the bounding boxes are the hulls of primitive boxes contained
in the bounding boxes is called a fitted tree.

March 14, 2005

194 8. Clustering Techniques for Disconnected Solution Sets

Definition 8.3 (Separating Set, SE). In a fitted tree, given an axis x ∈ N and a hull, H,
at a node. The union of the intervals of all separators and extensions of H on axis x is called
the separating set of H on axis x and denoted by SE(H, x). Note that, if not specified, the
extensions of a hull are taken w.r.t. the parent hull in the tree.

For simplicity, we use the same notations SPT, EXT and SE for the tree node corresponding
to the hull H. The computation of extensions of a hull w.r.t. its parent hull is trivial and
takes O(d) time. We can see that, in a fitted tree, a couple (x, I) is a separator of a hull if
and only if I is a maximum interval (w.r.t. the set inclusion) that can be contained in all the
separating sets on axis x of all children of the hull. It means that all the separators of the hull
can be computed from separators and extensions of its children by intersection. Moreover, this
is true even during the above-mentioned bottom-up process. The ordering relation on the set
of separators and extensions is given in the following proposition.

Proposition 8.4. In a fitted tree, given a hull, H, of primitive boxes. We have that any two
different separating/extending intervals of H on the same axis do not connect to each other.
Moreover, for any two separators/extensions, s1 and s2, of H, either s1 = s2, s1 < s2 or s2 < s1

holds; where the ordering relation on the separators and extensions is defined as follows:

(i) (x1, I1) = (x2, I2) ⇔ x1 = x2 ∧ I1 = I2,

(ii) (x1, I1) < (x2, I2) ⇔ x1 < x2 ∨ (x1 = x2 ∧ I1 < I2).

Proof. By Definition 8.1 and Definition 8.2, one can easily see that every two different sep-
arators/extensions of H on the same axis do not connect to each other, otherwise either the
separators/extensions are not maximum w.r.t to the set inclusion or H is not the hull of its
children. As a result, the set of all separating and extending intervals on an axis is totally
ordered. This results in what we have to prove. ¥

A1

A21
B21

B12
B11

A B

B22

1

2 2

A22

Root

A B

A1 A2

A21 A22

B1 B2

B12B11 B22B21

Splitting

planes

Figure 8.3. In the fitting process on a bounding-box tree: the computation of separators is processed
in bottom-up manner.

To compute separators of all nodes in a bounding-box tree, we only need to do a single
bottom-up process, called the fitting process. In summary, in the fitting process, operations at
each node consist of (i) making the box at the current node to be the hull of its children; and (ii)
computing the ordered set of separators by taking the ordered intersection of ordered separating

March 14, 2005

8.3. Algorithms 195

sets of its children. The details of the fitting process is given in Procedure BoxTreeFitting on
page 196. We denote by m the maximum number of children of a tree node. The operation
(i) is trivial and takes O(md) time. The leaf nodes of the tree have no separators. Each node
in the tree has at most two extensions that straddle the box stored at the node (hence, they
straddle the set of separators). Moreover, the bottom-up process starts at leaf nodes; therefore,
the separating sets can be computed by the intersection in the operation (ii) and maintained
sorted by the total order in Proposition 8.4.

At the current node, we denote by qi,j the number of elements in the separating set on axis
i ∈ N of the j-th child hull, where 1 ≤ i ≤ d, 1 ≤ j ≤ m. We denote q̄j =

∑
i qi,j and q̄ =

maxj{q̄j}, then q̄ is the maximum number of separators/extensions that a child of the current
node can have. Computing the intersection of a sorted collection of k1 pairwise disconnected
intervals and another sorted collection of k2 pairwise disconnected intervals takes O(k1 + k2)
time (see Algorithm 8.2). By Proposition 8.4 and the result of Procedure SeparatorPulling in
Procedure BoxTreeFitting, qi,j separating/extending intervals in the separating set on axis i
of the j-th child are pairwise disconnected and totally ordered. Therefore, the time complexity
of computing the intersection of

∑
j qi,j separating/extending intervals on axis i of all children

is linear in the number of intervals, that is, O(
∑

j qi,j). As a result, the time complexity of
the operation (ii) is O(

∑
i

∑
j qi,j) = O(

∑
j

∑
i qi,j) = O(

∑
j q̄j), that is, not greater than

O(mq̄). Because the number of nodes in the tree is O(N), the total time complexity of the
fitting process is O(mdN + Q), where Q is the total number of separators/extensions in the
tree except in the root. This can not exceed O((md + q)N), where q is the maximum number
of separators/extensions that each node in the tree has. In most existing solvers, m is not
greater than 2d + 1 and is usually small in comparison with 2d + 1 (e.g., m = 2 if bisection
is used). We conjecture that q is bounded for fixed problems; in particular, it is bounded by
O(p), where p is given in Section 8.3.1. If this conjecture is true, as our experiments show, the
time complexity of the fitting process is O(N) for fixed problems.

Algorithm 8.2: The I◦-intersect algorithm – intersection of two sets of intervals

Input: two ordered sets of disjoint open/closed intervals {〈α〈1〉i , β
〈1〉
i 〉 ∈ I◦ | 1 ≤ i ≤ k1}

and {〈α〈2〉j , β
〈2〉
j 〉 ∈ I◦ | 1 ≤ j ≤ k2}.

Output: an ordered set I of disjoint open/closed intervals as the interval intersection.
I := ∅; i := 1; j := 1;
while i ≤ k1 ∧ j ≤ k2 do

if ¬β
〈1〉
i ≤ α

〈2〉
j then

i := i + 1; continue while;
end

if ¬β
〈2〉
j ≤ α

〈1〉
i then

j := j + 1; continue while;
end

α := max{α〈1〉i , α
〈2〉
j }; β := min{β〈1〉i , β

〈2〉
j };

I := I + {〈α, β〉};
if β = β

〈1〉
i then i := i + 1;

if β = β
〈2〉
j then j := j + 1;

end
return I;

March 14, 2005

196 8. Clustering Techniques for Disconnected Solution Sets

The I◦-intersect algorithm (in Algorithm 8.2) computes the intersection of two ordered col-
lections of pairwise disconnected intervals. The intersection of multiple collections is computed
by calling this function multiple times.

Procedure BoxTreeFitting(in/out: a bounding-box tree T0)

foreach node P of T0 visited a post-order do
if P is a leaf then

foreach axis x do SPT(P, x) := ∅;
else

SeparatorPulling(P); J On page 196.

end
end

Procedure SeparatorPulling(in/out: a node P)

if P is a leaf then return ; J Needed only for Procedure SubtreeSeparation on page 198.

C := children(P);
Set the box at P to the hull ut{B ∈ Id◦ | B is a box at a node in C}; J d-dimensional.

foreach C ∈ C and each axis x do
Compute EXT(C, x) and denote it by {El, Eu}; J This may be empty.
SE(C, x) := {El, SPT(C, x), Eu}; J The result is an ordered set.

end
foreach axis x do H/* I◦-intersect is called multiple times, axis x is ignored to get intervals. */

SPT(P, x) := I◦-intersect{SE(C, x) | C ∈ C}; J See Algorithm 8.2.

end
SPT(P) := {SPT(P, 1), ..., SPT(P, d)}; J Construct an ordered set.

8.3.3. Max-Connected Clustering

The second phase is called the separating process. We now compute a max-connected cluster-
ing based on next propositions. During the separating process, we maintain max-connected
collections of primitive boxes in the form of fitted trees.

Proposition 8.5. Any separator stored at the root of a fitted tree representing a max-
connected collection can be used to partition this tree into two fitted subtrees each of which
represents a max-connected collection.

Proposition 8.6. If a set of primitive boxes represented by a fitted tree can be partitioned
by a hyper-plane that is orthogonal to axis x into two collections of which the projections on
x do not connect to each other, then the root of the fitted tree has some separating interval
that contains the projection of the hyper-plane on x.

Proof of these propositions is trivial due to Definition 8.1 and the definition of fitted tree. By
these propositions, we can compute a max-connected clustering from the separators computed

March 14, 2005

8.3. Algorithms 197

L M U

PlP uP

lM uM M U

PlP uP

lM uM

Figure 8.4. The separating process: recursively construct lower-bound and upper-bound trees from
the subtrees on the lower and upper sides respectively of a separator, and from lower-bound and upper-
bound trees of the children that are intersected with the separator.

in Section 8.3.2. The process can be done in bottom-up manner, or simply by a recursive call
at the root. For simplicity, we describe the process in recursive mode. A recursive call starts
from a root node of a fitted tree created during the separating process. Recursively, for each
node P and the current separator S ∈ SPT(P), we construct two fitted trees from the subtree
rooted at P. One tree is called lower-bound tree (denoted by lP), the other is upper-bound tree
(denoted by uP) with single roots being copied from P at first. If the box at a child node
lies on lower-bound (respectively upper-bound) side of S, the subtree rooted at the child node
is moved to lP (uP, respectively). Otherwise the child node, called M, is processed similarly
to construct its lower-bound and upper-bound trees, lM and uM respectively. The trees lM
and uM are then attached to lP and uP respectively. If any tree root in this process has only
one child, this child is shifted to the root. Additionally, we make roots of lower-bound and
upper-bound trees to be hulls of their child nodes. The separators of the root nodes of new
lower- and upper-bound trees are updated from its children.

In Figure 8.5, we describe the max-connected clustering (MCC) algorithm that uses the
separating process to get a hull-disjoint max-connected clustering. For simplicity, in the MCC
algorithm we use only one list, L, however in implementation it should be maintained as two
lists: one list for the trees that have no separators at the root and the other list for the rest.
In Function SubtreeSeparation, we describe the details of the separating process for a subtree
rooted at a node in a fitted tree. Figure 8.4 and Figure 8.5 give some illustrations of the
separating process. Figure 8.7b gives another example on which MCC provides the optimal
max-connected clustering. Without difficult, we can prove, basing on Proposition 8.6, that the
obtained clustering is optimal max-connected if the bounding-box tree is orthogonal-separable.

Algorithm 8.5: The max-connected clustering (MCC) algorithm
Input: a bounding-box tree T0.
Output: a list L of fitted trees decomposed from T0.
BoxTreeFitting(T0); J On page 196.

L := {T0};
while ∃T ∈ L: T has at least one separator, S, at its root do

L := (L \ T) ∪ SubtreeSeparation(root(T), S); J On page 198.

end

March 14, 2005

198 8. Clustering Techniques for Disconnected Solution Sets

Function SubtreeSeparation(in: a node P, a separator S ∈ SPT(P); out: lP, uP)

Remove the separator S from SPT(P);
Create two trees, lP and uP, each has a single node copied from P;
foreach C ∈ children(P) do

if C lies on lower side of S then
Move the subtree rooted at C to a new subtree of the root of lP;

else if C lies on upper side of S then
Move the subtree rooted at C to a new subtree of the root of uP;

else
Find the separator S′ ∈ SPT(C) : S ⊆ S′;
(lC, uC) := SubtreeSeparation(C, S′); J Repeat this process for child nodes.

Attach lC as a new subtree of the root of lP;
Attach uC as a new subtree of the root of uP;

end
end
if any root in the trees lP or uP has only one child then Shift this child to the root;
SeparatorPulling(root(lP)); J On page 196.
SeparatorPulling(root(uP)); J On page 196.

As proved in Section 8.3.2, the time complexity of the fitting process is O(mdN + Q). There
are at most Q separators in the trees, each separator is processed once, each process takes
O(m) time. Therefore, the time complexity of the separating process is O(mQ). The total
time complexity of MCC is hence O(mdN + mQ). This is practically shown to be linear in N
for fixed problems.

Root

A1

A21
B21

B12B11

A B

A1 A2

A21 A22

B1 B2

B12B11

B22

B22B21

lB uB

l u l u

l u Shifted

A22

2 clusters

New

Unused separators

Figure 8.5. MCC: The separators exist in the root of the fitted tree are used for recursive separating
the tree into lower-bound and upper-bound subtrees. The figure on the right gives the result of this
process. Two obtained clusters are hull-disjoint and max-connected.

8.3.4. Separator-Driven Clustering

In some applications, the clustering obtained by the MCC algorithm characterizes the solution
set not well enough (see the example in Figure 8.5). A remedy for this problem is given as an
additional process for MCC so that applications can choose to whether to run it. We observe

March 14, 2005

8.3. Algorithms 199

that the separators that still exist in output fitted trees of the MCC algorithm (e.g., the two
separators on the right side in Figure 8.5) can be used as hints for further separations.

A1

A21
B21

B12
B11

B22

A22

A

A1 A2

A21 A22

lB

l

B11 B21

uB

B12 B22
Splitting

plane

2 subtrees

from MCC

Figure 8.6. SDC: The separators that still exist in subtrees after running MCC are considered as hints
for decomposition. The process produces six clusters (boxes) that are pairwise hull-disjoint, but not all
are max-connected.

Algorithm 8.7: The separator-driven clustering (SDC) algorithm
Input: a bounding-box tree T0.
Output: a list L of fitted trees decomposed from T0.
L := ∅;
L0 := MCC(T0); J See Algorithm 8.5.

foreach fitted tree T ∈ L0 do
L := L ∪MaxSeparation(T); J On page 200.

end

If we consider the remaining separators in the fitted trees of the output of MCC as hints for
further decomposition, we will need to use all the splitting hyper-planes (i.e., the branchings
in the trees) in the paths from the tree nodes of these separators upward to the roots of
the trees for the separation. That is, all siblings of the nodes from the current node upward
to the root are to be separated into different groups/collections in the clustering. The use
of splitting hyper-planes for the separation does not guarantee that the clusters are pairwise
disconnected. In Figure 8.7, we describe the main steps of an algorithm, called the separator-
driven clustering (SDC) algorithm, which performs the above idea as an additional process for
the MCC algorithm. It is obvious that this algorithm produces a hull-disjoint clustering. Figure
8.6 gives the result of the further process for the subtrees in Figure 8.5. Six clusters (boxes)
obtained in Figure 8.6 describe the solution set better than two boxes in Figure 8.5. In Figure
8.7b, we give another example on the SDC algorithm where the solution set consisting of two
connected subsets is well covered by 13 boxes each of which is a hull of primitive boxes. The
SDC algorithm quickly provides an adaptive clustering as shown in our experiments. By an
argument similar to the one in Section 8.3.3, we have the time complexity of the SDC algorithm
is O(mdN + mQ). This is also practically shown to be linear in N for fixed problems.

March 14, 2005

200 8. Clustering Techniques for Disconnected Solution Sets

Function MaxSeparation(in: a tree T ; out: a list L of trees decomposed from T)
Search in post-order, from left to right, for a node N0 such that SPT(N0) 6= ∅;
if not found then return L := {T };
L := ∅; N := N0; P := parent(N); J P may be null.

while P 6= ∅ do
foreach C ∈ children(P) do

if C on the left of N then Move the subtree rooted at C to L;
if C on the right of N then

Detach the subtree rooted at C and make a new tree TC;
L := L ∪MaxSeparation(TC); J Repeat this process for a child node.

end
if C = N 6= N0 then Erase the node C;
if C = N = N0 then

Detach the subtree rooted at C and make a new tree TC;
Find a separator S ∈ SPT(C);
L := L ∪ SubtreeSeparation(root(TC), S); J On page 198.

end
end
N := P; J Go up a level.
P := parent(N); J P may be null.

end

Proposition 8.7. Each cluster produced by SDC is a connected set.

Proof. If there are two primitive boxes in the subtree of a cluster that form a disconnected
set, then there must be a separator at their common ancestor. This contradicts the property
of the SDC algorithm: no separator exists in output subtrees. ¥

8.3.5. Combinations of Algorithms

Three proposed algorithms produce the same results (see Figure 8.7a) for orthogonal-separable
bounding-box trees. However, they produce different results if bounding-box trees are not
orthogonal-separable (see Figure 8.5, Figure 8.6, Figure 8.7b and Figure 8.8). The Coloniza-
tion algorithm allows getting the best max-connected clustering, but its time complexity is
quadratic. The MCC algorithm only allows getting a hull-disjoint max-connected clustering;
however, it terminates in very short time in our experiments. Both the Colonization algorithm
and the MCC algorithm guarantee the max-connectedness of produced clusters. Conversely,
the SDC algorithm does not guarantee the max-connectedness, although it seems to be the most
adaptive clustering technique among the three and terminates in very short time. Therefore,
we need to investigate their combinations.

8.3.5.1. Combination of MCC and Colonization

As mentioned in Section 8.3.3, the MCC algorithm provides a max-connected clustering such
that the clusters are pairwise hull-disjoint. Hence, if we apply the Colonization algorithm
to every fitted tree produced by the MCC algorithm, we will get the optimal max-connected

March 14, 2005

8.3. Algorithms 201

(a) (b)

Splitting

planes

Separators

Figure 8.7. The bounding-box tree is (a) orthogonal-separable: all algorithms produce the same result;
(b) not orthogonal-separable: Colonization produces 2 clusters (or 1 box if perform the optional phase),
MCC produces 1 box, SDC produces 13 boxes.

(a) (b)

Figure 8.8. (a) Applying OSDC to the problem in Figure 8.6 to get 3 clusters; (b) Applying OSDC
to the problem in Figure 8.7b to get 2 clusters.

clustering. The obtained algorithm is therefore called the optimal max-connected clustering
(OMCC) algorithm.

Let Ni (1 ≤ i ≤ p′) be the number of primitive boxes in the i-th fitted tree produced by
the MCC algorithm, where p′ (≤ p) is the number of subtrees produced by MCC. The running
time of the Colonization algorithm on each tree is O(dN2

i), where 1 ≤ i ≤ p′. Hence, the total
running time of OMCC is

time(OMCC) = time(MCC) +O(d
∑

i

N2
i) = O(mdN + mQ + d

∑

i

N2
i). (8.1)

Noting that
∑

i Ni = N , we have
∑

i N
2
i ≤ N2; thus, O(mdN +mQ+d

∑
i N

2
i) does not exceed

O(dN2). In practice, we often see that Q is much smaller than O(dN2) and
∑

i N
2
i ¿ N2.

Therefore, the actual running time of the OMCC algorithm is often better than that of the
Colonization algorithm for problems with highly disconnected solution sets; that is, p′ is big.

8.3.5.2. Combination of SDC and Colonization

When p′ is small, the OMCC algorithm will not be efficient. Instead of running the Colonization
algorithm after the MCC algorithm, we continue the MCC algorithm until the end of the SDC
algorithm to get n pairwise hull-disjoint clusters. Each of these clusters is a connected set
(by Proposition 8.7). Therefore, if we apply the Colonization algorithm to the hull boxes of
these clusters, we will get a nearly optimal max-connected clustering. The obtained algorithm is

March 14, 2005

202 8. Clustering Techniques for Disconnected Solution Sets

then called the optimized separator-driven clustering (OSDC) algorithm. The OSDC algorithm
combines the adaptiveness of the SDC algorithm and the optimal max-connectedness of the
Colonization algorithm.

The complexity of the second phase of the OSDC algorithm (i.e., the call to the Coloniza-
tion algorithm) is O(dn2). The total running time of the OSDC algorithm is

time(OSDC) = time(SDC) +O(dn2) = O(mdN + mQ + dn2). (8.2)

Note that p′ ≤ p ≤ n. In practice, n is bounded for fixed numerical CSPs, and if p′ is very small
then n is small. Therefore, the running time of the OSDC algorithm is close to the running
time of the SDC algorithm.

8.4. Experiments

We now present an evaluation on 16 nonlinear problems that have at most four dimensions
and that are selected to reflect different topologies of solution set. The selected problems are
categorized into three groups: (i) problems with only one connected subset; (ii) problems with
several connected subsets; and (iii) problems with tens to hundreds connected subsets. Our
experiments show the similarity in the running time of each algorithm in each group. Therefore,
we only need to give the average running time and the average number of computed clusters in
individual groups on the left and right of the cells, respectively, in Table 8.1. Figure 8.9 shows
the graph of the average running times.

Table 8.1. The average running times in milliseconds (on the left of cells) and the average number of
clusters (on the right of cells) in three groups.

N → 100 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

(i) Solver 41 205 409 619 823 1044 1285 1519 1701 1952 2245

(i) Colon. 2|1.0 48|1.0 195|1.0 430|1.0 779|1.0 1251|1.0 1937|1.0 2762|1.0 3985|1.0 5328|1.0 6734|1.0

(i) MCC 1|1.0 2|1.0 5|1.0 8|1.0 10|1.0 14|1.0 16|1.0 19|1.0 21|1.0 26|1.0 29|1.0

(i) SDC 1|3.3 2|3.3 6|3.3 9|3.3 12|3.3 15|3.3 17|3.3 20|3.3 23|3.3 28|3.3 32|3.3

(ii) Solver 69 285 525 774 1024 1263 1538 1788 2002 2288 2601

(ii) Colon. 2|3.1 25|3.6 78|3.7 172|3.9 290|4.0 447|4.1 636|4.1 863|4.4 1120|4.4 1453|4.4 1850|4.4

(ii) MCC 0|3.1 2|3.6 4|3.7 6|3.9 8|4.0 10|4.1 12|4.1 15|4.4 16|4.4 19|4.4 21|4.4

(ii) SDC 0|5.3 2|11.8 4|11.3 7|11.2 9|10.4 11|10.3 13|11.0 15|9.7 17|9.0 19|9.0 22|9.0

(iii) Solver 66 415 860 1253 1683 2112 2557 2935 3371 3883 4271

(iii) Colon. 1|9.0 19|24.5 46|31.5 83|47.3 148|69.8 229|97.3 310|116.8 420|116.8 579|116.8 740|116.8 949|116.8

(iii) MCC 1|9.0 6|24.5 12|31.5 18|47.3 24|69.8 31|97.3 38|116.8 41|116.8 42|116.8 46|116.8 49|116.8

(iii) SDC 1|26.8 7|79.5 12|109.5 18|118.5 24|131.3 32|136.5 39|116.8 41|116.8 43|116.8 46|116.8 50|116.8

The results show that the running time of the Colonization algorithm is quadratic in N
(the number of boxes) while the running times of the MCC and SDC algorithms are very short
(the average time of clustering 5000 boxes is less than 50 ms, and the running time is always
less than 120 ms). The running time of the solver that uses the search algorithm in [Vu et al.
2003] is linear in N . For all tested problems, the running times of MCC and SDC are much
less than that of the Colonization algorithm and, in our experiments, are close to zero.

For all tested problems, the Colonization and MCC algorithms provide the same clusterings.
For most tested problems, the three algorithms produce the same clusterings, though the SDC
algorithm is better than the others for a few problems. Namely, they only show significant

March 14, 2005

8.4. Experiments 203

100

1000

2000

3000

4000

5000

S
ol
ve
r (
i)

C
O
LO
N
IZ
A
TI
O
N
 (i
)

M
C
C
 (i
)

S
D
C
 (i
)

S
ol
ve
r (
ii)

C
O
LO
N
IZ
A
TI
O
N
 (i
i)

M
C
C
 (i
i)

S
D
C
 (i
i)

S
ol
ve
r (
iii
)

C
O
LO
N
IZ
A
TI
O
N
 (i
ii)

M
C
C
 (i
ii)

S
D
C
 (i
ii)

2
2
4
5

6
7
3
4

2
9 3
2

2
6
0
1

1
8
5
0

2
1

2
2

4
2
7
1

9
4
9

4
9 5
0

0

1000

2000

3000

4000

5000

6000

7000

T
im
e
 (
m
s
)

#
 o
f
b
o
x
e
s

2952

2541

31

0

500

1000

1500

2000

2500

3000

3500

10
0

50
0
10
00

15
00

20
00

25
00

30
00

35
00

40
00

45
00

50
00

of boxes

T
im
e
 (
m
s
)

Solver

COLONIZATION

MCC

SDC

Figure 8.9. The average running times in milliseconds (a) in three groups; (b) for all problems

differences for the following problems:

F2.4 ≡ 〈sin(x sin y) ≥ cos(y cosx); −4 ≤ x, y ≤ 4〉;
G1.2 ≡ 〈x2

1 + 0.5x2 + 2(x3 − 3) ≥ 0, x2
1 + x2

2 + x2
3 ≤ 25, ∀i : −8 ≤ xi ≤ 8〉;

H1.1 ≡





x2
1 + x2

2 + x2
3 ≤ 9,

(x1 − 0.5)2 + (x2 − 1)2 + x2
3 ≥ 4,

x2
1 + (x2 − 0.2)2 ≥ x3,
−4 ≤ xi ≤ 4 (i = 1, . . . , 4).

For example, when N = 1000, the Colonization and MCC algorithms provide six boxes for the
problem F2.4, the ratio of the volume of these six boxes to the volume of the hull of primitive
boxes is 0.761 while the ratio obtained by MCC is 0.385 with 30 boxes. When N = 1000
for problem G1.2 (and H1.1 respectively), the Colonization and MCC algorithm result in no
reduction while the SDC algorithm produces four (respectively, five) boxes with the volume
ratio is 0.225 (respectively, 0.191). Our experiments show that, even in case the Colonization
and MCC algorithms cannot characterize the solution set well (e.g., the problems G1.2 and
H1.1), the SDC algorithm is still be able to provide an adaptive clustering that are more
suitable for applications.

We have only carried out experiments with three fundamental algorithms (Colonization,
MCC and SDC); however, the performance of the OMCC algorithm (respectively, the OSDC
algorithm) could be estimated from the performance of the MCC algorithm (respectively, the
SDC algorithm) and the performance of Colonization for a small number of boxes (less than
120 boxes in our experiments, then takes less than 2 to 3 ms) by using the formula (8.1)
(respectively, the formula (8.2)).

March 14, 2005

204 8. Clustering Techniques for Disconnected Solution Sets

8.5. Conclusion

We propose three post-processing algorithms (namely, Colonization, SDC and SDC) and their
combinations, which address different goals, to regroup the verbose output of an interval con-
straint solver into a much smaller number of boxes. In our experiments, the SDC algorithm
shows to be the most adaptive among the above-listed three techniques. Moreover, the MCC al-
gorithm and the SDC algorithm are very cheap (in running time) post-processing techniques to
get useful grouping information on the set of boxes provided by interval constraint solvers. We
also can deduce that, for applications that require the optimal (respectively, a nearly optimal)
max-connected clustering, the OMCC algorithm (respectively, the OSDC algorithm) could be
an alternative to the Colonization algorithm, in case the number of clusters is big (respec-
tively, small). Potentially, applying these post-processing techniques to the output of interval
constraint solvers makes it possible to use the solvers in various applications (as mentioned in
Section 8.1) that require concise representations of the solution set.

March 14, 2005

Chapter 9

Conclusions

In Section 9.1, we summarize our contributions proposed in the previous chapters. In Sec-
tion 9.2, we give some limitations and challenges of constraint programming methods, including
our methods. In Section 9.3, we summarize the potential directions that are open for further
research. In Section 9.4, we give the final conclusion of the thesis.

9.1. Contributions

The detailed contributions of the thesis are presented at the end of each previous chapter (cf.
the chapters 4, 5, 6, 7, and 8). They are summarized as follows:

C1 In Chapter 4, we propose a new complete search technique, called UCA6+, to
solve numerical constraint satisfaction problems. The proposed search technique
is general and applicable to most branch-and-prune based solution methods. In general,
it improves search performance of the most recent generic search technique in case the
solution set contains continuums of solutions, often by an order of magnitude, while
maintaining the same performance as the latest search technique in case solutions are
isolated. Moreover, it provides a concise representation of solutions.

C2 In Chapter 5, we propose several improvements to, and an abstraction of, inclu-
sion techniques. These proposals are used in our new constraint propagation techniques
in Chapter 6 and Chapter 7. Among our proposals are the followings:

(a) We revise the concept of an interval form for extended functions. The revision of
the division in interval arithmetic allows obtaining tighter enclosures at each stage
in constraint propagation.

(b) We revise affine forms such that the number of noise variables will not increase
during computations; hence, it is potentially useful for long-running computations.

(c) We point out that Kolev generalized affine arithmetic on revised affine forms is two
times faster than that on Kolev affine forms (namely, it reduces the number of real
operations needed for the multiplication, the most common but expensive operation,
from 4n2 + 8n + 10 to 2n2 + 6n + 10; where n is the number of noise variables).

(d) We propose a new multiplication for variants of affine arithmetic. It reduces the
complexity of the tight multiplication from O(n2) to 7n + 12 and provides tighter
enclosures than the latest multiplication with the same number of real operations.

205

206 9. Conclusions

(e) We propose a generic procedure to compute Chebyshev affine approximations for
continuously differentiable functions in a rigorous manner.

(f) We propose an abstract inclusion concept, called the real inclusion representation.
This facilitates presenting our novel generic scheme for combining multiple inclusion
techniques in constraint propagation (in Chapter 7).

C3 In Chapter 6, we propose a new numerical constraint propagation technique,
called FBPD, and a method for coordinating FBPD and search on directed
acyclic graphs. This makes the fundamental framework of interval analysis on directed
acyclic graphs (DAGs) (proposed by Schichl and Neumaier [2004b]) efficient and practical
for numerical constraint satisfaction. Our experiments show that the new propagation
technique outperforms previously available constraint propagation techniques by 1 to
2 orders of magnitude or more in speed, while being roughly the same quality w.r.t.
enclosure properties. The experiments also show that the advance gained for under-
constrained problems is better than that for well-constrained problems.

C4 In Chapter 7, our contribution is twofold:

(a) We propose a novel generic scheme, called CIRD, to combine multiple inclu-
sion techniques in numerical constraint propagation. The scheme potentially
allows bringing into the constraint propagation framework the strengths of differ-
ent techniques coming from different fields. It uses real inclusion representations
(proposed in Chapter 5) on (partial) DAG representations (proposed by Schichl
and Neumaier [2004b]). This enables devising fine-grained and flexible combination
strategies for performing constraint propagation on virtually any factorable con-
straint system, including numerical constraint satisfaction problems. We also draw
out plenty of potential directions to integrate inclusion tools into the CIRD scheme.

(b) We devise from the generic scheme several specific combination strategies for
numerical constraint propagation. These strategies are designed to combine
interval constraint propagation, interval arithmetic, affine arithmetic, and linear
programming into the framework of constraint propagation. Our experiments on a
specific combination strategy, CIRD[ai], show that the new approach outperforms
previously available constraint propagation techniques by 1 to 4 orders of magnitude
or more in speed, while still being better in quality. It even outperforms some very
recent techniques that are specially designed to solve special constraint systems.
The largest acceleration is gained for well-constrained problems. It shows that the
fine-grained structure made available on (partial) DAG representations through the
abstract inclusion concept is a very important and original contribution.

C5 In Chapter 8, we propose several post-processing techniques for the representa-
tion of continuums of solutions: MCC, SDC, OMCC, OSDC. Based on connected-
ness, they allow grouping each cluster of connected solution subsets into a larger subset.
Hence, these techniques are potentially useful in applications such as collision detection
and interactive graphics because the grouping information is useful for soon guaranteeing
that systems have no collisions. In such applications, the proposed techniques bridge the
gap between the verboseness of the output of interval constraint solvers and the com-
pactness required by the applications. Hence, they enable interval constraint solvers to
be alternatives to bounding-volume techniques used in such applications.

March 14, 2005

9.2. Limitations and Challenges 207

9.2. Limitations and Challenges

There are several limitations of, and challenges to, constraint programming methods, especially
the complete methods such as our proposed methods:

• The explicit representation of (non-isolated) solution sets are highly intractable, although
it is certainly desired in many applications. They can only obtained for low dimensional
problems (say, a few dimensions) even for simple and convex sets such as hyper-spheres.
So far, there are only very few research results on this issue. Therefore, there is a need for
progress on the semi-explicit representation of solution sets, such as 2k-tree for ternarized
NCSPs. However, the semi-explicit representation usually requires much efforts to be
spent on implementation.

• The performance of numerical constraint programming methods is almost measured by
experiments. There is almost no algorithm coming out with a good formula to estimate
the overall performance. There is also no algorithm for predicting the speed.

• The complete methods of today can solve only problems of medium sizes, in general. It is
a challenge to boost, in the near future, the complete methods for solving a vast number
of practical problem instances of 20 to 50 variables or more.

• The constraint programming methods of today are often more complicated than math-
ematical methods in implementation. Moreover, many research results are published
without a free demonstration code. This would result in constraint programming meth-
ods being less and less used in industry.

9.3. Further Research

Basing on our results, we draw several potential directions for further research:

1. Search Techniques. The results in Chapter 4 are encouraging enough to investigate
further in the following directions:

(a) Other combinations of the control parameters and higher values of Dstop in com-
bination with solvers with good alignments such as 2k-tree solvers [Lottaz 2000;
Sam-Haroud 1995; Sam-Haroud and Faltings 1996], the Exclusion algorithm (Algo-
rithm 3.1, page 69), and the Inclusion algorithm (Algorithm 3.2, page 77) in the
place of the secondary solution technique (DimStopSolver, page 123).

(b) The idea of complementary boxing (Chapter 4) can be combined with the idea of
extreme points in [Faltings 1994; Faltings and Gelle 1997] to make a new algorithm
that works on ternarized NCSPs. Hence, the semi-explicit representation of solution
sets can be obtained at low time and space complexity for large class of problems.
The idea of stopping reducing tiny domains for better alignments allows integrating
domain reduction operators into the 2k-tree solvers. Namely, a reduced box can
be enlarged to the smallest box with bounds of the binary expansion

∑n
i=1 bi2−i.

There is probably a close relation between these techniques and the wavelet theory.
Therefore, these two fields should be useful to each other.

March 14, 2005

208 9. Conclusions

2. Forward-Backward Propagation. The nature of the FBPD algorithm (Chapter 6) is
similar to that of the HC4 algorithm [Benhamou et al. 1999]. Hence, we can use the FBPD
algorithm in many applications and combination techniques that use the HC4 algorithm.
Moreover, this technique might be useful for solving optimization problems because it
appears to be more suitable for under-constrained problems than well-constrained ones.
It seems to be easy to integrate the idea of FBPD into other interval analytic methods
in the framework proposed by Schichl and Neumaier [2004b].

3. Combination of Inclusion Techniques. The CIRD scheme (Chapter 7) opens several
potential directions for further research:

(a) The strengths of the FBPD algorithm and the CIRD[ai] algorithm are complemen-
tary. Therefore, unifying the strengths of FBPD and CIRD[ai] to solve problems
with either isolated or non-isolated solutions is a straightforward direction.

(b) Replace the linear programming (LP) technique in the affine pruning (in CIRD[ai])
with domain reduction techniques for linear systems, such as the techniques listed
in Section 7.5, because LP is very expensive for this purpose.

(c) Implement the new divisions for affine forms proposed by [Kolev 2002] and [Miyajima
et al. 2003] in place of the division x/y := x ∗ (1/y) implemented in CIRD[ai].

(d) Integrate Kolev generalized affine arithmetic (with the improvements of the multi-
plication presented in Chapter 5) into the CIRD scheme. (See also Section 2.2.3.4.)

(e) Integrate linear relaxation techniques (e.g., the ones in [Hongthong and Kearfott
2004] and [Borradaile and Van Hentenryck 2004]) into the CIRD scheme.

(f) Integrate the quadratic form proposed by [Messine 2002] and Quad proposed by
[Lebbah et al. 2003a,b] (see Section 3.3.1.1) into the CIRD scheme.

(g) Investigate intelligent choosing strategies of the CIRD scheme, which choose the next
node in waiting lists based on the pruning efficiency of nodes. Behavior learning of
node range reductions is also an interesting direction.

(h) Investigate the ability to integrate high-order inclusion techniques, such as the con-
vexification techniques as mentioned in Section 7.5, into the CIRD scheme.

4. Clustering Techniques. Because interval constraint solvers are very similar to success-
ful techniques, called the bounding-volume techniques (see Section 8.1), arising in collision
detection, we can think about using interval constraint solvers in place of the bounding-
volume techniques. The clustering techniques proposed in Chapter 8 are potentially
useful in this context.

9.4. The Final Conclusion

Because our observations on the limitations of existing methods are reasonable, the goal set
for the thesis (see Section 1.2) has been achieved successfully. Namely, we achieve the results
summarized in Section 9.1, which address four major issues in solving NCSPs: search, con-
straint propagation, combination of techniques, post-processing. Moreover, the results also
open various potential directions for further research, as described in Section 9.3.

March 14, 2005

Appendix A

Extended Concepts
of Interval Arithmetic

A.1. A Short History of Interval Arithmetic

The first idea of using intervals for computations can be traced back to Archimedes (Syracuse,
Greece, 287–212 B.C.),1 the famous physicist and mathematician who found two-sided bounds
for π: 310

71 < π < 310
70 , and a method for improving them successively (see [Archimedes 1953]).

More than 2000 years later, W. H. Young introduced the concept of a function having values
that are bounded within limits (see [Young 1908]). Tens years later, the American mathemati-
cian and physicist, N. Wiener, brought the computation of two fundamental physical quantities,
namely the position and the time, into the concept of an interval (see [Wiener 1914, 1921]).
Afterwards, J. C. Burkill introduced the concept of functions of intervals in [Burkill 1924].
Next seven years, R. C. Young introduced the concept of operations with a set of multi-valued
numbers (see [Young 1931]). Twenty years later, P. S. Dwyer further developed a special case
of closed intervals (see [Dwyer 1951]). Few years later, a basic calculus on intervals with care
for rounding errors was developed by M. Warmus in [Warmus 1956] (see also [Warmus 1961]).
It is believed that modern interval arithmetic was developed independently in late 1950s by
several researchers, including M. Warmus [1956], T. Sunaga [1958] and R. E. Moore [1959].
Later on, R. E. Moore enriched the research in this direction with his PhD thesis [Moore 1962].
While almost nobody was willing to make any progress in this direction, R. E. Moore kept
his end up and wrote the first foundational book on interval analysis [Moore 1966], and then
many further publications. Until one discovered that the traditional mathematical methods
sometimes produce drastically erroneous results because of the presence of rounding errors in
computers, they started considering interval arithmetic as an alternative. Owning to his ex-
cellent accomplishments and relentless efforts, R. E. Moore is regarded as a founding father
of interval arithmetic and interval analysis. The interest in interval arithmetic has been grow-
ing. Interval arithmetic has been successfully used in numerous computing methods, not only
interval analytic ones, to solve real world applications.

1 According to the report at http://www.cs.utep.edu/interval-comp/early.html.

209

http://www.cs.utep.edu/interval-comp/early.html

210 Appendix A. Extended Concepts of Interval Arithmetic

A.2. Typical Interval Functions

A.2.1. Natural Interval Form

Definition A.1 (Natural Interval Form). Let f : Rn → R be a factorable function using
the operators +, −, ∗, ÷ and elementary functions such as sin, cos, exp, and sqr. The interval
form f : In → I for f that is obtained by replacing each real variable xi by an interval variable
xi and each operator or elementary function by its interval counterpart is called the natural
interval form.

It has been proved that f(x) ∈ f(x) for all x ∈ x. That is, the interval function defined in
Definition A.1 is an interval form of its counterpart.

A.2.2. Centered Interval Form

The centered interval form is derived from the mean value theorem, which is defined as follows
(see [Jaulin et al. 2001, p. 33]).

Definition A.2 (Centered Interval Form). Let f : Rn → R be a function, x ∈ In, c =
mid(x), g the gradient (or the derivative) of f , [g] an interval form of g. The following function
is called the centered interval form of f in x:

[f]C(x) ≡ f(c) + (x− c)T[g](x). (A.1)

It follows from the mean value theorem that f(x) ∈ [f]C(x) for all x ∈ x. That is, the
interval function defined by (A.1) is an interval form of its counterpart.

A.2.3. Mixed Centered Interval Form

The following interval function is due to Hansen [1968]. Hansen [1968] proved that it is an
interval form (see also [Jaulin et al. 2001, p. 34]).

Definition A.3 (Mixed Centered Interval Form). Let f : Rn → R be a function, x ∈
In, c = mid(x), g the gradient (or the derivative) of f , [g] an interval form of g. Denote
c = (c1, . . . , cn)T and [g] = ([g1], . . . , [gn])T. The mixed centered interval form is defined as

f(c) +
n∑

i=1

(xi − ci)T[gi](x1, . . . ,xi, ci+1, . . . , cn). (A.2)

Recall that the partial derivative gi = ∂f/∂xi. The mixed centered interval form can
be viewed as the applied the rule (A.1) for constructing the centered interval form n times
sequentially, each for one variable. In particular, the proof that the mixed centered interval is

March 14, 2005

A.2. Typical Interval Functions 211

indeed an interval form of its real-valued counterpart is based on the sequence of applications
of the mean valued theorem:

f(x1, . . . , xi, ci+1, . . . , cn) ∈ f(x1, . . . , xi−1, ci, . . . , cn)+(xi−ci)Tgi(x1, . . . , xn−1,xi, ci+1, . . . , cn)

for all i = 1, . . . , n. Composing all these inclusions, we have the result as required.

A.2.4. Taylor Interval Form

From the Taylor expansion of real-valued functions, we can construct an interval form as follows
(see [Jaulin et al. 2001, p. 35]).

Definition A.4 (Taylor Interval Form). Let f : Rn → R be a function, x ∈ In, c =
mid(x), g the gradient (or the derivative) of f , [g] an interval form of g, [H] an interval form
of the Hessian matrix. The following is called the Taylor interval form:

[f]T(x) ≡ f(c) + (x− c)Tg(c) +
1
2
(x− c)T[H](x)(x− c). (A.3)

Recall that the component [Hij] of the matrix [H] is an interval form of

hij ≡




∂2f/∂x2
i if i = j (for i = 1, . . . , n);

2∂2f/∂xixj if i > j (for i = 1, . . . , n);
0 otherwise.

(A.4)

A interval form of the symmetric Hessian matrix (hij = ∂2f/∂xixj for all i and j) could also be
used, but the resulting would increase in the number of interval components of [H](x), hence
this would lead to an overestimation of [f]T.

A.2.5. Linear Interval Mapping

A linear/sublinear interval mapping is defined as follows [Neumaier 1990].

Definition A.5 (Linear, Sublinear Mapping). A mapping φ : In → Im is said to be
sublinear if the axioms

(inclusion isotonicity) x ⊆ y ⇒ φ(x) ⊆ φ(y), (A.5)
(homogeneity) α ∈ R⇒ φ(αx) = αφ(x), (A.6)
(subadditivity) φ(x + y) ⊆ φ(x) + φ(y) (A.7)

hold for all x,y ∈ In; and called linear if the axioms (A.5), (A.6) and

(additivity) φ(x + y) = φ(x) + φ(y) (A.8)

hold for all x,y ∈ In. A sublinear mapping φ is said to be regular if

x ∈ Rn, 0 ∈ φ(x) ⇒ x = 0.

March 14, 2005

212 Appendix A. Extended Concepts of Interval Arithmetic

A.3. Advanced Concepts on Intervals

A.3.1. Interval Matrix

We recall the concept and notation of the spectral radius of a matrix.

Definition A.6 (Spectral Radius). The maximum absolute value of the eigenvalues of a
matrix A ∈ Rn×n, denoted by

ρ(A) ≡ max{|λ| | λ ∈ C, ∃x ∈ C \ {0} : Ax = λx},

is called the spectral radius of A.

The spectral radius ρ(A) is a continuous function of A because the eigenvalues of A contin-
uously depend on A. See some properties of the spectral radius in [Neumaier 1990, p. 86–88].
Hereafter, we extend the concept of a matrix inverse to include the non-square matrices.

Definition A.7 (Extended Matrix Inverse). Let A ∈ Rm×n be a real matrix of rank n,
then the equation Ax = b has at most one solution x∗, and ATA is a nonsingular real matrix
of size n× n. The (extended) inverse of A is defined as

A−1 ≡ (ATA)−1AT ∈ Rn×m. (A.9)

In Definition A.7, we also have A−1A = (ATA)−1ATA = I ∈ Rn×n, and the solution x∗

can be written as x∗ = A−1b. Hence, this definition is compatible with the definition of the
inverse of square matrices, with restriction to these two properties.

Definition A.8 (Interval Matrix). An interval matrix is a matrix of intervals.

The next definition of comparison matrix is from [Neumaier 1990, p. 110].

Definition A.9 (Comparison Matrix). The comparison matrix of an interval matrix A ≡
(Aij)n×n is a matrix 〈A〉 ≡ (〈A〉ij)n×n, where

〈A〉ij ≡
{

inf{|x| | x ∈ Aij} if i = j;
−|Aij | if i 6= j.

(A.10)

The concepts of an M-matrix and an H-matrix are defined in the next definitions (from
[Neumaier 1990, p. 105, 111]). Their new properties can be found in [Spiteri 2003].

Definition A.10 (M-Matrix). An M-matrix is a square matrix A ∈ In×n such that

∃u ∈ Rn : Au > 0. (A.11)

March 14, 2005

A.3. Advanced Concepts on Intervals 213

Definition A.11 (H-Matrix). An H-matrix is a square matrix A ∈ In×n such that

∃u ∈ Rn : 〈A〉u > 0. (A.12)

A.3.2. Interval Matrix Inverse

Definition A.12 (Linear Interval Equation). Let A ∈ Im×n, b ∈ Im, and x ∈ In. The
family of linear equations

Ax = b, A ∈ A, b ∈ b, x ∈ x (A.13)

is called a linear interval equation, where x is a vector of the real variables.

Definition A.13 (Linear Interval Inequalities). Let A ∈ Im×n, b ∈ Im, and x ∈ In.
The family of linear inequalities

Ax ≤ b (A ∈ A, b ∈ b) (A.14)

is called a linear interval inequality , where x is a vector of the real variables.

Definition A.14 (Hull Inverse). Let A be a set of real matrices of size m×n and b ∈ 2R
m

a vector of size m. The solution set of the family of linear equations

Ax = b (A ∈ A, b ∈ b) (A.15)

is the set Σ(A,b) ≡ {x ∈ Rn | Ax = b, A ∈ A, b ∈ b}. If A is an interval matrix and b is an
interval vector, the hull utΣ(A,b) is called the hull inverse of A w.r.t. b.

The concept of a fixed point inverse of an interval matrix is based on fixed point iterations.
Namely, it is defined as follows [Neumaier 1990, p. 145].

Definition A.15 (Fixed Point Inverse). Let A = (Aij)n×n ∈ In×n be an H-matrix. The
fixed point inverse of A is the unique mapping, denoted by AF : In → In, which maps each
b = (b1, . . . ,bn)T ∈ In to the unique solution, denoted by AFb, x = (x1, . . . ,xn)T ∈ In of
the system of equations

xi = (bi −
∑

j 6=i

Aijxj)/Aii (for i = 1, . . . , n). (A.16)

It has been proved that AF is sublinear, and utΣ(A,b) ⊆ AFb (see Theorem 4.4.4 in
[Neumaier 1990, p. 145]).

Next, we give three slight extensions of the concepts of a regular interval set and related
concepts (see [Neumaier 1990, p. 107]).

March 14, 2005

214 Appendix A. Extended Concepts of Interval Arithmetic

Definition A.16 (Regular Matrix Set). A set A of real matrices of size m× n is said to
be regular it is closed, convex and bounded, and every real matrix A ∈ A has rank n.

Definition A.17 (Strongly Regular Interval Matrix). An interval matrix A of size m×
n is said to be strongly regular if it is regular and the matrix product mid(A)−1A is regular.

Definition A.18 (Interval Matrix Inverse). The matrix inverse of a regular interval ma-
trix, A, is defined as

A−1 ≡ ut{A−1 | A ∈ A}. (A.17)

Basing on the above extended concepts of a regular matrix set and of the interval matrix
inverse, we have the following theorem that extends the result in [Neumaier 1990, p. 174] for
the case m 6= n.

Theorem A.19. Consider the extended matrix inverse defined in Definition A.7. Let A be
a regular interval matrix of size m× n, b ∈ Im. Then

Σ(A,b) ⊆ utΣ(A,b) ⊆ A−1b. (A.18)

Proof. The first part of (A.18) is obvious. Here we prove the second part. Let x ∈ Σ(A,b),
then there exist A ∈ A and b ∈ b such that Ax = b. Since A is regular, then the extended
inverse A−1 is defined and contained in A−1. Therefore, we have

A−1b = A−1Ax = (ATA)−1ATAx = Ix = x.

Hence x = A−1b ∈ A−1b (see [Neumaier 1990, Proposition 3.1.4]). Then (A.18) follows this
because the terms are all interval matrix. ¥

For completeness, we recall here the definitions from [Neumaier 1990, p. 174].

Definition A.20 (Lipschitz Set, Lipschitz Matrix). A closed, convex and bounded set
A of real matrices of size m×n is called a Lipschitz set for a function f : D0 ⊆ Rn → Rm on
D ⊆ D0 if for every x, y ∈ D we have

∃A ∈ A : f(x)− f(y) = A(x− y).

In addition, if A ∈ Im×n, then we call A a Lipschitz matrix for f on D.

A.3.3. Interval Slope

We recall here the definitions of slopes, which were introduced in [Hansen 1978; Krawczyk and
Neumaier 1985] (see also [Neumaier 1990, p. 56]).

March 14, 2005

A.3. Advanced Concepts on Intervals 215

Definition A.21 (Slope, Slope Matrix). Let f : D ⊆ Rn → Rm be a function. If for
some x, z ∈ D we have a matrix f [z, x] ∈ Rm×n such that

f(x)− f(z) = f [z, x](x− z), (A.19)

then f [z, x] is called a (first order) slope matrix , or (first order) slope for short, of f at [z, x].
If (A.19) holds for all x, z ∈ D, then it defines a function f [., .] : D2 → Rm×n that is called a
(first order) slope function of f on D.

Similarly to interval concepts, the slope form and slope matrix are defined as follows.

Definition A.22 (Slope Form). If (A.19) holds for every x ∈ x ∈ In and f [u, v] is an
arithmetic expression in u and v, then the following is called the slope form with center z ∈ x

s(x) ≡ f(z) + f [z,x](x− z). (A.20)

Definition A.23 (Second Order Slope Matrix). Let f : D ⊆ Rn → Rm be a function
that has a slope function f [., .] : D2 → Rm×n on D. If for some x, y, z ∈ D we have a three-
dimensional matrix f [z, y, x] ∈ Rm×n×n, interpreted as a row vector of m× n matrices, such
that

f [z, x]− f [z, y] = f [z, y, x](x− y), (A.21)

then f [z, y, x] is called a second order slope matrix , or second order slope for short, of f at
[z, y, x]. If (A.21) holds for all x, y, z ∈ D, then it defines a function f [., ., .] : D3 → Rm×n×n

that is called a second order slope function of f on D.

Krawczyk and Neumaier [1986] found a bound on the difference of slopes and the ranges
of functions (see [Neumaier 1990, Theorem 2.3.3]). Later on, Neumaier [2002, Theorem 8.1]
generalized the result as follows.

Theorem A.24 (Neumaier). Let f : D ⊆ Rn → Rm be a function, x ∈ In an interval
vector contained in D, and z ∈ x. Let a ∈ Im and A ∈ Im×n such that

∀x ∈ x, f(x) ∈ s ≡ a + A(x− z).

Then the range f(x) is contained in s and the Hausdorff distance between them satisfies

δH(f(x), s) ≤ 2 rad(a) + zl(A)|x− z|,
0 ≤ rad(x)− rad(f(x)) ≤ 2 rad(a) + 2 rad(A) rad(x),

where zl(b) ≡ w({|b| | b ∈ b}) is the zerolength of b ∈ In and it is extended to vectors and
matrices in a componentwise manner.

The concept of a Lipschitz set has been generalized to that of a slope set. In particular, it
is defined as follows.

March 14, 2005

216 Appendix A. Extended Concepts of Interval Arithmetic

Definition A.25 (Slope Set, Interval Slope Matrix). Let f : D ⊆ Rn → Rm be a func-
tion. Assume that x and y are two interval vectors contained in D. A closed, convex and
bounded set A of real matrices of size m × n is called a slope set at [x,y] for f if for every
x ∈ x and y ∈ y we have

∃A ∈ A : f(x)− f(y) = A(x− y).

In addition, if A ∈ Im×n then A is called a (interval) slope matrix for f at [x,y].

It is easy to see that a slope set/matrix at [x,x] is a Lipschitz set/matrix on x. However, in
practice slope matrices can easily computed by using the inclusion algebra (see Theorem 2.3.8
in [Neumaier 1990]). The resulting slope matrix at [x0,x] is always contained in the Lipschitz
matrix on x and has roughly a halved radius (see Proposition 2.3.12 in [Neumaier 1990]).

See [Muñoz and Kearfott 2004] for more on slope intervals, generalized gradients, semigra-
dients, slant derivatives, and csets.

March 14, 2005

Appendix B

Fixed Point Theory in Metric Spaces

B.1. Basic Concepts on Metric Spaces

We first recall the concept of a metric space (see [Singh et al. 1997], [Khamsi and Kirk 2001])

Definition B.1 (Metric Space). A metric space, denoted by (S, d), is a set S together
with a real-valued function d : S × S → R (called a metric or a distance function) such that,
for every three points x, y, and z in S, the followings hold:

(i) d(x, y) ≥ 0, with equality if and only if x = y;
(ii) d(x, y) = d(y, x);

(iii) d(x, z) ≤ d(x, y) + d(y, z).

In the above concept, we often replace the notation (S, d) with S, when not being confused.
The diameter , δ(A), of a nonempty subset A of a metric space (S, d) is defined as δ(A) =
sup{d(x, y) | x, y ∈ A}.

The next definition is from [Singh et al. 1997, Definition 1.6]

Definition B.2 (Precompact Set). A subset C of a metric space S is said to be precompact
if, for any given ε > 0, there exist a finite number of subsets C1, . . . , Cn of S with δ(Ci) < ε
for all i = 1, . . . , n, and C ⊆ ⋃n

i=1 Ci.

Given a metric space (S, d), x ∈ S, and r ∈ R. We recall that the open ball centered at x
of radius r is the set Br(x) = {y ∈ S | d(x, y) < r}. Similarly, the closed ball centered at x of
radius r is the set {y ∈ S | d(x, y) ≤ r}.

Definition B.3 (Closed/Open Set). Let C be a set in a metric space S. C is said to be
open if it equals to a union of open balls in S. C is said to be closed if S \ C is open.

Definition B.4 (Cover, Subcover). Consider a set A and a collection of sets {Ai}i∈I of a
metric space. If A ⊆ ⋃

Ai, then {Ai}i∈I is called a cover of A. If every Ai is an open set,
then the cover is called an open cover . If there exists a finite collection A1, . . . , An among the
collection {Ai}i∈I such that A ⊆ ⋃

Ai, then the {Ai}n
i=1 is called a finite subcover of A.

217

218 Appendix B. Fixed Point Theory in Metric Spaces

The following definition is from [Singh et al. 1997, Definition 1.8].

Definition B.5 (Compact Metric Space, Compact Set). Let (S, d) be a metric space.
It is said to be compact if every open cover of S has a finite subcover. A subset X of S is
said to be compact if every open cover of X has a finite subcover.

A subset of a finite-dimensional metric space (such as Rn) is compact if and only if it is
closed and bounded. A metric space is said to be complete if every Cauchy sequence1 converges
to a point in that space. For example, the real set Rn together with the usual distance function
is a complete metric space, but the rational set Qn is not a complete metric space (because a
Cauchy sequence in Qn may converge to a real number, not a rational one).

Definition B.6 (Ring, Field). A ring (R, +, ·) is a nonempty set R together with two
binary operations, denoted + : R×R → R and · : R×R → R, such that

(1) associativity: (a + b) + c = a + (b + c) and (a · b) · c = a · (b · c) for all a, b, c ∈ R;
(2) commutativity: a + b = b + a for all a, b ∈ R;
(3) additive identity: there exists 0 ∈ R such that a + 0 = a for all a ∈ R;
(4) additive invertibility: for all a ∈ R, there exists b ∈ R such that a + b = 0;
(5) distributivity: (a+ b) · c = (a · c)+ (b · c) and c · (a+ b) = (c ·a)+ (c · b) for all a, b, c ∈ R.

A ring (R, +, ·) is said to be commutative if the operation · is commutative. A field is a
commutative ring (R, +, ·) with a multiplicative identity , 1, such that 1 6= 0, and for all
0 6= x ∈ R there exists y ∈ R with x · y = 1.

Definition B.7 (Vector Space). Let F = (R, +, ·) be a field of which the multiplicative
identity is 1. A vector space V over F is a set V with two binary operations, + : V × V → V
and ∗ : R× V → V , such that

(1) (x + y) + z = x + (y + z) for all x, y, z ∈ V ;
(2) x + y = y + x for all x, y ∈ V ;
(3) there exists an additive identity 0 ∈ V such that x + 0 = x for all x ∈ V ;
(4) for any x ∈ V , there exists an additive inverse y ∈ V such that x + y = 0;
(5) 1 ∗ x = x for all x ∈ V ;
(6) a ∗ (b ∗ x) = (a · b) ∗ x for all a, b ∈ R and x ∈ V ;
(7) a * (x + y) = (a * x) + (a * y) for all a ∈ R and x, y ∈ V ;
(8) (a + b) * x = (a * x) + (b * y) for all a, b ∈ R and x ∈ V .

Definition B.8 (Norm, Normed Vector Space). Let V be a vector space over F =
(R, +, ·) or F = (C, +, ·) with the notations as in Definition B.7. A normed vector space
over F is a pair (V, ‖.‖), where ‖.‖ : V → R is a function, called a norm, such that

(i) ‖x‖ ≥ 0 for all x ∈ V , and ‖x‖ = 0 if and only if x = 0;
(ii) ‖α ∗ x‖ = |α| ∗ ‖x‖ for all x ∈ V and α ∈ F ;

(iii) ‖x + y‖ ≤ ‖x‖+ ‖y‖.

1 A sequence x1, x2, x3, . . . in a metric space (S, d) is called a Cauchy sequence if, for any real number ε > 0, there
exists a natural number K such that d(xm, xn) < ε for all m, n > K.

March 14, 2005

B.2. Fundamental Fixed Point Theorems 219

A normed space (V, ‖.‖) is a metric space under the metric d : V × V → R given by
d(x, y) = ‖x − y‖ (called the metric induced by the norm ‖.‖). A complete normed vector
space is called a Banach space. It is known that the real vector space Rn with standard real
arithmetic and usual `k-norms is a Banach space, while the space Qn of rational numbers is
not a Banach space because it is not complete.

Definition B.9 (Convex Set). A set C in a Banach space V is said to be convex if αx +
(1− α)x ∈ C whenever x, y ∈ C and 0 ≤ α ≤ 1.

One often uses the Hausdorff distance to measure the degree of mismatch between two sets
in a normed vector space.

Definition B.10 (Euclidean Distance, Hausdorff Distance). Given two nonempty
sets in a normed vector space. We define

• the Euclidean distance: δE(X, Y) = inf{‖x− y‖ | x ∈ X, y ∈ Y };
• the one-side Hausdorff distance: dH(X, Y) = sup{δE({x}, Y) | x ∈ X};
• the Hausdorff distance: δH(X,Y) = max{dH(X,Y), dH(Y, X)}.

For convenience, we denote δE({x}, T) as δE(x, T), and agree that δE(X,Y) = +∞ if X or
Y is empty, which agrees also to the standard convention inf{∅} = +∞. We also agree that
δH(X, Y) = dH(X, Y) = dH(Y,X) = +∞ if X or Y is empty.

B.2. Fundamental Fixed Point Theorems

The following definition is composed from Definition 1.30, Page 15, and Definition 1.84 in
[Singh et al. 1997].

Definition B.11 (Lipschitz/Nonexpansive/Contractive/Contraction Mapping).
Let (S, d) be a metric space. A mapping f : S → S is called Lipschitz mapping/function if
there exists a real constant α ≥ 0 satisfying the Lipschitz condition:

∀x, y ∈ S : d(f(x), f(y)) ≤ α d(x, y). (B.1)

If (B.1) holds, then α is called a Lipschitz constant . If (B.1) holds for some α < 1, then f is
called a contraction mapping , or a contraction for short. If (B.1) holds for α = 1, then f is
called a nonexpansive mapping . If f satisfies

∀x 6= y ∈ S : d(f(x), f(y)) < d(x, y), (B.2)

then it is called a contractive mapping .

Strictly speaking, the Lipschitz constant for the function f , defined in Definition B.11, is
the greatest lower bound of all α satisfying (B.1), which has been proved to be the smallest
among constant α satisfying (B.1). However, people often use the term Lipschitz constant to
refer to any constant α satisfying (B.1). Therefore, we use the term smallest Lipschitz constant

March 14, 2005

220 Appendix B. Fixed Point Theory in Metric Spaces

for the greatest lower bound of all α satisfying (B.1) for practical convenience. The following
definition is from [Agarwal et al. 2001b, Definition 4.6].

Definition B.12 (Compact Mapping). Let X and Y be normed vector spaces. A map-
ping f : X → Y is said to be compact if f(X) can be contained in a compact subset of Y . In
addition to that, f is said to be finite-dimensional if f(X) is contained in a finite-dimensional
vector subspace of Y (i.e., a vector subspace that has a finite basis).

To understand the origination of the fixed point methods presented in Chapter 3, we recall
the concept of a fixed point and the most fundamental theorems in the fixed point theory.

Definition B.13 (Fixed Point). A fixed point of a function, f , is a point, x, which does
not change upon the function f ; that is, f(x) = x.

One of the most influential theorems in the application of the fixed point theory is Brouwer’s
fixed point theorem. We recall hereafter an extended form of this theorem, which is due to
Schauder (see [Singh et al. 1997, Theorem 1.26], see also [Kirk and Sims 2001]).

Theorem B.14 (Brouwer Fixed Point Theorem). Every continuous mapping from a
compact convex subset C of a Banach space to C has at least one fixed point (in C).

The following result follows directly from the Brouwer fixed point theorem.

Theorem B.15. Given a function f : D ⊆ Rn → Rm and a closed bounded box x ⊆ D. If
there exists a continuous function g : D′ ⊇ x → Rn such that, for all x in x,

g(x) = x ⇒ f(x) = 0
and g(x) ∈ x

hold, then there exists a zero of f in x; that is, f(x) = 0 for some x ∈ x.

Proof. Because a box is convex, it follows from the Brouwer fixed point theorem that there
exists x∗ ∈ x such that g(x∗) = x∗. Hence, f(x∗) = 0. ¥

Theorem B.16. Given a function f : D ⊆ Rn → Rm and a closed bounded box x ⊆ D. If
there exists a continuous function g : D′ ⊇ x → Rn and its interval form [g] : In → In such
that [g](x) ⊆ x and

∀x ∈ x : (g(x) = x ⇒ f(x) = 0)

hold, then there exists a zero of f in x; that is, f(x) = 0 for some x ∈ x.

Proof. The result follows Theorem B.15 directly, with noticing that ∀x ∈ x : g(x) ∈ [g](x). ¥

March 14, 2005

B.2. Fundamental Fixed Point Theorems 221

Although the assumption in Theorem B.16 is stronger than the assumption in Theo-
rem B.15, it is often used in interval-based solution methods because of its simplicity and
efficiency (see Section 3.1.1).

The compactness condition on C in Theorem B.14 is a strong one. Many problems do not
have a compact setting. Schauder has relaxed that condition and proved the following theorem
(see [Agarwal et al. 2001b, Theorem 4.14]).

Theorem B.17 (Schauder Fixed Point Theorem). Every compact continuous mapping
from a closed convex subset C of a normed vector space to C has at least one fixed point.

The uniqueness of solution of equations is often derived from, or related to, Banach’s
fundamental theorem in the fixed point theory (see [Kirk and Sims 2001], [Khamsi and Kirk
2001] and [Granas and Dugundji 2003]).

Theorem B.18 (Banach Fixed Point Theorem). Every contraction mapping on a com-
plete metric space has a unique fixed point.

Edelstein has extended the above Banach fixed point theorem for contractive mappings on
compact metric space. Here is the formal statement (see [Agarwal et al. 2001b, Theorem 1.2]
and [Singh et al. 1997, Theorem 1.33]).

Theorem B.19 (Edelstein Fixed Point Theorem). Every contractive mapping on a
compact metric space has a unique fixed point.

March 14, 2005

222 Appendix B. Fixed Point Theory in Metric Spaces

March 14, 2005

Appendix C

Numerical Benchmarks

C.1. Problems with Continuums of Solutions

R1

R2

x

y

(x1, y1)

P

R1

F1

F2

F3

F4

F5
t1

t2

t3

H

L

N1

Figure C.1. The geometric design of a truss.

Problem (TD). Consider the geometric design problem of a truss depicted in Figure C.1.
The goal is to find the coordinates of the moveable joint (x1, y1) in [0.01, 10]× [0.01, 10] of the
node N1 of the truss such that all the following constraints are satisfied:

F2 < TA,

F5 < TA,

F1 < C1A,

F1 < TA,

F4 < C4A,

F4 < TA,

|F3| < TA,

F3 ≤ 0 ⇒ −F3 < C3A,

x1 < L,

y1 < H,

223

224 Appendix C. Numerical Benchmarks

where

E = 210 ∗ 106 Young’s modulus of steel, unit = kN/m2;
T = 235 ∗ 103 The yield stress of steel, unit = kN/m2;
A = 0.25 The area of cross section of truss members;
r = 0.5 The radius of gyration of the cross section of truss members;
P = 400 The loading capacity;
H = 6 The height of truss;
L = 10 The length of truss;

and the auxiliary variables are defined as follows:

tan t1 = (H − y1)/(L− x1),
tan t2 = y1/x1,

tan t3 = (H − y1)/x1,

R1 = PL/H,

F1 = P/ sin t1,

F2 = P/ tan t1,

F3 = (R1 − F2)/ cos t3,

F4 = R1/ cos t2,

F5 = R1 tan t2,

L1 =
√

(L− x1)2 + (H − y1)2,

L3 =
√

x2
1 + (H − y1)2,

L4 =
√

x2
1 + y2

1,

C1 = π2E/(L1/r)2,
C3 = π2E/(L3/r)2,
C4 = π2E/(L4/r)2.

In fact, this problem is two-dimensional: the variables are x1 and y1. All the other variables
can be easily eliminated in a preprocessing phase. The reduced constraints are however too
complicated (in the number of elementary operations) to be read, hence is not listed here. ¥

Problem (FD). Consider the design problem of the beam of a railway bridge under cyclic
stress. The goal is to find (L, qf , Z) ∈ [10, 30]× [70, 90]× [0.1, 10] such that the following yield
stress and fatigue stress are satisfied:1

σ < fy,

σe < resistance,

where
σc = 115000 Yield stress of steel, unit = kN/m2;
γ = 1.1 The safety factor;

fy = 460000 Unit = kN/m2;
years = 100 The number of years to fatigue failure;

1 The variable Z is scaled up 100 times in unit in comparison to the original version.

March 14, 2005

C.1. Problems with Continuums of Solutions 225

and the auxiliary variables are defined as follows:

α =





1.3 if L ≤ 4,
1.3− 0.1(L− 4) if 4 < L ≤ 7.5,
0.95− 0.008(L− 7.5) if 7.5 < L ≤ 20,
0.85− (L− 20)/300 if 20 < L ≤ 50,
0.75 if L > 50,

φ = 0.82 + 1.44/(
√

L− 0.2),
qr = qfφ,

σ = qrL
2/8/(Z/100),

σe = ασ,

cycles = 0.05 years,
σr = σc(min{2.5, cycles/2})−1/3,

resistance = σr/γ, ¥

H

L

P

b

a
e

Figure C.2. The design of a column for combined axial load and moment.

Problem (CD). Consider the design problem of a column for combined axial load and mo-
ment, depicted in Figure C.2. The goal is to find (a, b, e) ∈ [0.01, 2] × [0.01, 1] × [0.05, 0.1],
where a and b are in meters, e is in decimeters.2

loadByResistance < 1,

W < maxWeight,
Nd < Ncr,

a ≥ 4e/10,

2 The variable e is scaled up 10 times in unit in comparison to the original version.

March 14, 2005

226 Appendix C. Numerical Benchmarks

b ≥ 4e/10,

where the constants are given as follows

ρ = 78 The density of steel, unit = kN/m3;
fy = 235 ∗ 103 The yield stress of steel, unit = kN/m2;
E = 210 ∗ 106 Young’s modulus of steel, unit = kN/m2;

γR = 1.1 The safety factor;
α = 0.21;

λE = 94;
P = 400 The loading capacity, unit = kN;
H = 6 The length of column, unit = m;
L = 1 The height of column, unit = m;

maxWeight = 10 Unit = kN;

and the auxiliary variables are defined as follows:

Nd = P,

Md = Nd(L− b/2),
A = 2b(e/10) + 2(a− 2(e/10))(e/10),

W = ρAH,

Iy = ab3/12− (a− 2(e/10))(b− 2(e/10))3/12,

lk = 2H,

Ncr = π2EIy/l2k,

Z = Iy/(b/2),
Mr = Zfy,

ry =
√

Iy/A,

λK = 2H/ry,

λKBar = λK/λE ,

φ = 0.5(1 + α(λKBar − 0.2) + λ2
KBar),

t1 = max{0, φ2 − λ2
KBar},

k = min{1, 1/(φ +
√

t1)},
NΛ = kfyA,

t2 = (1−Nd/Ncr),
loadByResistance = Nd/(NΛ/γR) + (1/t2)Md/(Mr/γR).

In fact, this problem has only three variables. However, if we eliminate the auxiliary variables,
the formulas will become very complicated and extremely difficult to check for errors. This kind
of problems is usually difficult for interval-based methods because each numerical evaluation
of functions is very expensive. ¥

Problem (WP). We consider the problem WP in Example 4.1:

WP ≡




20 <
√

x2 + y2 < 50,
12y/

√
(x− 12)2 + y2 < 10,

x ∈ [−50, 50], y ∈ [0, 50].

March 14, 2005

C.2. Test Case T1: Problems with Isolated Solutions 227

In fact, this is a simple problem but it makes many interval constraint propagation techniques,
such as the HC4 algorithm, slow (see Section 3.2.2.2). Hence, it is interesting to take experi-
ments on this problem. ¥

Problem (P2). Consider an artificial problem that simulates the case where the solution set
contains a large boundary region nearly parallel to axes.

P2 ≡





x2 ≤ y,
ln y + 1 ≥ z,
xz ≤ 1,
x ∈ [0, 15], y ∈ [1, 200], z ∈ [−10, 10].

The arity of constraints are all less the arity of the problem. The problem is simple; hence, we
expect the time percentage for evaluations is not dominant in the time for the whole solving
process. The comparison of search techniques is therefore clearer. ¥

Problem (P3). This problem is similar to the problem P2, but a highly nonlinear is added
to make the problem harder.

P3 ≡





x2 ≤ y,
ln y + 1 ≥ z,
xz ≤ 1,

x3/2 + ln(1.5z + 1) ≤ y + 1,
x ∈ [0, 15], y ∈ [1, 200], z ∈ [0, 10].

The arity of a constraint equals to the arity of the problem. Since this problem has only a
small number of operations, it will show better the difference between the search techniques
(the time percentage of evaluations is not dominant). ¥

C.2. Test Case T1: Problems with Isolated Solutions

Problem (BIF3). Bifurcation Problem:

BIF3 =





5x9 − 6x5y2 + xy4 + 2xz = 0;
−2x6y + 2x2y3 + 2yz = 0;
x2 + y2 = 0.265625;

where x, y, z in [−108, 108]. ¥

Problem (ECO5). An economic problem:

ECO5 =





(x1 + x1x2 + x2x3 + x3x4)x5 − 1 = 0;
(x2 + x1x3 + x2x4)x5 − 2 = 0;
(x3 + x1x4)x5 − 3 = 0;
x4x5 − 4 = 0;
x1 + x2 + x3 + x4 + 1 = 0;

where x1, . . . , x5 in [−10, 10]. ¥

March 14, 2005

228 Appendix C. Numerical Benchmarks

Problem (ECO6). An economic problem:

ECO6 =





(x1 + x1x2 + x2x3 + x3x4 + x4x5)x6 − 1 = 0;
(x2 + x1x3 + x2x4 + x3x5)x6 − 2 = 0;
(x3 + x1x4 + x2x5)x6 − 3 = 0;
(x4 + x1x5)x6 − 4 = 0;
x5x6 − 5 = 0;
x1 + x2 + x3 + x4 + x5 + 1 = 0;

where x1, . . . , x6 in [−10, 10]. ¥

Problem (ECO7). An economic problem:

ECO7 =





(x1 + x1x2 + x2x3 + x3x4 + x4x5 + x5x6)x7 − 1 = 0;
(x2 + x1x3 + x2x4 + x3x5 + x4x6)x7 − 2 = 0;
(x3 + x1x4 + x2x5 + x3x6)x7 − 3 = 0;
(x4 + x1x5 + x2x6)x7 − 4 = 0;
(x5 + x1x6)x7 − 5 = 0;
x6x7 − 6 = 0;
x1 + x2 + x3 + x4 + x5 + x6 + 1 = 0;

where x1, . . . , x7 in [−10, 10]. ¥

Problem (ECO8). An economic problem:

ECO8 =





(x1 + x1x2 + x2x3 + x3x4 + x4x5 + x5x6 + x6x7)x8 − 1 = 0;
(x2 + x1x3 + x2x4 + x3x5 + x4x6 + x5x7)x8 − 2 = 0;
(x2 + x1x3 + x2x4 + x3x5 + x4x6)x7 − 2 = 0;
(x4 + x1x5 + x2x6 + x3x7)x8 − 4 = 0;
(x5 + x1x6 + x2x7)x8 − 5 = 0;
(x6 + x1x7)x8 − 6 = 0;
x7x8 − 7 = 0;
x1 + x2 + x3 + x4 + x5 + x6 + x7 + 1 = 0;

where x1, . . . , x8 in [−10, 10]. ¥

Problem (NEU6). Neurophysiology Problem:

NEU6 =





x2
1 + x2

3 = 1;
x2

2 + x2
4 = 1;

x5x
3
1 + x6x

3
2 = 5;

x5x1x
2
3 + x6x

2
4x2 = 4;

x5x
3
3 + x6x

3
4 = 3;

x5x
2
1x3 + x6x

2
2x4 = 2;

x1 ≥ x2;
x1 ≥ 0;
x2 ≥ 0;

where x1, . . . , x6 in [−100, 100]. ¥

March 14, 2005

C.3. Test Case T2: Problems with Isolated Solutions 229

Problem (REI3). Neurophysiology Problem:

REI3 =





x2 − y2 + z2 = 0.5;
x3 − y3 + z3 = 0.5;
x4 − y4 + z4 = 0.5;
2xy + 6y2 + 2yz − 2x− 4y − 2z + 1 = 0;

where x, y, z in [−10, 10]. ¥

Problem (WIN3). Neurophysiology Problem:

WIN3 =





4xz − 4xy2 − 16x2 − 1 = 0;
2y2z + 4x + 1 = 0;
2x2z + 2y2 + x = 0;
2xy + 6y2 + 2yz − 2x− 4y − 2z + 1 = 0;

where x, y, z in [−105, 105]. ¥

C.3. Test Case T2: Problems with Isolated Solutions

Problem (CYC5). Cyclic Problem:

CYC5 =





a + b + c + d + e = 0;
ab + bc + cd + de + ea = 0;
abc + bcd + cde + dea + eab = 0;
abcd + bcde + cdea + deab + eabc = 0;
abcde− 1 = 0;

where a, b, c, d, e in [−10, 10]. ¥

Problem (GS5.1). Gough Steward Problem:

GS5.1 =





x2
1 + y2

1 + z2
1 = 31,

x2
2 + y2

2 + z2
2 = 39,

x2
3 + y2

3 + z2
3 = 29,

x1x2 + y1y2 + z1z2 + 6x1 − 6x2 = 51,
x1x3 + y1y3 + z1z3 + 7x1 − 2y1 − 7x3 + 2y3 = 50,
x2x3 + y2y3 + z2z3 + x2 − 2y2 − x3 + 2y3 = 34,
−12x1 + 15y1 − 10x2 − 25y2 + 18x3 + 18y3 = −32,
−14x1 + 35y1 − 36x2 − 45y2 + 30x3 + 18y3 = 8,
2x1 + 2y1 − 14x2 − 2y2 + 8x3 − y3 = 20,

where x1 ∈ [0.00; 5.57], y1 ∈ [0.00, 2.70], z1 ∈ [0.00, 5.57], x2 ∈ [−6.25, 0.00], y2 ∈ [−2.00, 0.00],
z2 ∈ [0.00, 6.25], x3 ∈ [−5.39,−1.00], y3 ∈ [−5.39, 0.00], z3 ∈ [0.00, 5.39]. ¥

Problem (KOL2). Kolev’s benchmark:

KOL2 =





((4x3 + 3x6)x3 + 2x5)x3 + x4 = 0,
((4x2 + 3x6)x2 + 2x5)x2 + x4 = 0,
((4x1 + 3x6)x1 + 2x5)x1 + x4 = 0,
x4 + x5 + x6 + 1 = 0,
(((x2 + x6)x2 + x5)x2 + x4)x2 + (((x3 + x6)x3 + x5)x3 + x4)x3 = 0,
(((x1 + x6)x1 + x5)x1 + x4)x1 + (((x2 + x6)x2 + x5)x2 + x4)x3 = 0,

March 14, 2005

230 Appendix C. Numerical Benchmarks

where x1 ∈ [0.0333, 0.2173], x2 ∈ [0.4000, 0.6000], x3 ∈ [0.7826, 0.9666], x4 ∈
[−0.3071,−0.1071], x5 ∈ [1.1071, 1.3071], x6 ∈ [−2.1000,−1.9000]. ¥

Problem (YAM60). Yama160 Problem:

(n + 1)2xi−1 − 2(n + 1)2xi + (n + 1)2xi+1 + exi = 0, (for i = 1, . . . , n),

where n = 60, x0 = xn+1 = 0, and xi ∈ [−10, 10] (for i = 1, . . . , n), ¥

C.4. Test Case T3: Problems with Isolated Solutions

Problem (CAP4). The Caprasse system:

CAP4 =





y2z + 2xyt− 2x− z = 0;
−x3z + 4xy2z + 4x2yt + 2y3t + 4x2 − 10y2 + 4xz − 10yt + 2 = 0;
2yzt + xt2 − x− 2z = 0;
−xz3 + 4yz2t + 4xzt2 + 2yt3 + 4xz + 4z2 − 10yt− 10t2 + 2 = 0;

where x, y, z, t in R. ¥

Problem (DID9). Didrit Problem:

DID9 =





x2
1 + y2

1 + z2
1 = 31;

x2
2 + y2

2 + z2
2 = 39;

x2
3 + y2

3 + z2
3 = 29;

x1x2 + y1y2 + z1z2 + 6x1 − 6x2 = 51;
x1x3 + y1y3 + z1z3 + 7x1 − 2y1 − 7x3 + 2y3 = 50;
x2x3 + y2y3 + z2z3 + x2 − 2y2 − x3 + 2y3 = 34;
−12x1 + 15y1 − 10x2 − 25y2 + 18x3 + 18y3 = −32;
−14x1 + 35y1 − 36x2 − 45y2 + 30x3 + 18y3 = 8;
2x1 + 2y1 − 14x2 − 2y2 + 8x3 − y3 = 20;

where xi, yi, zi in [−10, 10] for i = 1, 2, 3. ¥

Problem (GS5.0). Gough Steward problem:

GS5.0 =





x2
1 + y2

1 + z2
1 = 31,

x2
2 + y2

2 + z2
2 = 39,

x2
3 + y2

3 + z2
3 = 29,

x1x2 + y1y2 + z1z2 + 6x1 − 6x2 = 51,
x1x3 + y1y3 + z1z3 + 7x1 − 2y1 − 7x3 + 2y3 = 50,
x2x3 + y2y3 + z2z3 + x2 − 2y2 − x3 + 2y3 = 34,
−12x1 + 15y1 − 10x2 − 25y2 + 18x3 + 18y3 = −32,
−14x1 + 35y1 − 36x2 − 45y2 + 30x3 + 18y3 = 8,
2x1 + 2y1 − 14x2 − 2y2 + 8x3 − y3 = 20,

where x1 ∈ [−2.00; 5.57], y1 ∈ [−5.57, 2.70], z1 ∈ [0.00, 5.57], x2 ∈ [−6.25, 1.30], y2 ∈
[−6.25, 2.70], z2 ∈ [−2.00, 6.25], x3 ∈ [−5.39, 0.70], y3 ∈ [−5.39, 3.11], z3 ∈ [−3.61, 5.39]. ¥

March 14, 2005

C.4. Test Case T3: Problems with Isolated Solutions 231

Problem (KAT8). Katsura Problem:

KAT8 =





−x1 + 2x2
8 + 2x2

7 + 2x2
6 + 2x2

5 + 2x2
4 + 2x2

3 + 2x2
2 + x2

1 = 0;
−x2 + 2x8x7 + 2x7x6 + 2x6x5 + 2x5x4 + 2x4x3 + 2x3x2 + 2x2x1 = 0;
−x3 + 2x8x6 + 2x7x5 + 2x6x4 + 2x5x3 + 2x4x2 + 2x3x1 + x2

2 = 0;
−x4 + 2x8x5 + 2x7x4 + 2x6x3 + 2x5x2 + 2x4x1 + 2x3x2 = 0;
−x5 + 2x8x4 + 2x7x3 + 2x6x2 + 2x5x1 + 2x4x2 + x2

3 = 0;
−x6 + 2x8x3 + 2x7x2 + 2x6x1 + 2x5x2 + 2x4x3 = 0;
−x7 + 2x8x2 + 2x7x1 + 2x6x2 + 2x5x3 + x2

4 = 0;
−1 + 2x8 + 2x7 + 2x6 + 2x5 + 2x4 + 2x3 + 2x2 + x1 = 0;

where x1, . . . , x8 in [−10, 10]. ¥

Problem (KIN9). Kinematics Problem:

KIN9 =





z2
1 + z2

2 + z2
3 − 12z1 − 68 = 0;

z2
4 + z2

5 + z2
6 − 12z5 − 68 = 0;

z2
7 + z2

8 + z2
9 − 24z8 − 12z9 + 100 = 0;

z1z4 + z2z5 + z3z6 − 6z1 − 6z5 − 52 = 0;
z1z7 + z2z8 + z3z9 − 6z1 − 12z8 − 6z9 + 64 = 0;
z4z7 + z5z8 + z6z9 − 6z5 − 12z8 − 6z9 + 32 = 0;
2z2 + 2z3 − z4 − z5 − 2z6 − z7 − z9 + 18 = 0;
z1 + z2 + 2z3 + 2z4 + 2z6 − 2z7 + z8 − z9 − 38 = 0;
z1 + z3 − 2z4 + z5 − z6 + 2z7 − 2z8 + 8 = 0;

where z1, . . . , z9 in [−1000, 1000]. ¥

Problem (CAP4). The Caprasse system:

CAP4 =





y2z + 2xyt− 2x− z = 0;
−x3z + 4xy2z + 4x2yt + 2y3t + 4x2 − 10y2 + 4xz − 10yt + 2 = 0;
2yzt + xt2 − x− 2z = 0;
−xz3 + 4yz2t + 4xzt2 + 2yt3 + 4xz + 4z2 − 10yt− 10t2 + 2 = 0;

where x, y, z, t in R. ¥

Problem (REI4). The Reinmer system:

REI4 =





x2 − y2 + z2 − t2 = 0.5;
x3 − y3 + z3 − t3 = 0.5;
x4 − y4 + z4 − t4 = 0.5;
x5 − y5 + z5 − t5 = 0.5;

where x, y, z, t in [−10, 10]. ¥

Problem (REI5). The Reinmer system:

REI5 =





−1 + 2x2
1 − 2x2

2 + 2x2
3 − 2x2

4 + 2x2
5 = 0;

−1 + 2x3
1 − 2x3

2 + 2x3
3 − 2x3

4 + 2x3
5 = 0;

−1 + 2x4
1 − 2x4

2 + 2x4
3 − 2x4

4 + 2x4
5 = 0;

−1 + 2x5
1 − 2x5

2 + 2x5
3 − 2x5

4 + 2x5
5 = 0;

−1 + 2x6
1 − 2x6

2 + 2x6
3 − 2x6

4 + 2x6
5 = 0;

where x1, . . . , x5 in [−1, 1]. ¥

March 14, 2005

232 Appendix C. Numerical Benchmarks

Problem (REI6). The Reinmer system:

REI6 = 〈−0.5 +
n∑

i=1

(−1)i+1xk
i = 0 (k = 1, . . . , n); n = 6, xi ∈ [−1, 1] (for i = 1, . . . , n)〉 ¥

C.5. Test Case T4: Problems with Continuums of Solutions

Problem (F2.2). Tricuspoid and Circle:

F2.2 =
{

(x2 + y2 + 12x + 9)2 ≤ 4(2x + 3)3;
x2 + y2 ≥ 2;

where x, y in [−2, 2]. ¥

Problem (F2.3). Foliumd, Circle, and Trifolium:

F2.3 =





x3 + y3 ≥ 3xy;
x2 + y2 ≥ 0.1;
(x2 + y2)(y2 + x(x + 1)) ≤ 4xy2;

where x, y in [−3, 3]. ¥

Problem (S04). Circle:

S05 = 〈x2 + y2 ≤ 1; x, y ∈ [−2, 2]〉 ¥

Problem (S05). Circle:

S05 = 〈 x√
(y − 5)2 + 1

≤ 1; x, y ∈ [1, 10]〉 ¥

Problem (S06). Circle:

S06 = 〈 12y√
(x− 12)2 + y2

≤ 10; x ∈ [−50, 50], y ∈ [0, 50]〉 ¥

Problem (WP). Circle:

WP = 〈20 ≤
√

x2 + y2 ≤ 50,
12y√

(x− 12)2 + y2
≤ 10; x ∈ [−50, 50], y ∈ [0, 50]〉 ¥

C.6. Test Case T5: Problems with Continuums of Solutions

Problem (G1.1).

G1.1 =
{

x2
1 + 0.5x2 + 2(x3 − 6) ≥ 0;

x2
1 + x2

2 + x2
3 ≤ 25;

where x1, x2, x3 in [−8, 8]. ¥

March 14, 2005

C.6. Test Case T5: Problems with Continuums of Solutions 233

Problem (G1.2).

G1.2 =
{

x2
1 + 0.5x2 + 2(x3 − 3) ≥ 0;

x2
1 + x2

2 + x2
3 ≤ 25;

where x1, x2, x3 in [−8, 8]. ¥

Problem (H1.1).

H1.1 =





x2
1 + x2

2 + x2
3 ≤ 9;

(x1 − 0.5)2 + (x2 − 1)2 + x2
3 ≥ 4;

x2
1 + (x2 − 0.2)2 ≥ x3;

where x1, x2, x3 in [−4, 4]. ¥

Problem (P1.4).

P1.4 =
{

x2 + y2 + z2 <= 4;
(x− 2)2 + y2 + z2 >= 4;

where x, y, z in [−4, 4]. ¥

Problem (P2).

P2 ≡




x2 ≤ y,
ln y + 1 ≥ z,
xz ≤ 1,

where x ∈ [0, 15], y ∈ [1, 200], z ∈ [−10, 10]. ¥

Problem (P3).

P3 ≡





x2 ≤ y,
ln y + 1 ≥ z,
xz ≤ 1,

x3/2 + ln(1.5z + 1) ≤ y + 1,

where x ∈ [0, 15], y ∈ [1, 200], z ∈ [0, 10]. ¥

March 14, 2005

234 Appendix C. Numerical Benchmarks

March 14, 2005

Bibliography

P. K. Agarwal, M. T. de Berg, J. G. Gudmundsson, M. Hammar, and H. J. Haverkort. Box-Trees
and R-Trees with Near-Optimal Query Time. In Proceedings of the 17th ACM Symposium
on Computational Geometry, pages 124–133. ACM Press, 2001a. @pages 106, 189, 190

R. P. Agarwal, M. Meehan, and D. O’Regan. Fixed Point Theory and Applications. Cambridge
University Press, Cambridge, UK, 2001b. ISBN 0-521-80250-4. @pages 220, 221

A. Aguilera. Orthogonal Polyhedra: Study and Application. PhD thesis, Universitat Politècnica
de Catalunya, Barcelona, Spain, April 1998. @pages 103, 105, 116, 118, 119

A. Aguilera and D. Ayala. The Extreme Vertices Model for Orthogonal Polyhedra. Techni-
cal Report LSI-97-6-R, LSI-Universitat Politècnica de Catalunya, Barcelona, Spain, 1997.
@pages 116

F. A. Al-Khayyal. Jointly Constrained Biconvex Programming and Related Problems: An
Overview. Computers and Methematics with Applications, 19(11):53–62, 1990. @pages 91

F. A. Al-Khayyal and J. E. Falk. Jointly Constrained Biconvex Programming. Mathematics
of Operations Research, 8(2):273–286, 1983. @pages 91

G. Alefeld and J. Herzberger. ALGOL-60 Algorithmen zur Auflösung linearer Gleichungs-
systeme mit Fehlerfassung. Computing, 6:28–34, 1970. @pages 58

G. Alefeld and J. Herzberger. Introduction to Interval Computations. Academic Press, New
York, NY, 1983. @pages 32

E. Allgower, M. Erdmann, and K. Georg. On the Complexity of Exclusion Algorithms for
Optimization. Journal of Complexity, 18(2):573–588, June 2002. @pages 70

E. Allgower and K. Georg. Simplicial and Continuation Methods for Approximating Fixed
Points and Solutions to Systems of Equations. SIAM Review, 22(1):28–85, 1980. @pages 100

K. R. Apt. The Essence of Constraint Propagation. Theoretical Computer Science, 221(1-2):
179–210, 1999. @pages 90

K. R. Apt. Principles of Constraint Programming. Cambridge University Press, Cambridge,
UK, 2003. ISBN 0-521-82583-0. @pages 1, 2, 9, 11, 14, 21, 22, 23, 43, 44, 46, 47, 54, 79, 100

Archimedes. The Works of Archimedes, chapter Measurement of A Circle, pages 91–98. Dover
Publications, New York, 1953. Collected by Heath, Thomas L. @pages 209

235

236 Bibliography

E. Asarin, O. Bournez, T. Dang, O. Maler, and A. Pnueli. Effective Synthesis of Switching
Controllers for Linear Systems. Proceedings of the IEEE, Special Issue on “Hybrid Systems”,
88(7):1011–1025, July 2000. @pages 101

A. Avizienis. Signed-Digit Number Representations for Fast, Parallel Arithmetic. IRE Trans-
actions on Electronic Computing, EC-10:389–400, September 1961. @pages 31

A. Baar, E. Feigenbaum, and P. R. Cohen. The Handbook of Artificial Intelligence. Morgan
Kaufmann, 1981. @pages 78

F. Benhamou. Heterogeneous Constraint Solving. In Proceedings of 5th International Con-
ference on Algebraic and Logic Programming (ALP’96), volume LNCS 1139, pages 62–76,
Germany, 1996. @pages 90

F. Benhamou and F. Goualard. Universally Quantified Interval Constraints. In Proceedings
of the 6th International Conference on Principles and Practice of Constraint Programming
(CP’2000), pages 67–82, 2000. @pages 102, 107, 109, 110, 125

F. Benhamou, F. Goualard, L. Granvilliers, and J.-F. Puget. Revising Hull and Box Con-
sistency. In Proceedings of the International Conference on Logic Programming (ICLP’99),
pages 230–244, Las Cruces, USA, 1999. @pages 52, 81, 82, 83, 84, 85, 86, 87, 88, 89, 151,
155, 160, 166, 168, 171, 183, 208

F. Benhamou and L. Granvilliers. Automatic Generation of Numerical Redundancies for Non-
linear Constraint Solving. Reliable Computing, 3(3):335–344, 1997. @pages 90

F. Benhamou, D. McAllester, and P. Van Hentenryck. CLP(Intervals) Revisited. In Proceedings
of the International Logic Programming Symposium, pages 109–123, 1994. @pages 51, 169,
183

F. Benhamou and W. J. Older. Applying Interval Arithmetic to Real, Integer and Boolean
Constraints. Technical Report BNR Technical Report, Bell Northern Research, Ontario,
Canada, 1992. @pages 48, 81, 151, 169

F. Benhamou and W. J. Older. Applying Interval Arithmetic to Real, Integer and Boolean
Constraints. Journal of Logic Programming, pages 32–81, 1997. Extension of a technical
report of Bell Northern Research, Canada, 1992. @pages 48, 81, 151, 169

C. Bliek. Computer Methods for Design Automation. PhD thesis, Massachusetts Institute of
Technology, Department of Ocean Engineering, 1992. @pages 66

C. Bliek. Generalizing Dynamic and Partial Order Backtracking. In Proceedings of the 15th
National Conference on Artificial Intelligence (AAAI-98), pages 319–325, Wisconsin, USA,
July 1998. @pages 79

C. Bliek and D. Sam-Haroud. Path Consistency for Triangulated Constraint Graphs. In
Proceedings of the 16th International Joint Conference on Artificial Intelligence (IJCAI-99),
1999. @pages 46

C. Bliek, P. Spellucci, L. N. Vincent, A. Neumaier, L. Granvilliers, E. Monfroy, F. Benhamou,
E. Huens, P. Van Hentenryck, D. Sam-Haroud, and B. Faltings. Algorithms for Solving Non-
linear Constrained and Optimization Problems: The State of the Art. Technical Report D2,
COCONUT Project, June 2001. @pages 89

March 14, 2005

Bibliography 237

G. Boole. An Investigation of the Laws of Thought. Walton, London, UK, 1847. @pages 9

L. Bordeaux, E. Monfroy, and F. Benhamou. Improved Bounds on the Complexity of kB-
Consistency. In Proceedings of the 17th International Joint Conference on Artificial Intelli-
gence (IJCAI’2001), 2001. @pages 87, 88

G. Borradaile and P. Van Hentenryck. Safe and Tight Linear Estimators for Global Optimiza-
tion. Mathematical Programming, 2004. To appear. @pages 91, 186, 208

O. Bournez and O. Maler. On the Representation of Timed Polyhedra. In Proceedings of
International Colloquium on Automata Languages and Programming (ICALP’2000), volume
LNCS 1853, pages 793–807. Springer, 2000. @pages 116, 118, 119

O. Bournez, O. Maler, and A. Pnueli. Orthogonal Polyhedra: Representation and Computation.
In Hybrid Systems: Computation and Control, volume LNCS 1569, pages 46–60. Springer,
1999. @pages 103, 116, 118

J. C. Burkill. Functions of Intervals. In Proceedings of the London Mathematical Society,
volume 22, pages 375–446, 1924. @pages 209

H. Collavizza, F. Delobel, and M. Rueher. Extending Consistent Domains of Numeric CSP. In
Proceedings of the 16th International Joint Conference on Artificial Intelligence (IJCAI-99),
1999. @pages 107

A. Colmerauer. PROLOG II Reference Manual and Theoretical Model. Technical report,
Groupe Intelligence Artificielle, Université Aix – Marseille II, October 1982. @pages 10

J. L. D. Comba and J. Stolfi. Affine Arithmetic and its Applications to Computer Graphics.
In Proceedings of SIBGRAPI’93, Brazil, October 1993. @pages 36

J. Cruz and P. Barahona. Maintaining Global Hull Consistency with Local Search for Continu-
ous CSPs. In Global Optimization and Constraint Satisfaction: First International Workshop
on Global Constraint Optimization and Constraint Satisfaction, COCOS 2002, volume LNCS
2861, pages 178–193, Berlin Heidelberg, 2003. Springer-Verlag. @pages 49

A. Davenport, E. Tsang, W. C., and Z. K. GENET: A Connectionist Architecture for Solv-
ing Constraint Satisfaction Problems by Iterative Improvement. In Proceedings of the 12th
National Conference on Artificial Intelligence (AAAI-94), pages 287–309, Seatle, WA, USA,
1994. @pages 100

E. Davis. Constraint Propagation with Interval Labels. Artificial Intelligence, 32(3):281–331,
1987. @pages 45, 49

R. Dechter. Enhancement Schemes for Constraint Processing: Backjumping, Learning, and
Cutset Decomposition. Artificial Intelligence, 41(3):273–312, January 1990. @pages 79

R. Dechter. Constraint Processing. Morgan Kaufmann, San Francisco, California, 2003. ISBN
1-55860-890-7. @pages 14

R. Dechter and J. Pearl. Network-Based Heuristics for Constraint-Satisfaction Problems. Ar-
tificial Intelligence, 34:1–38, 1988. @pages 45, 46

March 14, 2005

238 Bibliography

R. Dechter and P. van Beek. Local and Global Relational Consistency. In Proceedings of
the First International Conference on Principles and Practices of Constraint Programming,
pages 240–257, Cassis, France, September 1995. @pages 53

R. Dechter and P. van Beek. Local and Global Relational Consistency. Theoretical Computer
Science, 173:283–308, 1997. @pages 17, 53

M. J. Dent and R. E. Mercer. Minimal Forward Checking. In Proceedings of the 6th IEEE
International Conference on Tools with Artificial Intelligence, pages 432–438, New Orleans,
1994. @pages 79

P. S. Dwyer. Linear Computations, chapter Computation with Approximate Numbers, pages
11–34. John Wiley & Son, Inc., New York, 1951. @pages 209

J. Eckhoff. Handbook of Convex Geometry, chapter Helly, Radon, and Carathéodory Type
Theorems, pages 389–448. North-Holland, Amsterdam, Netherlands, 1993. @pages 54

A. Eiben, P.-E. Eaué, and Z. Ruttkay. Solving Constraint Satisfaction Problems Using Genetic
Algorithms. In Proceedings of the 1st IEEE Conference on Evolutionary Computing, pages
543–547, 1994. @pages 100

C.-S. Fahn and J.-L. Wang. Efficient Time-Interrupted and Time-Continuous Collision Detec-
tion Among Polyhedral Objects in Arbitrary Motion. Journal of Information Science and
Engineering, 15:769–799, 1999. @pages 190

C.-S. Fahn and J.-L. Wang. Adaptive Space Decomposition for Fast Visualization of Soft
Object. Journal of Visualization and Computer Animation, 14(1):1–19, 2003. @pages 190

B. Faltings. Arc-Consistency for Continuous Variables. Artificial Intelligence, 65(2), 1994.
@pages 45, 207

B. Faltings and E. Gelle. Local Consistency for Ternary Numeric Constraints. In Proceedings of
the 15th International Joint Conference on Artificial Intelligence (IJCAI-97), pages 392–397,
Japan, August 1997. @pages 30, 54, 207

C. Frei. Abtraction Techniques for Resource Allocation in Communication Networks. PhD
thesis, Swiss Federal Institute of Technology in Lausanne (EPFL), Switzerland, 2000. @pages
78, 79

E. C. Freuder. Synthesizing Constraint Expressions. Communications of the ACM, 21:958–966,
1978. @pages 47

E. C. Freuder. A Sufficient Condition for Backtrack-Bounded Search. Journal of the ACM, 32
(4):755–761, 1985. @pages 53

E. C. Freuder and R. J. Wallace. Partial Constraint Satisfaction. Artificial Intelligence, 58
(1-3):31–70, December 1992. @pages 79

F. Ganovelli, J. Dingliana, and C. O’Sullivan. BucketTree: Improving Collision Detection
Between Deformable Objects. In Spring Conference on Computer Graphics (SCCG’2000),
2000. @pages 190

March 14, 2005

Bibliography 239

M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of
NP-Completeness. Freeman, New York, 1979. @pages 190

J. Garloff and B. Graf. Solving Strict Polynomial Inequalities by Bernstein Expansion. In
Proceedings of Symbolic Methods in Control System Analysis and Design, pages 339–352,
1999. @pages 107

J. Garloff, C. Jansson, and A. P. Smith. Lower Bound Functions for Polynomials. Journal of
Computational and Applied Mathematics, 157(1):207–225, 2003. @pages 99, 187

J. Gaschnig. A General Backtrack Algorithm that Eliminates Most Redundant Tests. In
Proceedings of the 5th International Joint Conference on Artificial Intelligence (IJCAI-77),
volume 1, page 457, Florida, USA, 1977. @pages 79

J. Gaschnig. Experimental Case Studies of Backtrack vs. Waltz-type vs. New Algorithms for
Satisficing Assignment Problems. In Proceedings of the Second National Conference of the
Canadian Society for Computational Studies of Intelligence, pages 268–277, 1978. @pages
79

D. M. Gay. Solving Interval Linear Equations. SIAM Journal of Numerical Analysis, 19:
858–870, 1982. @pages 60

E. Gelle. On the Generation of Locally Consistent Solution Spaces in Mixed Dynamic Con-
straints Problems. PhD thesis, Swiss Federal Institute of Technology in Lausanne (EPFL),
Switzerland, 1998. @pages 30, 54

E. Gelle and B. Faltings. Solving Mixed and Conditional Constraint Satisfaction Problems.
Constraints, 8(2):107–141, April 2001. @pages 30, 54

K. Georg. Improving the Efficiency of Exclusion Algorithms. Advanced Geometry, 1:193–210,
2001. @pages 68, 70, 71

K. Georg. A New Exclusion Test. Journal of Computational and Applied Mathematics, 152
(1-2):147–160, March 2003. @pages 68, 70, 71, 91, 95, 96

M. L. Ginsberg. Dynamic Backtracking. Journal of Artificial Intelligence Research, 1:25–46,
1993. @pages 79

M. L. Ginsberg and W. D. Harvey. Itarative Broadening. Artificial Intelligence, 55:367–383,
1992. @pages 78

M. L. Ginsberg and D. A. McAllester. GSAT and Dynamic Backtracking. In Proceedings of
the 4th International Conference on Principles of Knowledge Representation and Reasoning
(KR’94), pages 226–237, 1994. @pages 79

F. Glover. Future Paths for Integer Programming and Links to Artificial Intelligence. Computer
Operation Research, 5:533–549, 1986. @pages 100

F. Glover. Tabu Search – Part I. ORSA Journal on Computing, 1(3):190–206, 1989. @pages
100

F. Glover. Tabu Search – Part II. ORSA Journal on Computing, 2:4–32, 1990. @pages 100

March 14, 2005

240 Bibliography

D. Goldberg. What Every Computer Scientist Should Know About Floating-Point Arithmetic.
ACM Computing Surveys, 23(1):5–48, March 1991. @pages 30

S. W. Golomb and L. D. Baumert. Backtrack Programming. Journal of ACM, 12:516–524,
1965. @pages 78

A. Granas and J. Dugundji. Fixed Point Theory. Springer, New York, USA, 2003. ISBN
0-387-00173-5. @pages 221

L. Granvilliers. Consistance Locales et Transformation Symboliques de Contraintes
d’Intervalles. PhD thesis, Université d’Orléans, France, 1998. @pages 48

L. Granvilliers. On the Combination of Interval Constraint Solvers. Reliable Computing, 7(6):
467–483, 2001. @pages 89

L. Granvilliers and F. Benhamou. Progress in the Solving of a Circuit Design Problem. Journal
of Global Optimization, 2001. @pages 82

L. Granvilliers, F. Goualard, and F. Benhamou. Box Consistency through Weak Box Con-
sistency. In Proceedings of the 11th IEEE International Conference on Tools with Artificial
Intelligence (ICTAI’99), pages 373–380, November 1999. @pages 52, 88, 89

L. Granvilliers and G. Hains. A Conservative Scheme for Parallel Interval Narrowing. Infor-
mation Processing Letters, 74:141–146, 2000. @pages 89

L. Granvilliers and E. Monfroy. Declarative Modelling of Constraint Propagation Strategies.
In Proceedings of the International Conference on Advances in Information Systems, volume
LNAI 1909, Turkey, 2000. Springer-Verlag. @pages 89

L. Granvilliers, E. Monfroy, and F. Benhamou. Symbolic-Interval Cooperation in Constraint
Programming. In Proceedings of International Symposium on Symbolic and Algebraic Com-
putation (ISSAC’2001), pages 150–166. ACM Press, July 2001. @pages 89

E. R. Hansen. On Solving Systems of Equations Using Interval Arithmetic. Mathematical
Programming, 22:374–384, 1968. @pages 210

E. R. Hansen. A Generalized Interval Arithmetic. In Interval Mathematics, volume LNCS 29,
pages 7–18. Springer, 1975. @pages 36, 39, 144

E. R. Hansen. Interval Forms of Newton’s Method. Computing, 20:153–163, 1978. @pages 214

E. R. Hansen. Bounding the Solution of Interval Linear Equations. SIAM Journal of Numerical
Analysis, 29:1493–1503, 1992. @pages 66

E. R. Hansen. Preconditioning Linearized Equations. Computing, 58:187–196, 1997. @pages
74

E. R. Hansen. The Hull of Preconditioned Interval Linear Equations. Reliable Computing, 6:
2, 2000. @pages 66, 67

E. R. Hansen and S. Sengupta. Bounding Solutions of Systems of Equations Using Interval
Analysis. BIT Numerical Mathematics, 21:203–211, 1981. @pages 60, 62

March 14, 2005

Bibliography 241

E. R. Hansen and G. W. Walster. Global Optimization Using Interval Analysis. Marcel Dekker,
second edition, 2004. ISBN 0-8247-4059-9. @pages 32, 65, 66, 67

R. M. Haralick and L. G. Elliot. Increasing Tree Search Consistency for Constraint Satisfaction
Problems. Artificial Intelligence, 14:263–313, 1980. @pages 45, 79

W. D. Harvey and M. L. Ginsberg. Limited Discrepancy Search. In Proceedings of the 4th In-
ternational Joint Conference on Artificial Intelligence, pages 607–615, August 1995. @pages
78

H. J. Haverkort, M. de Berg, and J. Gudmundsson. Box-Trees for Collision Checking in Indus-
trial Installations. In Proceedings of the 18th ACM Symposium on Computational Geometry,
pages 53–62. ACM Press, 2002. @pages 190

G. Heindl, V. Kreinovich, and A. Lakeyev. Solving Linear Interval Systems Is NP-Hard Even
If We Exclude Overflow and Underflow. Reliable Computing, 4:383–388, 1998. @pages 57

T. J. Hickey, Q. Ju, and M. H. Van Emden. Interval Arithmetic: from Principles to Implemen-
tation. Journal of the ACM (JACM), 48(5):1038–1068, 2001. @pages 33, 132

S. Hongthong and R. B. Kearfott. Rigorous Linear Overestimators and Underestimators. Math-
ematical Programming B, 2004. Submitted. @pages 91, 186, 208

ILOG. ILOG Solver 5.3. Reference Manual, 2003. @pages 101, 103, 115, 126

Y. Inoue, S. Kusanobu, and K. Yamamura. A Practical Approach for the Fixed-Point Homotopy
Method Using a Solution-Tracing Circuit. IEICE Trans. on Fundamentals of Electronics,
Communications and Computer Sciences, E85-A(1):222–233, January 2002. @pages 100

Y. Inoue, S. Kusanobu, K. Yamamura, and M. Ando. An Initial Solution Algorithm for
Globally Convergent Homotopy Methods. IEICE Trans. on Fundamentals of Electronics,
Communications and Computer Sciences, E87-A(4):780–786, April 2004. @pages 100

Y. Inoue, S. Kusanobu, K. Yamamura, and T. Takahashi. Newton-Fixed-Point Homotopy
Method for Finding DC Operating-Points of Nonlinear Circuits. In Proceedings of the 2001
International Technical Conference on Circuits/Systems, Computers and Communications,
pages 370–373, July 2001. @pages 100

J. Jaffar, J.-L. Lassez, and M. Maher. A Logic Programming Language Scheme. In D. DeGroot
and G. Lindstrom, editors, Logic Programming: Relations, Functions and Equations, pages
441–468. Prentice Hall, 1986. @pages 10

J. Jaffar and S. Michaylov. Methodology and Implementation of a CLP System. In Proceed-
ings of the 4th International Conference on Logic Programming, pages 196–218, Melbourne,
Australia, May 1987. @pages 10

C. Jansson. Convex-Concave Extensions. BIT Numerical Mathematics, 40(2):291–313, January
2000. @pages 99, 187

L. Jaulin. Solution Globale et Guarantie de Problèmes Ensemblistes: Application à l’Estimation
Non Linéaire et à la Commande Robuste. PhD thesis, Université Paris-Sud, Orsay, France,
1994. @pages 102, 107

March 14, 2005

242 Bibliography

L. Jaulin, M. Kieffer, O. Didrit, and E. Walter. Applied Interval Analysis. Springer, first
edition, 2001. ISBN 1-85233-219-0. @pages 32, 35, 76, 78, 82, 89, 101, 146, 210, 211

L. Jaulin and E. Walter. Set Inversion via Interval Analysis for Nonlinear Bounded-Error
Estimation. Automatica, 29(4):1053–1064, 1993. @pages 76, 78

W. M. Kahan. A More Complete Interval Arithmetic. Lecture Notes for an Engineering Summer
Course in Numerical Analysis. University of Michigan, USA, 1968. @pages 61

M. Kashiwagi. Interval Arithmetic with Linear Programming – Extentions of Yamamura’s Idea.
In Proceedings of 1996 International Symposium on Nonlinear Theory and its Applications,
pages 61–64, Kochi, Japan, October 1996. @pages 90, 95

M. Kashiwagi. Simplex Method for Calculating Optimal Value with Guaranteed Accuracy.
In Proceedings of 1997 International Symposium on Nonlinear Theory and its Applications,
pages 317–320, Hawaii, USA, 1997. @pages 90, 95

R. B. Kearfott. Abstract Generalized Bisection and A Cost Bound. Mathematical Computing,
49(179):187–202, July 1987a. @pages 75, 76

R. B. Kearfott. Some Tests of Generalized Bisection. ACM Transactions on Mathematical
Software (TOMS), 13(3):197–220, September 1987b. @pages 75, 76

R. B. Kearfott and K. Du. The Cluster Problem in Global Optimization: The Univariate case.
Computing (Suppl.), 9:117–127, 1992. @pages 36, 68

R. B. Kearfott and K. Du. The Cluster Problem in Multivariate Global Optimization. Journal
of Global Optimization, 4:253–265, 1994. @pages 36, 68

R. B. Kearfott and X. Shi. Optimal Preconditionners for Interval Gauss-Seidel Methods. In
Scientific Computing and Validated Numerics, pages 173–178, 1996. @pages 89

M. A. Khamsi and W. A. Kirk. An Introduction to Metric Spaces and Fixed Point Theory.
Wiley, New York, USA, 2001. ISBN 0-471-41825-0. @pages 217, 221

W. A. Kirk and B. Sims. Handbook of Metric Fixed Point Theory. Kluwer Academic Publishers,
Dordrecht, 2001. ISBN 0-7923-7073-2. @pages 220, 221

S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by Simulated Annealing. Science,
220(4598):671–690, 1983. @pages 100

L. V. Kolev. A New Method for Global Solution of Systems of Non-Linear Equations. Realiable
Computing, 4:125–146, 1998. @pages 29, 39, 96, 97, 98

L. V. Kolev. An Improved Method for Global Solution of Non-Linear Systems. Realiable
Computing, 5:103–111, 1999. @pages 29, 96, 99

L. V. Kolev. Automatic Computation of a Linear Interval Enclosure. Realiable Computing, 7:
17–18, 2001. @pages 29, 39, 40, 41, 96, 99, 169

L. V. Kolev. An Improved Interval Linearization for Solving Non-Linear Problems. In 10th
GAMM – IMACS International Symposium on Scientific Computing, Computer Arithmetic,
and Validated Numerics (SCAN2002), France, September 2002. @pages 29, 39, 42, 96, 99,
137, 169, 185, 186, 208

March 14, 2005

Bibliography 243

A. N. Kolmogorov. On the Representation of Continuous Functions of Many Variables by
Superposition of Continuous Functions of One Variable and Addition. Amerian Mathematical
Biophysics, 5:55–59, 1963. (Translated version of the Russian version in 1957). @pages 29

R. E. Korf. Improved Limited Discrepancy Search. In Proceedings of the 13th National Con-
ference on Artificial Intelligence (AAAI-96), pages 286–291, 1996. @pages 78

R. Krawczyk. Newton-Algorithmen zur Bestimmung von Nullstellen mit Fehlerschranken. Com-
puting, 4:187–201, 1969. @pages 57, 61

R. Krawczyk. A Remark about the Convergence of Interval Sequences. Computing, 31:255–259,
1983. @pages 61

R. Krawczyk. A Class of Interval-Newton-Operators. Computing, 37:179–183, 1986. @pages
61

R. Krawczyk. Conditionally Isotone Interval Operators. Computing, 39:261–270, 1987. @pages
62

R. Krawczyk and A. Neumaier. Interval Slopes for Rational Functions and Associated Centered
Forms. SIAM Journal of Numerical Analysis, 22:604–616, 1985. @pages 214

R. Krawczyk and A. Neumaier. An Improved Interval Newton Operator. Journal of Mathe-
matical Analysis and Applications, 118:194–207, 1986. @pages 215

R. Krawczyk and A. Neumaier. Interval Newton Operators for Function Strips. Journal of
Mathematical Analysis and Applications, 124:52–72, 1987. @pages 65

N. Labroche, N. Monmarché, and G. Venturini. A New Clustering Algorithm Based on the
Chemical Recognition System of Ants. In Proceedings of the 15th European Conference on
Artificial Intelligence (ECAI’2002), pages 345–349, France, July 2002. IOS Press. @pages
190, 192

A. H. Land and A. G. Doig. An Automated Method for Solving Discrete Programming Methods.
Econometrica, 28:497–520, 1960. @pages 10, 79

T. Larsson and T. Akenine-Moller. Collection Detection for Continuously Deforming Bodies.
In Eurographics’2001, Manchester, UK, 2001. @pages 190

Y. Lebbah and O. Lhomme. Accelerating Filtering Techniques for Numeric CSPs. Artificial
Intelligence, 139(1):109–132, July 2002. @pages 187

Y. Lebbah, C. Michel, and M. Rueher. Global Filtering Algorithms Based on Linear Relax-
ations. In Notes of the 2nd International Workshop on Global Constrained Optimization and
Constraint Satisfaction (COCOS 2003), Switzerland, November 2003a. @pages 91, 169, 185,
186, 208

Y. Lebbah, M. Rueher, and C. Michel. A Global Filtering Algorithm for Handling Systems of
Quadratic Equations and Inequations. In Proceedings of the 9th International Conference on
Principles and Practice of Constraint Programming (CP’2003), volume LNCS 2470, pages
109–123. Springer, 2003b. @pages 91, 169, 185, 186, 208

March 14, 2005

244 Bibliography

O. Lhomme. Consistency Techniques for Numeric CSPs. In Proceedings of the 13th Interna-
tional Joint Conference on Artificial Intelligence (IJCAI-93), pages 232–238, 1993. @pages
49, 50, 88, 169

O. Lhomme, A. Gotlieb, and M. Rueher. Dynamic Optimization of Interval Narrowing Algo-
rithms. Journal of Logic Programming, 37(1-2):165–183, 1998. @pages 89

D. C. Little, K. C. Murty, D. W. Sweeney, and C. Karel. An Algorithm for the Travelling
Salesman Problem. Operation Research, 11:972–989, 1963. @pages 10, 79

C. Lottaz. Rewriting Numeric CSPs for Consistency Algorithms. In Workshop on Non-Binary
Constraints at the International Joint Conference on Artificial Intelligence (IJCAI), pages
E:1–E:13, Stockholm, Sweden, August 1999. @pages 30, 54

C. Lottaz. Collaborative Design using Solution Spaces. PhD thesis, Swiss Federal Institute of
Technology in Lausanne (EPFL), Switzerland, 2000. @pages 30, 54, 78, 124, 127, 207

A. K. Mackworth. Consistency in Networks of Relations. Artificial Intelligence, 8:99–118, 1977.
@pages 44, 45, 81, 83, 86

K. Marriott and P. J. Stuckey. Programming With Constraints: An Introduction. The MIT
Press, 1998. @pages 9, 13, 14, 45

R. Martin, H. Shou, I. Voiculescu, A. Bowyer, and G. Wang. Comparison of Interval Methods
for Plotting Algebraic Curves. Computer Aided Geometric Design, 19(7):553–587, 2002.
@pages 37

D. W. Matula and P. Kornerup. Finite Precision Rational Arithmetic: Slash Number System.
IEEE Transactions on Computers, 34(1):3–18, 1985. @pages 31

G. Mayer. Enclosing the Solution Set of Linear Systems with Inaccurate Data by Iterative
Methods Based on Incomplete LU-Decomposition. Computing, 35:189–206, 1985. @pages 66

G. Mayer. Comparison Theorems for an Iterative Method Based on Strong Splittings. SIAM
Journal of Numerical Analysis, 24:215–227, 1987. @pages 66

G. Mayer. Enclosing the Solutions of Systems of Linear Equations for Interval Iterative
Processes. Computing Suppl., 6:47–58, 1988. @pages 66

G. Mayer. Epsilon-inflation in verification algorithms. Journal of Computational and Applied
Mathematics, 60(1-2):147–169, June 1995. @pages 75

G. Mayer. Epsilon-Inflation with Contractive Interval Functions. Applications of Mathematics,
43(4):241–254, 1998. @pages 75

D. A. McAllester. Partial Order Backtracking. Research note, Artificial Intelligence Laboratory,
MIT, USA, 1993. @pages 79

G. P. McCormick. Computability of Global Solutions to Factorable Nonconvex Programs:
Part I – Convex Underestimating Problems. Mathematical Programming, 10:147–175, 1976.
@pages 27, 81, 91

March 14, 2005

Bibliography 245

G. P. McCormick. Nonlinear Programming: Theory, Algorithms and Applications. John Wiley
& Sons, 1983. @pages 27, 81, 91

J. J. McGregor. Relational Consistency Algorithms and Their Application in Finding Subgraph
and Graph Isomorphisms. Information Science, 19:229–250, 1979. @pages 79

J. M. McNamee. A Bibliography on Roots of Polynomials. Journal of Computational and
Applied Mathematics, 47(3):391–394, September 1993. @pages 55

J. M. McNamee. A Supplementary Bibliography on Roots of Polynomials. Journal of Compu-
tational and Applied Mathematics, 78:1, 1997. @pages 55

J. M. McNamee. An Updated Supplementary Bibliography on Roots of Polynomials. Journal
of Computational and Applied Mathematics, 110(2):305–306, October 1999. @pages 55

J. M. McNamee. A 2002 Update of the Supplementary Bibliography on Roots of Polynomials.
Journal of Computational and Applied Mathematics, 142(2):433–434, May 2002. @pages 55,
56

J. M. McNamee. A 2003 Update of The Supplementary Bibliography on Roots of Polynomials.
Journal of Computational and Applied Mathematics, 2003. @pages 55

O. Mencer. Rational Arithmetic Units in Computer System. PhD thesis, Stanford University,
California, USA, February 2000. @pages 31

P. Meseguer. Interleaved Depth-First Search. In Proceedings of the 15th International Joint
Conference on Artificial Intelligence (IJCAI-97), pages 1382–1387, 1997. @pages 78

F. Messine. New Affine Forms in Interval Branch and Bound Algorithms. Technical Report
R2I 99-02, Université de Pau et des Pays de l’Adour (UPPA), France, October 1999. @pages
41

F. Messine. Extensions of Affine Arithmetic in Interval Global Optimization Algorithms. In
SCAN 2000 and INTERVAL 2000 - IMACS/GAMM International Symposium on Scientific
Computing, Computer Arithmetic and Validated Numerics, Germany, 2000. @pages 41

F. Messine. Extentions of Affine Arithmetic: Application to Unconstrained Global Optimiza-
tion. Journal of Universal Computer Science, 8(11):992–1015, November 2002. @pages 37,
41, 186, 208

C. Michel, Y. Lebbah, and M. Rueher. Safe Embedding of the Simplex Algorithm in a CSP
Framework. In Proceeding of the 5th International Workshop on Integration of AI and OR
techniques in Constraint Programming for Combinatorial Optimisation Problems (CPAIOR
2003), pages 210–220, Canada, 2003. @pages 90

W. Miller. Quadratic Convergence in Interval Arithmetic, Part 2. BIT Numerical Mathematics,
12:291–298, 1972. @pages 66

W. Miller. More on Quadratic Convergence in Interval Arithmetic. BIT Numerical Mathemat-
ics, 13(76–83), 1973. @pages 66

March 14, 2005

246 Bibliography

S. Minton, M. D. Johnson, A. Philips, and P. Laird. Minimizing Conflicts: A Heuristics Repair
Methods for Constraint Satisfaction and Scheduling Problems. Artificial Intelligence, 58:
161–205, 1992. @pages 100

S. Miyajima. On the Improvement of the Division of the Affine Arithmetic. Bachelor thesis,
Kashiwagi Laboratory, Waseda University, Japan, 2000. It is in Japanese, but easy to guess.
@pages 38

S. Miyajima, T. Miyata, and M. Kashiwagi. A New Dividing Method in Affine Arithmetic. IE-
ICE Transaction on Fundamentals of Electronics, Communications and Computer Sciences,
E86-A(9):2192–2196, September 2003. @pages 39, 137, 186, 208

R. Mohr and G. Masini. Good Old Discrete Relaxation. In Proceedings of the 8th Euro
Conference on Artificial Intelligence (ECAI-88), pages 651–656, 1988. @pages 45

E. Monfroy and J.-H. Réty. Chaotic Iteration for Distributed Constraint Propagation. In
Proceedings of ACM Symposium on Applied Computing, Artificial Intelligence and Compu-
tational Logic Track, pages 19–24, Texas, USA, March 1999. @pages 89

U. Montanari. Networks of Constraints: Fundamental Properties and Applications to Picture
Processing. Information Science, 7:95–132, 1974. @pages 44, 45, 46

R. E. Moore. Automatic Error Analysis in Digital Computation. Technical Report LMSD-
84821, Missiles and Space Division, Lockheed Aircraft Corporation, Sunnyvale, California,
USA, 1959. @pages 209

R. E. Moore. Interval Arithmetic and Automatic Error Analysis in Digital Computing. PhD
thesis, Stanford University, USA, October 1962. @pages 209

R. E. Moore. Interval Analysis. Prentice Hall, Englewood Cliffs, NJ, 1966. @pages 32, 57, 63,
209

R. E. Moore. A Test for Existence of Solutions to Nonlinear Systems. SIAM Journal of
Numerical Analysis, 14(4):611–615, 1977. @pages 61

R. E. Moore. Methods and Applications of Interval Analysis. SIAM Studies in Applied Math-
ematics. Philadelphia, 1979. ISBN 0-89871-161-4. @pages 32, 68

R. E. Moore and L. Qi. A Successive Interval Test for Nonlinear Systems. SIAM Journal of
Numerical Analysis, 19(4):845–850, 1982. @pages 62

H. Muñoz and R. B. Kearfott. Slope Intervals, Generalized Gradients, Semigradients, Slant
Derivatives, and Csets. Reliable Computing, 10(3):163–193, 2004. @pages 216

Y. Nakaya and S. Oishi. Finding All Solutions of Nonlinear Systems of Equations Using Linear
Programming with Guaranteed Accuracy. Journal of Universal Computer Science, 4(2):
171–177, 1998. @pages 95

A. Neumaier. New Techniques for the Analysis of Linear Interval Equations. Linear Algebra
Applications, 58:273–325, 1984. @pages 60

A. Neumaier. Interval Iteration for Zeros of Systems of Equations. BIT Numerical Mathematics,
25(1):256–273, 1985. @pages 64

March 14, 2005

Bibliography 247

A. Neumaier. Existence of Solutions of Piecewise Differentiable Systems of Equations. Arch.
Math., 47:443–447, 1986. @pages 64

A. Neumaier. Further Results on Linear Interval Equations. Linear Algebra Applications, 87:
155–179, 1987a. @pages 66

A. Neumaier. Overestimation in Linear Interval Equation. SIAM Journal of Numerical Analy-
sis, 24:207–214, 1987b. @pages 58

A. Neumaier. Interval Methods for Systems of Equations. Cambridge Univ. Press, Cambridge,
1990. @pages 27, 32, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 74, 81, 97, 211, 212, 213, 214, 215,
216

A. Neumaier. A Simple Derivation of the Hansen-Bliek-Rohn-Ning-Kearfott Enclosure for
Interval Linear Equations. Reliable Computing, 5(2):131–136, 1999. @pages 66

A. Neumaier. Erratum to: A Simple Derivation of the Hansen-Bliek-Rohn-Ning-Kearfott En-
closure for Interval Linear Equations. Reliable Computing, 6(2):227, 2000. @pages 66

A. Neumaier. Taylor Forms - Use and Limits. Reliable Computing, 9:43–79, 2002. @pages 23,
215

A. Neumaier. Complete Search in Continuous Global Optimization and Constraint Satisfaction.
Acta Numerica, 2004:271–369, 2004. @pages 3, 4, 21, 23, 68, 79, 100

A. Neumaier and J.-P. Merlet. Constraint Satisfaction and Global Optimization in Robotics.
http://www.mat.univie.ac.at/∼neum/ms/robslides.pdf, 2002. @pages 101

A. Neumaier and O. Shcherbina. Safe Bounds in Linear and Mixed-Integer Programming.
Mathematical Programming A, 99:283–296, 2004. @pages 90, 182

K. Nickel. On the Newton Method in Interval Analysis. MRC Technical Summary Report
#1136, University of Wisconsin – Madison, USA, 1971. @pages 63

K. Nickel. A Globally Convergent Ball Newton Method. SIAM Journal of Numerical Analysis,
18(6):988–1003, December 1981. @pages 63

S. Ning and R. Kearfott. A Comparison of Some Methods for Solving Linear Interval Equations.
SIAM Journal of Numerical Analysis, 34:1289–1305, 1997. @pages 66

J. Nocedal and S. J. Wright. Numerical Optimization. Springer Series in Operations Research.
Springer, 2000. @pages 4

J. M. Ortega and W. C. Rheinboldt. Iterative Solution of Nonlinear Equations in Several
Variables. Academic Press, New York, 1970. @pages 74, 76

J. M. Ortega and W. C. Rheinboldt. Iterative Solution of Nonlinear Equations in Several
Variables, volume 30 of Classics in Applied Mathematics. Soc for Industrial & Applied
Math, reprint edition, March 2000. @pages 74

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical Recipes in C,
The Art of Scientific Computing. Cambridge University Press, New York, second edition,
1992. @pages 92, 93

March 14, 2005

http://www.mat.univie.ac.at/~neum/ms/robslides.pdf

248 Bibliography

P. Prosser. Hybrid Algorithms for the Constraint Satisfaction Problem. Computational Intel-
ligence, 9(3):268–299, 1993. @pages 79

P. Prosser, K. Stergiou, and T. Walsh. Singleton Consistencies. In Proceedings of the 6th
International Conference on Principles and Practice of Constraint Programming (CP’2000),
volume LNCS 1894, pages 353–368, Singapore, September 2000. Springer-Verlag. @pages 54

F. N. Ris. Interval Analysis and Applications to Linear Algebra. PhD thesis, University of
Oxford, 1972. @pages 58, 60

J. Rohn. Cheap and Tight Bounds: The Recent Result of E. Hansen Can Be Made More
Efficient. Interval Computation, 4:13–21, 1993. @pages 66

J. Rohn and R. Georg. Enclosing Solutions of Linear Equations. SIAM Journal of Numerical
Analysis, 35(2):524–539, April 1998. @pages 75

S. M. Rump. Kleine Fehlerschranken bei Matrixproblemen. PhD thesis, Universitäte Karlsruhe,
1980. @pages 75

S. M. Rump. Solution of Linear and Nonlinear algebraic Problems with Sharp, Guaranteed
Bounds. Computing Suppl., 5:147–168, 1984. @pages 58

S. M. Rump. On the Solution of Interval Linear Systems. Computing, 47:337–352, 1992. @pages
75

S. M. Rump. Verification Methods for Dense and Sparse Systems of Equations. In Topics
in Validated Computations, Studies in Computational Mathematics, pages 63–136. Elsevier
Science Publishers, Amsterdam, 1994. @pages 75

S. M. Rump. A Note on Epsilon-Inflation. Reliable Computing, 4(4):371–375, 1998. @pages 75

S. M. Rump and E. Kaucher. Small Bounds for the Solution of Systems of Linear Equations.
Computing Suppl., 2:157–164, 1980. @pages 58

D. Sabin and E. C. Freuder. Contradicting Conventional Wisdom in Constraint Satisfaction.
In Proceedings of the 11th European Conference on Artificial Intelligence (ECAI-94), pages
125–129, 1994. @pages 79

D. Sam-Haroud. Constraint Consistency Techniques for Continuous Domains. PhD thesis,
Swiss Federal Institute of Technology in Lausanne (EPFL), Switzerland, 1995. @pages 30,
44, 54, 78, 102, 127, 207

D. Sam-Haroud and B. Faltings. Consistency Techniques for Continuous Constraints. Con-
straints, 1:85–118, September 1996. @pages 30, 54, 102, 107, 124, 127, 207

H. Schichl. Mathematical Modeling and Global Optimization. Habilitation thesis, Faculty of
Mathematics, University of Vienna, Autralia, November 2003. @pages 153, 154

H. Schichl and A. Neumaier. Exclusion Regions for Systems of Equations. SIAM Journal on
Numerical Analysis, 42:383–408, 2004a. @pages 61, 68, 72, 73, 74

March 14, 2005

Bibliography 249

H. Schichl and A. Neumaier. Interval Analysis on Directed Acyclic Graphs for Global Opti-
mization. Journal of Global Optimization, 2004b. To appear. @pages 151, 152, 153, 155,
168, 187, 206, 208

H. Schwandt. Iterative Methods for Systems of Equations with Interval Coefficients and Linear
Form. Computing, 38:143–161, 1987. @pages 66

B. Selman and H. A. Kautz. Domain-Independent Extentions to GSAT: Solving Large Struc-
tured Satisfiability Problems. In Proceedings of the 13th International Joint Conference on
Artificial Intelligence (IJCAI-93), France, 1993. @pages 100

Z. Shen and A. Neumaier. The Krawczyk Operator and Kantorovich’s theorem. Journal of
Mathematical Analysis and Applications, 149:437–443, 1990. @pages 74

M.-C. Silaghi. Asynchronously Solving Distributed Problems with Privacy Requirements. PhD
thesis, Swiss Federal Institute of Technology in Lausanne (EPFL), Switzerland, 2002. @pages
14, 119

M.-C. Silaghi, D. Sam-Haroud, and B. Faltings. Search Techniques for Non-linear CSPs with
Inequalities. In Proceedings of the 14th Canadian Conference on Artificial Intelligence, 2001.
@pages 102, 107, 109, 110, 119

S. Singh, B. Watson, and P. Srivastava. Fixed Point Theory and Best Approximation: The
KKM-map Principle. Kluwer Academic Publishers, Dordrecht, 1997. @pages 130, 217, 218,
219, 220, 221

J. M. Snyder. Generative Modeling for Computer Graphics and CAD. Academic Press, Inc.,
London, UK, 1992. @pages 101

P. Spiteri. A New Characterization of M-Matrices and H-Matrices. BIT Numerical Mathemat-
ics, 43(5):1019–1032, January 2003. @pages 212

J. Stolfi and L. H. de Figueiredo. Self-Validated Numerical Methods and Applications. In
Monograph for 21st Brazilian Mathematics Colloquium (IMPA), Brazil, July 1997. @pages
37, 38, 137

D. Struik. A Concise History of Mathematics. Dover Publications, 1948. @pages 9

T. Sunaga. Theory of an Interval Algebra and its Applications to Numerical Analysis. RAAG
Memoirs, 2:29–46, 1958. @pages 209

G. Sussman and G. Steele. CONSTRAINTS – A Language for Expressing Almost-Hierarchical
Descriptions. Artificial Intelligence, 14(1):1–39, 1980. @pages 9

I. Sutherland. SKETCHPAD: A Man-Machine Graphical Communication System. In Proceed-
ings of the Spring Joint Computer Conference, pages 329–346, 1963. @pages 9

E. E. Swartzlander and G. A. Alexopoulos. The Sign/Logarithm Number System. IEEE
Transactions on Computers, 24(12):1238–1242, 1975. @pages 31

M. Tawarmalani and N. V. Sahinidis. Convexification and Global Optimization in Continuous
and Mixed-Integer Nonlinear Programming. Nonconvex Optimization and Its Applications.
Kluwer, September 2002. @pages 99, 187

March 14, 2005

250 Bibliography

S. Thiel. A Generalization of the Interval Newton Single Step Method for Nonlinear Systems
of Equations. Computing, 43:73–84, 1989. @pages 63

M. Torrens Arnal. Scalable Intelligent Electronic Catalogs. PhD thesis, Swiss Federal Institute
of Technology in Lausanne (EPFL), Switzerland, 2003. @pages 78, 79, 100

E. Tsang. Foundations of Constraint Satisfaction. Academic Press, 1993. @pages 14, 21, 22,
23, 43, 79, 81, 83, 86, 100, 192

P. van Beek. On the Minimality and Decomposibility of Constraint Networks. In Proceedings
of the 10th National Conference on AI, 1992. @pages 44

P. van Beek and R. Dechter. On the Minimality and Global Consistency of Row-Convex
Constraint Networks. Journal of the ACM, 42(3):543–561, 1995. @pages 44

G. van den Bergen. Efficient Collision Detection of Complex Deformable Models using AABB
Trees. Journal of Graphics Tools, 4(2):7–25, 1997. @pages 190

P. Van Hentenryck. Numerica: A Modeling Language for Global Optimization. In Proceed-
ings of the 15th International Joint Conference on Artificial Intelligence (IJCAI-97), 1997.
@pages 151

P. Van Hentenryck. A Gentle Introduction to NUMERICA. Artificial Intelligence, 103(1-2):
209–235, 1998. @pages 101

P. Van Hentenryck, D. McAllester, and D. Kapur. Solving Polynomial Systems Using a Branch
and Prune Approach. SIAM Journal of Numerical Analysis, 34(2):797–827, 1997a. @pages
88

P. Van Hentenryck, L. Michel, and Y. Deville. Numerica: A Modeling Language for Global
Optimization. MIT press, 1997b. @pages 36, 68, 88

J. I. van Hermet. Application of Evolutionary Computation to Constraint Satisfaction and
Data Mining. PhD thesis, University of Leiden, Netherland, November 2002. @pages 100

R. J. Van Iwaarden. An Improved Unconstrainted Global Optimization Algorithm. PhD thesis,
University of Colorado at Denver, USA, 1996. @pages 114

X.-H. Vu, D. Sam-Haroud, and B. Faltings. Clustering for Disconnected Solution Sets of
Numerical CSPs. In Recent Advances in Constraints: International Workshop on Constraint
Solving and Constraint Logic Programming, CSCLP 2003, volume LNAI 3010, pages 25–43,
Budapest, Hungary, July 2004a. Springer-Verlag. @pages 189

X.-H. Vu, D. Sam-Haroud, and B. Faltings. Combining Multiple Inclusion Representations in
Numerical Constraint Propagation. In Proceedings of the 16th IEEE International Conference
on Tools with Artificial Intelligence (ICTAI 2004), pages 458–467, Florida, USA, November
2004b. IEEE Computer Society Press. @pages 129, 135, 169

X.-H. Vu, D. Sam-Haroud, and M.-C. Silaghi. Approximation Techniques for Non-linear Prob-
lems with Continuum of Solutions. In Proceedings of the 5th International Symposium on
Abstraction, Reformulation and Approximation (SARA 2002), volume LNAI 2371, pages
224–241, Alberta, Canada, August 2002. Springer-Verlag. @pages 101

March 14, 2005

Bibliography 251

X.-H. Vu, D. Sam-Haroud, and M.-C. Silaghi. Numerical Constraint Satisfaction Problems with
Non-isolated Solutions. In Global Optimization and Constraint Satisfaction: First Interna-
tional Workshop on Global Constraint Optimization and Constraint Satisfaction, COCOS
2002, volume LNCS 2861, pages 194–210, Valbonne-Sophia Antipolis, France, October 2003.
Springer-Verlag. @pages 101, 202

X.-H. Vu, H. Schichl, and D. Sam-Haroud. Using Directed Acyclic Graphs to Coordinate
Propagation and Search for Numerical Constraint Satisfaction Problems. In Proceedings of
the 16th IEEE International Conference on Tools with Artificial Intelligence (ICTAI 2004),
pages 72–81, Florida, USA, November 2004c. IEEE Computer Society Press. @pages 129,
151

T. Walsh. Depth-bounded Discrepancy Search. In Proceedings of the 15th International Joint
Conference on Artificial Intelligence (IJCAI-97), 1997. @pages 78

G. W. Walster, E. R. Hansen, and J. D. Pryce. Extended Real Intervals and the Topological
Closure of Extended Real Relations. Technical report, Sun Microsystems, February 2000.
http://wwws.sun.com/software/sundev/whitepapers/extended-real.pdf. @pages 133

D. L. Waltz. Generating Semantic Descriptions from Drawings of Scenes with Shadows. Tech-
nical report, Massachusetts Institute of Technology, USA, 1972. @pages 44

D. L. Waltz. The Psychology of Computer Vision, chapter Understanding Line Drawings of
Scenes with Shadows, pages 19–91. McGraw Hill, New York, 1975. @pages 44

M. Warmus. Caculus of Approximations. Bulletin de l’Académie Polonaise des Sciences, 9(5):
253–259, 1956. @pages 209

M. Warmus. Approximations and Inequalities in the Calculus of Approximations. Classification
of Approximate Numbers. Bulletin de l’Académie Polonaise des Sciences – Série de Sci.
Math. Astronom. Phys., 9(4):241–245, 1961. @pages 209

N. Wiener. A Contribution to the Theory of Relative Position. In Proceedings of Cambridge
Philosophy Society, volume 17, pages 441–449, 1914. @pages 209

N. Wiener. A New Theory of Measurements: A Study in the Topic of Mathematics. In
Proceedings of the London Mathematical Society, volume 19, pages 181–205, 1921. @pages
209

J. H. Wilkinson. The Algebraic Eigenvalue Problem. Oxford University Press, London, UK,
1965. @pages 65

Z.-B. Xu, J.-S. Zhang, and Y.-W. Leung. A general CDC Formulation for Specializing the Cell
Exclusion Algorithms of Finding All Zeros of Vector Functions. Applied Mathematics and
Computation, 86(2-3):235–259, October 1997. @pages 70

Z.-B. Xu, J.-S. Zhang, and W. Wang. A Cell Exclusion Algorithm for Determining All the
Solutions of a Nonlinear System of Equations. Applied Mathematics and Computation, 80
(2-3):181–208, December 1996. @pages 69

March 14, 2005

http://wwws.sun.com/software/sundev/whitepapers/extended-real.pdf

252 Bibliography

K. Yamamura. An Algorithm for Representing Functions of Several Variables by Superposition
of Functions of One Variable and Addition. In Proceedings of the 1993 International Sym-
posium of Nonlinear Theory and its Applications, pages 1045–1048, December 1993. @pages
29, 96

K. Yamamura. An Algorithm for Representing Functions of Many Variables by Superpositions
of Functions of One Variable and Addition. IEEE Transaction on Circuits and Systems, I-43
(3):338–340, 1996. @pages 29, 96

K. Yamamura. Finding All Solutions of Nonlinear Equations Using Linear Combinations of
Functions. Reliable Computing, 6(2):105–113, 2000. @pages 93

K. Yamamura. Finding All Solution Sets of Piecewise-Trapezoidal Equations Described by
Set-Valued Functions. Reliable Computing, 9(3):241–250, June 2003. @pages 93

K. Yamamura and T. Fujioka. Finding All Solutions of Nonlinear Equations Using the Dual
Simplex Method. Journal of Computational and Applied Mathematics, 152(1-2):587–595,
April 2003. @pages 92, 93

K. Yamamura and Y. Hata. Finding All Solutions of Weakly Nonlinear Equations Using
Linear Programming. IEICE Trans.on Fundamentals of Electronics, Communications and
Computer Sciences, E83-A(12):2758–2761, December 2000. @pages 95

K. Yamamura, H. Kawata, and A. Tokue. Interval Solution of Nonlinear Equations Using
Linear Programming. BIT Numerical Mathematics, 38(1):186–199, 1998. @pages 95

K. Yamamura and T. Kumakura. Finding All Characteristic Curves of Nonlinear Resistive Cir-
cuits Using the Dual Simplex Method. In Proceedings of the IEEE 2001 International Sym-
posium on Circuits and Systems (ISCAS 2001), volume 3, pages 25–28, May 2001. @pages
95

K. Yamamura and M. Nishizawa. Finding All Solutions of A Class of Nonlinear Equations
Using an Improved LP Test. Japan Journal of Industrial and Applied Mathematics, 16(3):
349–368, 1999. @pages 95

K. Yamamura and S. Tanaka. Finding All Solutions of Systems of Nonlinear Equations Using
the Dual Simplex Method. BIT Numerical Mathematics, 42(1):214–230, March 2002. @pages
92, 93, 95

R. C. Young. The Algebra of Multi-Valued Quantities. Mathematische Annalen, 104:260–290,
1931. @pages 209

W. H. Young. Sull due funzioni a piu valori constituite dai limiti d’una funzione di variable
reale a destra ed a sinistra di ciascun punto. Rendiconti Academia di Lincei, Classes di
Scienza Fiziche, 17(5):582–587, 1908. @pages 209

Y. Zhou and S. Suri. Analysis of a Bounding Box Heuristic for Object Intersection. In Pro-
ceedings of the 10th Annual Symposium on Discrete Algorithms (SODA’99), 1999. @pages
190

March 14, 2005

Glossary

(〈x1, a1〉, . . . , 〈xk, ak〉) the instantiation of values (a1, . . . , ak) to variables (x1, . . . , xk). 11
C the set of all complex numbers. 212
F the set of all floating-point numbers, except infinities. 34
I¦ the set of all floating-point intervals. 34
I◦ the set of all (real) intervals. 33
I the set of all closed (real) intervals. 33
N the set of all natural numbers: {0, 1, 2, . . .}. 11
Q the set of all rational numbers. 218
R the set of all real numbers. 15
R+ the set of all positive real numbers. 115
Z the set of all integers: {. . . ,−2,−1, 0,−1, 2, . . .}. 13
Z− the set of all negative integers: {−1,−2,−3, . . .}. 13
Z+ the set of all positive integers: {1, 2, 3, . . .}. 13
I the identity matrix of suitable size. 55
(V,D, C) the notation of a constraint satisfaction problem. 12
〈C; V ∈ D〉 the notation of a constraint satisfaction problem. 12
XT the transpose of a vector/matrix X. 25
utFS the F-hull (or floating-point interval hull) of a real set S ⊆ Rn. 34
utS the (interval) hull of a real set S ⊆ Rn. 33
int(S) the interior of a set S. 61
ΦkB the domain reduction operator achieving kB-consistency. 50
ΦFkB the domain reduction operator achieving kB(F)-consistency. 51
Σ(A,b) the solution set of the linear interval equation (A.15): Ax = b. 213
[−∞, +∞] the universal interval, the same as]−∞,+∞[. 33
[−∞, x] the same as]−∞, x]. 32
[x, +∞] the same as [x, +∞[. 32
〈β1, β2〉 ∈ I◦ the notation of a general interval in I◦. 36
CX the conjunction constraint on a sequence X of variables. 43
C[X] the projection of a constraint C on a subsequence X of variables. 15
d[X] the projection of a compound label d on a subsequence X of variables. 15
(Aij)m×n the notation of a matrix of size m × n with components Aij , where

1 ≤ i ≤ m and 1 ≤ j ≤ n.
57

〈A〉 the comparison matrix of an interval matrix A. 212
A−1 the inverse of an interval matrix A, see Definition A.18. 214

253

254 Glossary

A−1 the inverse of a matrix A, see also Definition A.7. 212
ρ(A) the spectral radius of a matrix A ∈ Rn×n. 212
¢I [S] an inner union approximation of a set S. 106
¢B[S] a boundary union approximation of a set S. 106
¢O[S] an outer union approximation of a set S. 106
δ(A) the diameter of a set, A, in a metric space. 217
δE(X, Y) the Euclidean distance between two sets, X and Y , in a normed space. 219
δH(X, Y) the Hausdorff distance between two sets, X and Y , in a normed space. 219
bEc a downward-rounded evaluation of an expression, E, such that E ≥ bEc. 139
dEe an upward-rounded evaluation of an expression, E, such that E ≤ dEe. 139
f [., .] the notation of a (first order) slope function. 215
f [., ., .] the notation of a second order slope function. 215
F−1(Y) the inverse image of a set Y under a function/multifunction F . 130
‖x‖∞ the `∞-norm of a vector x ∈ Rn, also called the maximum norm: ‖x‖∞ ≡

max{|xi| | i = 1, . . . , n}.
66

‖A‖∞ the `∞-norm of a matrix A ∈ Rm×n, also called the row sum norm:
‖A‖∞ ≡ max{∑n

j=1 |Aij | | i = 1, . . . ,m}.
74

‖x‖k the `k-norm of a vector x ∈ Rn: ‖x‖k ≡ (
∑n

i=1 |xi|k)1/k, where k ∈ Z+. 70
‖A‖k the `k-norm of a matrix A ∈ Rm×n: ‖A‖k ≡ (

∑m
i=1(

∑n
j=1 |Aij |)k)1/k,

where k ∈ Z+.
74

‖x‖u the scaled maximum norm of a vector x ∈ Rn, where 0 < u ∈ Rn, i.e.,
‖x‖u ≡ max{|xi|/ui | i = 1, . . . , n}.

58

‖A‖u the scaled maximum norm of a matrix A ∈ Rn×n, where 0 < u ∈ Rn,
i.e., ‖A‖u ≡ ‖ |A|u ‖u = max{∑n

j=1 |Aij |uj/ui | i = 1, . . . , n}.
58

OGS(A,b,x) the Gauss-Seidel operator for the linear equations (3.10), i.e., Ax = b. 59
OHS(f,A, C,x, c) the Hansen-Sengupta operator for the equation f(x) = 0. 62
OKL(f,x) the Kolev operator for the equation f(x) = 0. 98
OK(A,b, C,x) the Krawczyk operator for the linear equations (3.10), i.e., Ax = b. 58
OK(f,A, C,x, c) the Krawczyk operator for the equation f(x) = 0. 60
≺k the domination relation of order k. 70
≺≺ the domination relation of order ∞. 70
C|xi=p the section of a constraint C at xi = p. 15
C|xi=p the section of a set C of constraints at xi = p. 15
P|x=a the section of a CSP P at x = a. 16
C|∗xi=p the cross section of a constraint C at xi = p. 15
C|∗xi=p the cross section of a set C of constraints at xi = p. 15
P|∗x=a the cross section of a CSP P at x = a. 16
C|xi∈S the slice of a constraint C in the slot xi ∈ S. 16
C|xi∈S the slice of a set C of constraints in the slot xi ∈ S. 16
P|x∈S the slice of a CSP P in the slot x ∈ S. 17
x̂ the notation of an affine form. 37
x̃ the notation of a Kolev affine form. 39
x̆ the notation of a Messine affine form. 41
x̂ the notation of a revised affine form. 134

March 14, 2005

Glossary 255

x ≡ [x, x] the notation of a closed interval. 32
x ≡]x, x[the notation of an open interval. 32
x ≡]x, x] the notation of a left-open interval. 32
x ≡ [x, x[the notation of a right-open interval. 32
mid(x) the (componentwise) midpoint of an interval (vector/matrix) x. 33
rad(x) the (componentwise) radius of an interval (vector/matrix) x. 33
w(x) the (componentwise) width of an interval (vector/matrix) x. 33
vol(x) the volume of a box x ∈ In◦ . 64
(x1, . . . , xk); (xi)k

i=1 the notation of a sequence (or a tuple). 11
{x1, . . . , xk}; {xi}k

i=1 the notation of a set. 10
x〈k〉 the notation of super index, like the usual index xk. 56
pts(R) the set of points of the subset S ⊆ Rn that is exactly represented by R. 105
bZc a number bZc ∈ F as close to Z as possible such that Z ≥ bZc. 34
dZe a number dZe ∈ F as close to Z as possible such that Z ≤ dZe. 34
〈Z〉 ± z a floating-point number 〈Z〉 ∈ F as close to Z as possible such that

〈Z〉 − z ≤ Z ≤ 〈Z〉+ z, where z ∈ F.
42

AI artificial intelligence. 9

BFS breadth-first search. 78
BJ backjumping. 79
BM backmarking. 78
BM-BJ backmarking with backjumping. 79
BM-CBJ backmarking with conflict-directed backjumping. 79
BT backtracking, chronological backtracking, simple backtracking. 78

CBJ conflict-directed backjumping. 79
CIRD a scheme for combining inclusion representations. 178
CIRD[ai] an algorithm instance of the CIRD scheme using affine arithmetic, inter-

val arithmetic, interval constraint propagation, and linear programming.
183

Colonization the colonization algorithm. 192
CSP constraint satisfaction problem. 12

DAG directed acyclic graph. 153
DB dynamic backtracking. 79
DBR disjoint box representation. 116
DDS depth-bounded discrepancy search. 78
DFS depth-first search. 78
DMBC dichotomous maintaining bounds by consistency. 102
DMBC+ a revised version of dichotomous maintaining bounds by consistency. 125

EVR extreme vertex representation. 118

FBPD forward-backward propagation on DAGs. 160

March 14, 2005

256 Glossary

FC forward checking. 79
FC-BJ forward checking with backjumping. 79
FC-CBJ forward checking with conflict-directed backjumping. 79
FPB flexible partial order backtracking. 79

GBJ graph-based backjumping search. 79
GDB general partial order backtracking. 79

IB iterative broadening. 78
IDFS interleaved depth-first search. 78
iff an abbreviation of “if and only if”. 54
ILDS improved limited discrepancy search. 78

LDS limited discrepancy search. 78
LP linear program(ming). 3

MCC max-connected clustering. 197
MFC maintaining arc consistency. 79
MFC minimal forward checking. 79
MILP mixed integer linear program. 3
MINLP mixed integer nonlinear program. 3

NCSP numerical constraint satisfaction problem. 25
NLP nonlinear program. 3

OMCC optimal max-connected clustering. 201
OR operation research. 9
OSDC optimized separator-driven clustering. 202

PBT partial chronological backtracking. 79
PDB partial dynamic backtracking. 79
PFC partial forward checking. 79
POB partial order backtracking. 79

SDC separator-driven clustering. 199
SIVIA set inverter via interval analysis. 78

UCA5 a version of union-constructive approximation. 125
UCA6 a version of union-constructive approximation. 119
UCA6+ a version of union-constructive approximation. 121

March 14, 2005

Index

Symbols
2B-consistency . 50
2B(F)-consistency . 51
2k-tree . 78, 107

∼ representation 54, 78
Z-extended function . 130
NaN . see Not a Number, 32
F-hull . 34

∼ consistency . 48, 81
≺≺ relation see domination relation, 70
≺k relation see domination relation, 70
ε-bounded box. .68, 107
ε-inflation see epsilon-inflation, 75
k-ary CSP. .12
k-ary constraint . 12
k-compound label . 11
k-consistency .47

strong ∼ .47
k-instantiation . 11

consistent ∼ . 12
k-path consistency . 46
kB-consistency. .16, 50, 87
kB(F)-consistency . 51, 87
(i, j)-consistency . 53

strong ∼ .53

A
AABB tree. .190
abstraction . 90
active variable . 115
additive identity . 218
additive invertibility . 218
affine arithmetic . 5, 36, 133

Kolev ∼ . 42
Kolev generalized ∼ 40
Messine ∼ . 41
revised ∼ .133

affine form . 37
coefficient of ∼ . 37
Kolev ∼ . 39
length of ∼ . 37
Messine ∼ . 41
revised ∼ . 133, 134

affine forms
division of ∼ .39
multiplication of ∼ .38
≈ in Kolev affine arithmetic 42
≈ in Messine affine arithmetic 41
≈ in revised affine arithmetic135

affine function . 37
affine operation .37, 40
algorithm. .9

asymptotical completeness of ∼ 21
asymptotically complete ∼21
complete ∼ . 21
complete search ∼ . 23
completeness of ∼ . 21
incomplete ∼ . 21
incompleteness of ∼ .21
rigor of ∼ .21
rigorous ∼ . 21
solution ∼ . 3
sound ∼ . 21
soundness of ∼ . 21

ancestor . 23, 153
approximation

boundary union ∼ .106
Chebyshev affine ∼137
complete ∼ .105
inner ∼ .105
inner union ∼ . 106
outer ∼ . 105
outer union ∼ . 106
sound ∼ .105

approximation property
linear ∼ . 68
∼ of order k . 35
quadratic ∼ .60, 66, 68

arc consistency . 44
directional ≈ . 45

arc of graph . 14
arc of multigraph . 152
arithmetic

affine ∼ . 5, 36, 133
∼ constraint . 9
floating-point ∼ .31

257

258 Index

interval ∼ . 5, 32
rational ∼ .31

arithmetic expression .27
composition of ∼ . 27

arity of constraint . 12
arity of CSP. .12
artificial intelligence . 9
artificial variable . 92
associativity . 218
asymptotical completeness of algorithm.21
asymptotically complete algorithm.21

B
backtrack-free . 23
backtracking . 2, 23

chronological ∼ . 78
dependency directed ∼ 78
intelligent ∼ . 78
simple ∼ .78

backward propagation. .158
ball

closed ∼ .217
open ∼ .217

Banach space . 219
basic feasible solution . 92
basic tableau . 92
basic variable. .92
binary constraint . 13
binary CSP . 14

strictly ∼ .14
bisection . 22

∼ search . 79
Boolean constraint . 9
Boolean function . 12
bound

lower ∼ .32
upper ∼ . 32

boundary union approximation106
bounding-box tree . 190
bounding-volume tree . 190
box . 33

ε-bounded ∼ .68, 107
complementary ∼ . 110
∼ consistency 51, 85, 86
interval ∼ . 33
primitive ∼ .190
∼ splitting operator 114
undiscernible ∼ .107

box(Γ) consistency . 52, 86
box〈±ϕ〉 consistency . 52
box-tree. .190
boxes

connected ∼ .190

disjoint ∼ .36, 105
max-connected ∼ .191

branch-and-bound . 2, 79
branch-and-prune . 2, 5, 79

C
canonical representation.117
Cartesian product . 11
Cauchy sequence .218
CB operator . 110
CBrd operator . 115
cell subdivision .22
centered interval form .210
Chebyshev affine approximation137
Chebyshev approximation theory 38
child . 153
chord method . 76
closed ball . 217
closed interval .32
closed set . 217
cluster effect . 36, 68
clustering. .189

max-connected ∼ .191
optimal max-connected ∼ 191

coefficient of affine form . 37
color function . 117
column vector . 33
commutative ring . 218
commutativity . 218
compact CSP . 17
compact mapping . 220
compact set . 17, 218
compact tree representation 81
comparison matrix . 212
complementariness of CB operator 110
complementary box . 110
complementary boxing . 110

∼ operator . 110
restricted-dimensional ≈ 115

complete algorithm .21
complete approximation105
complete graph . 14
complete method . 55
complete metric space .218
complete search . 5, 23

∼ algorithm . 23
∼ method . 23

completeness of algorithm 21
completeness of domain reduction operator . 19
completing the square method 1
completion of a constraint graph.46
composition of arithmetic expression.27
composition of factorable expression 28

March 14, 2005

Index 259

compound label . 11
k- ∼ .11
redundant ∼ .20

condition
Karush-Kuhn-Tucker ∼ 4
Lipschitz ∼ . 69, 219
second order necessary optimality ∼ 4
second order sufficient optimality ∼ 4

conjunction constraint .43
connected boxes. .190
connectionist approach . 100
consistency

2B- ∼ . 50
2B(F)- ∼ . 51
F-hull ∼ . 48, 81
k- ∼ .47
k-path ∼ . 46
kB- ∼ .16, 50, 87
kB(F)- ∼ . 51, 87
(i, j)- ∼ .53
arc ∼ .44
arc-B ∼ see 2B-consistency, 49
box ∼ . 51, 85, 86
box(Γ) ∼ . 52, 86
box〈±ϕ〉 ∼ . 52
directional arc ∼ .45
directional path ∼ . 46
global ∼ . 2, 44
hull ∼ .48, 80, 81
hyper-arc ∼. .45
interval ∼ . 48
interval hyper-arc ∼ 48
local ∼ .2, 9, 23, 44
monotonicity of ∼ . 43
node ∼ . 44
path ∼ . 46
relational (3, 2)- ∼ . 78
relational (nv, nc)- ∼53
singleton ∼ . 16, 54
strong (i, j)- ∼ .53
strong k- ∼ . 47
strong path ∼ . 46
strongness of ∼ . 43

consistency-preserving .18
consistency-relaxing . 19
consistent k-instantiation12
consistent CSP . 13
constrained optimization problem 2
constraint. .2, 11

k-ary ∼ .12
arithmetic ∼ . 9
arity of ∼ .12
binary ∼ .13

Boolean ∼ . 9
conjunction ∼ . 43
continuous ∼ . 25
convex ∼ .30
equality ∼ . 26
factorable ∼ . 28
∼ hypergraph. .14
implied ∼ .20
inequality ∼ . 26
∼ is not satisfied. .11
∼ is satisfied. .11
∼ is violated .11
logic ∼ . 13
∼ logic problem. .13
numerical ∼ . 3, 25
primitive ∼ . 28, 49
∼ programming 1, 4, 10
∼ propagation . 2, 9, 23
∼ range .25, 81
redundant ∼ .20
running ∼ .109
∼ satisfaction . 4, 10
∼ satisfaction problem12
satisfiability of ∼ . 11
separable ∼ .30
∼ solver . 3
∼ solving . 9
ternarized ∼ . 30
ternary ∼ . 13, 78
two-sided inequality ∼ 26
unary ∼ . 13
universal ∼ . 11, 14

constraint graph. .14
completion of a ∼ .46
triangulation of a ∼ .46

constraint network see constraint graph, 14
constraint programming . 2

∼ language . 3
∼ technique . 4

constraint propagation . 2, 5
interval ∼ . 5
numerical ∼ . 5
∼ technique . 2

constraint satisfaction.4, 10
co-evolutionary ∼ . 100
∼ problem . 2

constraint satisfaction problem 12
continuous ∼ see numerical CSP, 25
numerical ∼ . 3, 25

constraint solver
interval ∼ . 189

constraints
cross section of ∼ . 15

March 14, 2005

260 Index

negation of ∼ .15
section of ∼. .15
slice of ∼ . 16

continuation method . 24, 55
continuous constraint .25
continuous CSP see numerical CSP, 25
continuous domain 3, 10, 24
continuous function . 25
continuous interval contraction 57
continuous variable . 3, 24
continuum of solutions.6, 102
contraction

continuous interval ∼ 57
interval ∼ . 57
P- ∼ . 75
strong interval ∼. .57

contraction mapping . 219
contractive mapping . 219
contractiveness of CB operator110
contractiveness of domain reduction operator19
contractiveness of DR operator108
contractivity factor .57
contractor .57
convex constraint . 30
convex CSP . 46
convex set . 71, 219
cooperative strategy . 89
correctness of domain reduction operator . . . 19
correctness of DR operator108
cover . 106, 217

open ∼ .217
cross section of constraints 15
cross section of CSP .16
CSP. . . .see constraint satisfaction problem, 12

k-ary ∼ .12
arity of ∼ .12
binary ∼ .14
compact ∼ .17
consistent ∼ . 13
continuous ∼ see numerical CSP, 25
convex ∼ .46
cross section of ∼ . 16
factorable ∼ . 29
inconsistent ∼ . 13
normalized ∼ . 14
numerical ∼ . 25
regular ∼ . 14
satisfiable ∼ . 13
section of ∼. .16
separable ∼ .30
singleton ∼ . 16
slice of ∼ . 17
standardized ∼ . 14

strictly binary ∼ .14
transformation of a ∼18

cycle .152

D
DAG. .153

partial ∼ representation 160
∼ representation 20, 82, 153

deadend .23
decision problem. .13
denormalized number. .32
dependency of interval arithmetic 33, 89
derivative . 57, 62, 138

first order ∼ test . 1
partial ∼ . 70
second order ∼ test . 1

descendant .153
descent method

iterative ∼ . 92
local ∼ .100
microgenetic iterative ∼100

diameter . 217
dichotomous splitting operator 113
directed acyclic multigraph.152
directed multigraph . 152

∼ with ordered edges153
directed path . 152
directed pseudograph . 152
directional arc consistency45
directional path consistency 46
discrete domain .10
discretization technique . 4
disjoint . 191
disjoint boxes . 36, 105
distance

Euclidean ∼ .219
∼ function . 217
Hausdorff ∼ . 219

division of affine forms . 39
division of intervals 33, 132
domain .10

continuous ∼ . 3, 10, 24
discrete ∼ . 10
heterogeneous ∼ . 10
∼ of variable. .10

domain reduction .19, 23
∼ operator . 19, 108

restricted-dimensional ≈ 115
∼ technique . 20

domain-specific method 2, 55
domination relation 70, 71, 95
DR operator . 108
DRrd operator . 115

March 14, 2005

Index 261

dual simplex method . 92

E
early quiescence . 49
edge of multigraph . 152
elementary binary operation27
elementary operation . 3, 28
elementary unary function27
elimination

Gauss ∼ . 1, 9, 65
Gauss-Jordan ∼ . 2
interval Gauss ∼ .65
redundant constraint ∼ 23
variable ∼ . 19

empty interval .32
enclosure

rigorous ∼ .34, 37
∼ technique . 5

enumeration .22
epsilon-inflation . 75
equality constraint . 26
equation . 26

linear interval ∼57, 64, 213
equivalence-preserving .18
Euclidean distance . 219
evaluating function. .141
evaluation function. .100
exclusion region . 72
exclusion test. .68

Lipschitz ∼ . 69
power series ∼ . 70
Taylor ∼ .71

exhaustive search . 108
existence of solution 61, 62, 64
existence test .73
expansion

power series ∼ . 70
Taylor ∼ .70

exponent of floating-point number 31
expression

arithmetic ∼ .27
factorable ∼ . 28, 40
real-valued ∼ . 34
separable ∼ .29

extended function .130
extending axis . 193
extending interval .193
extension . 193
extreme test . 1
extreme vertex .118

∼ representation. .118

F
factorability . 27

factorable constraint. .28
factorable CSP . 29
factorable expression.28, 40

composition of ∼ . 28
factorable form . 3, 27
factorable function. .28, 40
fair strategy .89
feasibility checker . 107
feasible region .102, 114
feasible tableau . 93

optimal ∼ . 93
fibers . 130
field. .218
finite-dimensional function 220
finite-dimensional vector space 220
first order derivative test . 1
first order slope see slope matrix, 215
first order slope matrix .215
fitted tree .193
fitting process .194
fixed point . 220

Banach ∼ theorem 221
Brouwer ∼ theorem 220
Edelstein ∼ theorem.221
∼ inverse . 63, 213
∼ method . 56
Schauder ∼ theorem.221

fixed point method . 56
interval ∼ . 55

floating-point arithmetic .31
floating-point interval . 34
floating-point representation31
form

affine ∼ .37
factorable ∼ .3, 27
Gauss-Jordan ∼ . 92
globally solved ∼17, 44
separable ∼ .29
slope ∼ .215
ternary ∼ . 30

forward cone . 117
forward evaluation . 156
forward-backward propagation 151

∼ on DAGs . 160
function

Z-extended ∼ . 130
affine ∼ . 37
Boolean ∼ . 12
color ∼ .117
composite inclusion ∼ 148
continuous ∼ .25
continuously differentiable ∼ . . . 57, 98, 137
differentiable ∼ . 137

March 14, 2005

262 Index

distance ∼ .217
elementary unary ∼ .27
evaluating ∼ . 141
evaluation ∼ . 100
extended ∼ .130
factorable ∼ . 28, 40
finite-dimensional ∼ 220
inclusion ∼ . 35, 146
interval ∼ .35, 56
interval form of ∼. .35
linear ∼ . 2, 143, 144
Lipschitz ∼ .219
Lipschitz continuous ∼ 61–63, 69
monotone ∼ .70
monotone decreasing ∼ 137
monotone increasing ∼ 137
neighborhood ∼ . 100
nonlinear ∼ . 37, 57, 99
objective . 2
real-valued ∼ . 34
representing ∼ .141
semi-affine ∼ . 39
separable ∼ .29
slope ∼ .215
twice continuously differentiable ∼ . .70, 72
twice differentiable ∼ 137
zero of ∼ . 56

G
Gauss elimination . 1, 9, 65

interval ∼ .65, 186
Gauss inverse . 65
Gauss-Jordan elimination . 2
Gauss-Jordan form . 92
Gauss-Seidel iteration

interval ∼ .59, 186
preconditioned interval ∼ 59

Gauss-Seidel operator
interval ∼ . 59
preconditioned interval ∼ 59

generalized interval
Hansen ∼ . 39
Kolev ∼ . 39

genetic method . 55
global consistency. .2, 44
global method . 55
gradient . 210
graph

arc of ∼ . 14
complete ∼ . 14
constraint ∼ . 14
node of ∼ .14

griddy polyhedron . 116

Gröbner computation . 90

H
H-matrix. .63–66, 213
Hansen generalized interval 39
Hansen interval arithmetic 39
Hansen interval representation 144
Hansen-Sengupta iteration.62
Hansen-Sengupta operator.62
Hausdorff distance . 219
Hessian matrix .211
heterogeneous domain . 10
high order term. .91
hill climbing search . 100
homogeneity . 190
homotopy method . 24
hull . 33

∼ consistency 48, 80, 81
floating-point interval ∼ see F-hull, 34
interval ∼ . 33
∼ method. .66, 186

hull-disjoint .191
hyper-arc consistency. .45
hyper-arc of hypergraph .14
hypergraph

constraint ∼ . 14
hyper-arc of ∼ .14
node of ∼ .14

I
idempotence of domain reduction operator . .19
IEEE 754 . 31
IEEE 854 . 31
image under (multi)function.130
implied constraint . 20
in-edge. .152
inactive variable . 115
inclusion converter . 148
inclusion function . 35, 146

composite ∼ .148
natural ∼ . 147

inclusion property . 35, 132
inclusion relation. .146
inclusion representation 141
inclusion technique. .5
inclusion test .76

generalized ∼ . 76
root ∼ .75

incomplete algorithm .21
incomplete search . 24
incompleteness of algorithm 21
inconsistent CSP . 13
inequality . 26

March 14, 2005

Index 263

linear interval ∼64, 67, 213
two-sided ∼ .26

inequality constraint. .26
two-sided ∼ .26

inner approximation . 105
inner union approximation 106
instantiation . 11
interval. .32

∼ addition .33
∼ box . 33
closed ∼ . 32
∼ consistency .48
∼ constraint propagation 5
∼ constraint solver . 189
∼ division . 33, 132
empty ∼ .32
extending ∼ . 193
∼ extension. .35
floating-point ∼ .34
∼ function . 35, 56
∼ Gauss elimination 65, 186
∼ Gauss-Seidel iteration 59, 186
∼ Gauss-Seidel operator 59
∼ hull . 33
∼ hyper-arc consistency.48
∼ Jacobian matrix 57, 75
left-open ∼ . 32
∼ matrix . 212

strongly regular ≈214
midpoint of ∼ . 33
∼ multiplication . 33
∼ Newton iteration . 63
∼ Newton operator . 63
open ∼ . 32
radius of ∼ . 33
real ∼ . 32
∼ relaxation . 23
∼ representation. .142
right-open ∼ .32
separating ∼ . 193
∼ slope . 74
∼ square. .34
∼ square root .34
∼ subtraction .33
∼ tree .190
universal ∼ . 33
width of ∼ .33

interval arithmetic . 5, 32
dependency of ∼ 33, 89
exact ∼ .33
Hansen ∼ . 39
idealized ∼ . 33
rounded ∼ .34

spirit of ∼ . 33, 34
standard ∼ . 33
subdistributivity of ∼33

interval contraction. .57
continuous ∼ . 57

interval form
centered ∼ . 210
∼ of function . 35
mixed centered ∼ .210
∼ of multifunction.132
natural ∼ . 82, 210
∼ of relation .35
Taylor ∼ . 211

interval matrix
midpoint of ∼ . 33
radius of ∼ . 33
width of ∼ .33

interval vector .33
midpoint of ∼ . 33
radius of ∼ . 33
width of ∼ .33

interval-based precision 108
intervals

addition of ∼ . 33
division of ∼ . 33, 132
multiplication of ∼ .33
partial order on ∼ . 33
subtraction of ∼ . 33

introduced variable .20
inverse

fixed point ∼ . 63, 213
Gauss ∼ . 65
∼ image . 78, 130
matrix ∼ . 212

inverse image under (multi)function 130
isolated solution. .101
iteration

Hansen-Sengupta ∼ .62
interval Gauss-Seidel ∼ 59, 186

preconditioned ≈ . 59
interval Newton ∼ . 63
Kolev ∼ . 98
Krawczyk ∼
≈ for linear interval equation . . . 58, 186
≈ for nonlinear equation60

Newton ∼ .55
iterative descent method . 92
iterative method . 55

J
Jacobian matrix

interval ∼ . 57, 75

March 14, 2005

264 Index

K
Karush-Kuhn-Tucker condition.4
Kolev affine arithmetic . 42
Kolev affine form .39
Kolev affine representation 144
Kolev generalized affine arithmetic 40
Kolev generalized interval 39
Kolev iteration . 98
Kolev noise variable . 39
Krawczyk iteration

∼ for linear interval equation.58, 186
∼ for nonlinear equation 60

Krawczyk operator
∼ for linear interval equation 58
∼ for nonlinear equation 60

L
labeling . 22
leaf. .23, 152
left-open interval . 32
length of affine form .37
linear approximation property 68
linear function . 2, 143, 144
linear interval equation 57, 64, 213

Krawczyk iteration for ∼58, 186
Krawczyk operator for ∼58

linear interval inequality 64, 67, 213
linear mapping .211
linear problem . 3

mixed integer ∼ . 3
linear program . 3, 90

mixed integer ∼ . 3
linear programming . 2, 5, 90
linear relaxation . 23
Lipschitz condition . 69, 219
Lipschitz constant . 69, 219
Lipschitz continuous function 61–63, 69
Lipschitz exclusion test .69
Lipschitz function 61–63, 69, 219
Lipschitz mapping . 219
Lipschitz matrix . 57, 214

strongly regular ∼ 61, 63, 64
Lipschitz set 63, 64, 214, 216
local consistency 2, 9, 23, 44
local method . 55
local search . 24
logic constraint .13
logic problem. .13
logic programming 1, 10, 13
logic reasoning . 1
lower bound .32
lower triangular matrix .65
lower-bound tree . 197

M
M-matrix. .65, 212
mantissa.see significand, 31
mapping

compact ∼ . 220
contraction ∼ . 219
contractive ∼ .219
linear ∼ . 211
Lipschitz ∼ .219
nonexpansive ∼ . 219
regular ∼ . 211
sublinear ∼ . 64, 211

mathematical computing . 1
mathematical programming 1
mathematical rigor. .3
matrix

comparison ∼ . 212
H- ∼ . 63–66, 213
Hessian ∼ . 211
interval ∼ . 212
interval Jacobian ∼57, 75
∼ inverse .212
Lipschitz ∼ . 57, 214
lower triangular ∼ . 65
M- ∼ . 65, 212
preconditioning ∼ 58, 59
real ∼ . 212
slope ∼61, 62, 64, 70, 72, 74, 215
strongly regular interval ∼214
strongly regular Lipschitz ∼ 61, 63, 64
upper triangular ∼ .65

matrix set. .214
regular ∼ .214

max-connected boxes. .191
max-connected clustering 191
maximum absolute error.38
Messine affine arithmetic 41
Messine affine form .41
method

chord ∼ . 76
clustering ∼ .100
complete ∼ . 55
complete search ∼ .23
completing the square ∼ 1
connectionist ∼ . 100
continuation ∼ 24, 55, 100
domain-specific ∼ .2, 55
fixed point ∼ . 56
Gauss elimination ∼ 1, 9, 65
Gauss-Jordan elimination ∼ 2
general ∼ . 2
genetic ∼ . 55
global ∼ . 55

March 14, 2005

Index 265

grouping genetic ∼ . 100
homotopy ∼ 24, 55, 100
hull ∼ . 66, 186
initiative evolutionary ∼ 100
interval fixed point ∼ 55
interval Gauss elimination ∼ 65, 186
iterative ∼ . 55
iterative descent ∼ . 92
local ∼ .55
local descent ∼ . 100
microgenetic iterative descent ∼100
Newton-like ∼ 24, 55, 72
response surface ∼ . 100
search ∼ . 2
simplex ∼ . 2, 92
solution ∼ . 3
stepwise adaptation of weights ∼ 100
stochastic ∼ .55
zooming adaptation of weights ∼ 100

metric . 217
metric space . 217

compact ∼ . 218
complete ∼ .218

midpoint of interval . 33
midpoint of interval matrix33
midpoint of interval vector 33
min-conflicts heuristic . 100
mixed centered interval form 210
mixed integer linear problem 3
mixed integer linear program.3
mixed integer nonlinear problem 3
mixed integer nonlinear program 3
modeling

problem ∼ .2, 13
monotone function . 70
monotonicity of CB operator113
monotonicity of domain reduction operator . 19
monotonicity of DR operator113
monotonicity of consistency 43
multi-index. .70
multifunction. .35, 130
multigraph .152

arc of ∼ . 152
directed ∼ .152
≈ with ordered edges153

directed acyclic ∼ . 152
edge of ∼ .152
node of ∼ . 152
vertex of ∼ .152

multiple random start search 100
multiplication of affine forms 38

∼ in Kolev affine arithmetic 42
∼ in Messine affine arithmetic 41

∼ in revised affine arithmetic 135
multiplication of intervals 33
multiplication of Kolev affine forms40
multiplication of Messine affine forms41
multiplicative identity .218

N
natural extension . 34, 147
natural inclusion function 147
natural interval form 82, 210
NCSP see numerical CSP, 25

relational (k, k − 1)-consistency for ∼ . . .54
ternarized ∼ . 207

negation of constraints . 15
negation test .109
neighborhood function . 100
neighborhood of grid point 118
Newton iteration . 55

general interval ∼ .64
interval ∼ . 63

Newton operator
general interval ∼ .64
interval ∼ . 63

Newton-like method 24, 55, 72
node

∼ of graph. .14
∼ of hypergraph . 14
∼ of multigraph . 152
search ∼ .23

node consistency . 44
node range .153

backward ∼ .82
forward ∼ . 82

noise symbol . 37
noise variable. .37

Kolev ∼ . 39
non-affine operation . 37
non-isolated solution . 101
nonbasic variable . 92
nonexpansive mapping . 219
nonlinear equation

Krawczyk iteration for ∼ 60
Krawczyk operator for ∼60
∼ system . 57

nonlinear function 37, 57, 99
nonlinear problem . 3

mixed integer ∼ . 3
nonlinear program . 3

mixed integer ∼ . 3
nonzero coefficient .37
normalized CSP . 14
normalized number .31
Not a Number. .32

March 14, 2005

266 Index

number system
floating-point ∼ .30
sign/logarithm ∼ .31
signed-digit ∼ . 31
slash ∼ . 31

numerical constraint . 3, 25
numerical constraint propagation 5
numerical constraint satisfaction problem 3, 25
numerical CSP . 25

O
objective function . 2
open ball. .217
open cover . 217
open interval . 32
open set . 217
operation

affine ∼ . 37, 40
elementary ∼ .3, 28
elementary binary ∼ 27
non-affine ∼ . 37

operation research . 9
operator

box splitting ∼ . 114
CB ∼ . 110
CBrd ∼ . 115
complementary boxing ∼ 110
contracting ∼ .57
∼ dichotomous splitting 113
domain reduction ∼ 19, 108
DR ∼ . 108
DRrd ∼ . 115
Hansen-Sengupta ∼ .62
interval Gauss-Seidel ∼ 59

preconditioned ≈ . 59
interval Newton ∼ . 63
Kolev ∼ . 98
Krawczyk ∼
≈ for linear interval equation 58
≈ for nonlinear equation60

narrowing ∼ . 57
projection narrowing ∼82

optimal max-connected clustering 191
optimal solution . 2
optimal tableau . 94
optimality condition

second order necessary ∼ 4
second order sufficient ∼ 4

order k
approximation property of ∼35

ordering
dynamic variable ∼ . 79
value ∼ . 79

orthogonal polyhedron . 116
orthogonal-separable tree.191
out-edge . 152
outer approximation . 105
outer union approximation 106

P
P-contraction . 75
parent .23, 153
partial derivative . 70
partial order on intervals 33
path consistency . 46

directional ∼ . 46
strong ∼ .46

point-wise approach . 101
polyhedron

griddy ∼ . 116
orthogonal ∼ .116

polytope . 73
post-order . 82
post-processing . 6, 190

∼ technique .204
power series exclusion test70
power series expansion . 70
power term. .91
pre-order . 82
pre-process .21
precision . 108
precompact set .217
primitive box . 190
primitive constraint .28, 49
problem

constrained optimization ∼ 2
constraint logic ∼ .13
constraint satisfaction ∼ 2, 9
decision ∼ . 13
∼ equivalence .18
linear ∼ . 3
logic ∼ . 13
mixed integer linear ∼3
mixed integer nonlinear ∼ 3
∼ modeling . 2, 13
nonlinear ∼ . 3
numerical constraint satisfaction ∼25
∼ relaxation . 18
satisfiability ∼ . 2, 13
set inversion ∼ .78
under-constrained ∼ 27
well-constrained ∼ . 27

problem reduction .23
∼ technique . 20

program
linear ∼ . 3, 90

March 14, 2005

Index 267

mixed integer linear ∼3
mixed integer nonlinear ∼ 3
nonlinear ∼ . 3

programming
constraint ∼ . 1, 2, 10
constraint logic ∼ 10, 13
linear ∼ .2, 5, 90
logic ∼ . 1, 10, 13
mathematical ∼ . 1

projection . 15
∼ narrowing operator 82

propagation
backward ∼ . 158
constraint ∼ . 9, 23
forward-backward ∼151

property
inclusion ∼ . 35, 132
linear approximation ∼68
quadratic approximation ∼ 60, 66, 68

pseudograph . 152
directed ∼ .152

Q
quadratic approximation property . . . 60, 66, 68
quadratic formula . 1
quadratic term . 91

R
radius

spectral ∼ .212
radius of interval . 33
radius of interval matrix .33
radius of interval vector . 33
range

constraint ∼ . 25, 81
node ∼ .153

rational arithmetic .31
real addition . 38, 40
real evaluation generator 141
real inclusion representation141
real interval . 32
real matrix .212
real multiplication . 38, 40
real representation . 141
real slope. .96
real-valued expression. .34
real-valued function. .34
redundant compound label 20
redundant constraint . 20

∼ elimination .23
∼ removal . 23

redundant value . 20
region

exclusion ∼ .72
feasible ∼ .102, 114

regular CSP .14
regular mapping . 211
regular matrix set .214
relation

≺≺ ∼see domination relation, 70
≺k ∼ see domination relation, 70
domination ∼ 70, 71, 95
inclusion ∼ .146
interval form of ∼. .35

relational (nv, nc)-consistency 53
relaxation . 23

interval ∼ . 23
linear ∼ . 23
problem ∼ .18
∼ system . 18

relaxing . 19
removal

redundant constraint ∼ 23
representation

2k-tree ∼ . 54, 78
canonical ∼ . 117
compact tree ∼ . 81
DAG ∼ . 20, 82, 153
disjoint box ∼ . 105
extreme vertex ∼ .118
floating-point ∼ .31
Hansen interval ∼ . 144
inclusion ∼ .141
interval ∼ . 142
Kolev affine ∼ .144
linear relaxation ∼ 144
∼ object . 141
partial DAG ∼ . 160
real ∼ . 141
real inclusion ∼ . 141
revised affine ∼ .143
standard affine ∼ .143
tree ∼ . 81

representing function .141
restricted-dimensional

∼ complementary boxing operator115
∼ domain reduction operator 115

revised affine arithmetic133
multiplication in ∼ 135

revised affine form.133, 134
revised affine representation143
right-open interval. .32
rigor . 3
rigor of algorithm . 21
rigorous algorithm. .21
rigorous enclosure . 34, 37

March 14, 2005

268 Index

ring .218
commutative ∼ .218

root. .152
rounding control . 34

rigorous ∼ . 42, 185
running constraint . 109

S
satisfiability of constraint11
satisfiability problem . 2, 13
satisfiable CSP . 13
search . 5

backjumping ∼ .79
backmarking with ≈ 79
conflict-directed ≈ 79
forward checking with ≈ 79
graph-based ≈ . 79

backmarking ∼ .78
backtracking ∼ .78

dynamic ≈ .79
flexible partial order ≈ 79
general partial order ≈79
partial chronological ≈ 79
partial dynamic ≈ 79
partial order ≈ . 79

bisection ∼ .79
breadth-first ∼ . 78
cell subdivision ∼ . 79
complete ∼ .5, 23
conflict-directed backjumping ∼ 79

backmarking with ≈ 79
forward checking with ≈ 79

depth-first ∼ . 78
interleaved ≈ . 78

discrepancy ∼
depth-bounded ≈ . 78
improved limited ≈ 78
limited ≈ . 78

exhaustive ∼ . 108
forward checking ∼ .79

minimal ≈ . 79
partial ≈ . 79

genetic ∼ . 100
griding ∼ . 79
hill climbing ∼ . 100
incomplete ∼ . 24
iterative broadening ∼ 78
local ∼ .24
look-ahead ∼

full ≈ . 79
partial ≈ . 79

maintaining arc consistency ∼ 79
∼ method . 2

multiple random start ∼ 100
∼ node . 23
random-walk ∼ . 100
simulated annealing ∼ 100
∼ space. .23
stochastic ∼ .24
tabu ∼ .100
∼ tree . 23
uniform dichotomous ∼ 70

second order derivative test 1
second order necessary optimality condition . . 4
second order slope see slope matrix, 215
second order slope function.215
second order slope matrix 215
second order sufficient optimality condition . . 4
section of constraints . 15
section of CSP . 16
semi-affine function. .39
separable constraint . 30
separable CSP. .30
separable expression .29
separable form . 29
separable function .29
separating axis .193
separating interval . 193
separating process. .196
separating set .194
separator . 193
set

closed ∼ .217
compact ∼ .17, 218
connected ∼ . 32
convex ∼ . 71, 219
disconnected ∼ . 32
∼ inversion problem 78
Lipschitz ∼63, 64, 214, 216
open ∼ .217
precompact ∼ . 217
separating ∼ . 194
solution ∼ . 13

significand. .31
simple gridding solver . 124
simplex method. 2, 92

dual ∼ .92
singleton consistency.16, 54
singleton CSP . 16
singleton variable .19
slack variable .20
slice of constraints .16
slice of CSP . 17
slope . 75

first order ∼ see slope matrix, 215
∼ form . 215

March 14, 2005

Index 269

∼ function . 215
interval ∼ . 74
real ∼ . 96
second order ∼ see slope matrix, 215

slope function .215
second order ∼ . 215

slope matrix 61, 62, 64, 70, 72, 74, 215
first order ∼ .215
second order ∼ . 215

solution. .2, 13
basic feasible ∼ . 92
existence of ∼ 61, 62, 64
isolated ∼ . 101
non-isolated ∼ .101
optimal ∼ . 2
∼ set . 13
sound ∼ . 21
∼ synthesis . 22
uniqueness of ∼ 56, 61–63

solution algorithm . 3
asymptotically complete ∼ 3
complete ∼ .3
incomplete ∼ . 3
rigorous ∼ . 3

solution method . 3
asymptotically complete ∼ 3
complete ∼ .3
incomplete ∼ . 3
rigorous ∼ . 3

solution technique . 3
asymptotically complete ∼ 3
complete ∼ .3
incomplete ∼ . 3
interval-based ∼ .6
rigorous ∼ . 3

solutions
continuum of ∼ . 6

solver
constraint ∼ . 3
interval constraint ∼ 189
simple gridding ∼ . 124

solving
constraint ∼ . 9
∼ process .21

sound algorithm .21
sound approximation .105
sound solution. .21
soundness of algorithm . 21
source of edge .152
space

Banach ∼ . 219
metric ∼ . 217
normed vector ∼ . 218

search ∼ .23
vector ∼ .218

spectral radius . 212
splitting .22

∼ technique . 4
square

interval ∼ . 34
square root

interval ∼ . 34
standard affine representation 143
standardized CSP . 14
stochastic method . 55
stochastic search . 24
strategy

cooperative ∼ . 89
fair ∼ .89

strong k-consistency .47
strong convergence56, 63, 64
strong interval contraction.57
strong path consistency. .46
strong (i, j)-consistency . 53
strongly regular interval matrix 214
strongly regular Lipschitz matrix 61, 63, 64
strongness of consistency 43
subcover . 217
subdistributivity of interval arithmetic33
subdivision

cell ∼ .22
uniform cell ∼ . 70

sublinear mapping . 64, 211
system

nonlinear equation ∼ 57
relaxation ∼ . 18

T
tableau

basic ∼ . 92
feasible ∼ . 93
optimal ∼ . 94
optimal feasible ∼ .93

target of edge . 152
Taylor exclusion test . 71
Taylor expansion . 70
Taylor interval form. .211
technique

constraint programming ∼ 4
constraint propagation ∼ 2
discretization ∼ . 4
domain reduction ∼ . 20
enclosure ∼ . 5
inclusion ∼ . 5
post-processing ∼ . 204
problem reduction ∼ 20

March 14, 2005

270 Index

solution ∼ . 3
splitting ∼ . 4

term
high order ∼ . 91
power ∼ . 91
quadratic ∼ .91

ternarization. .30, 54
ternarized constraint . 30
ternarized NCSP . 207
ternary constraint . 13, 78
ternary form. 30
test

exclusion ∼ .68
existence ∼ . 73
extreme ∼. .1
first order derivative ∼ 1
inclusion ∼ . 76
negation ∼ . 109
second order derivative ∼ 1
uniqueness ∼ . 73

transformation of a CSP.18
tree

2k- ∼ . 78
AABB ∼ . 190
bounding-box ∼ . 190
bounding-volume ∼.190
fitted ∼ . 193
interval ∼ . 190
lower-bound ∼ . 197
orthogonal-separable ∼ 191
∼ representation .81
search ∼ .23
upper-bound ∼ .197

triangular matrix
lower ∼ .65
upper ∼ . 65

triangulation of a constraint graph 46
two-sided inequality . 26
two-sided inequality constraint 26

U
unary constraint. .13
under-constrained problem 27
undiscernible box . 107
uniform dichotomization . 69
uniform dichotomous search 70
uniqueness of solution 56, 61–63
uniqueness test .73
universal constraint .11, 14
universal interval . 33
upper bound . 32
upper triangular matrix . 65
upper-bound tree . 197

V
variable . 10

active ∼ .115
artificial ∼ .92
basic ∼ . 92
continuous ∼ . 3, 24
domain ∼ .10
∼ elimination .19
inactive ∼ .115
introduced ∼ . 20
∼ introduction .20
noise ∼ . 37
nonbasic ∼ . 92
singleton ∼ . 19
slack ∼ . 20

vector
column ∼ .33
∼ of constraint ranges 25
interval ∼ . 33

vector space. .218
complete normed ∼219
finite-dimensional ∼ 220
normed ∼ . 218

vertex of multigraph . 152

W
well-constrained problem 27
width of interval. .33
width of interval matrix . 33
width of interval vector .33

Z
zero of function . 56

March 14, 2005

Curriculum Vitae

Personal Data

Family Name: Vu (In Vietnamese: Vũ)
First Name: Xuan-Ha (In Vietnamese: Xuân Ha.)
Sex: Male
Marital Status: Single
Date of Birth: June 1973
Place of Birth: Vietnam
Nationality: Vietnamese

Education

03/2005 Doctor of Philosophy (Docteur ès Sciences) in Computer Sci-
ence, Constraint Programming, awarded by the Swiss Federal Insti-
tute of Technology in Lausanne (EPFL), Switzerland. PhD disserta-
tion: Rigorous Solution Techniques for Numerical Constraint Satisfac-
tion Problems, accepted on December 7, 2004.

05/1995 Engineer/Bachelor of Engineering in Computer Science (a 5-year
program); awarded by Hanoi University of Technology (HUT), Vietnam.

Awards and Honors

1995 Nguyen Truong To Scholarship, awarded to about 100 best (among
hundreds of thousands of) undergraduate students in Vietnam. This is a
merit scholarship in memory of Nguyen Truong To, a famous Vietnamese
innovator well known for his relentless efforts to modernize Vietnam.

1990 Bronze Medal in the 31st International Mathematical Olympiad, in Bei-
jing, China.

1989 All top prizes: First Prize (in the final result), Excellent Prize (for
many excellent solutions), Special Prize (for competition with students
in higher class); awarded by Vietnamese Journal of Mathematics and
Youth for the solution of mathematical problems in the Annual Contest
organized by this journal.

271

http://www.epfl.ch/
http://www.epfl.ch/
http://www.hut.edu.vn/
http://imo.math.ca/

272 Curriculum Vitae

Professional Experience

12/2000 – 12/2004 Research Assistant/PhD Student at the Artificial Intelligence Lab-
oratory (LIA) in the Swiss Federal Institute of Technology in Lausanne
(EPFL). Main task: developing new constraint programming techniques,
which were documented in my PhD thesis, for the COCONUT project1.

06/1999 – 11/2000 Engineer in computer science at Vietnam Data-communication Com-
pany (VDC), Vietnam.

06/1995 – 05/1999 System/Software Engineer in computer science at the Corporation
for Financing and Promoting Technology (FPT), Vietnam.

Publications

Three Representative Papers

1. X.-H. Vu, D. Sam-Haroud and B. Faltings. Combining Multiple Inclusion Representations
in Numerical Constraint Propagation. In Proceedings of the 16th IEEE International
Conference on Tools with Artificial Intelligence (ICTAI 2004), pages 458–467, Florida,
USA, November 2004. [Acceptance rate: 54/205 ≈ 26%. Nominated for the Best Paper
Award by the reviewers of this paper.]

2. X.-H. Vu, H. Schichl and D. Sam-Haroud. Using Directed Acyclic Graphs to Coordinate
Propagation and Search for Numerical Constraint Satisfaction Problems. In Proceedings
of the 16th IEEE International Conference on Tools with Artificial Intelligence (ICTAI
2004), pages 72–81, Florida, USA, November 2004. [Acceptance rate: 54/205 ≈ 26%.]

3. X.-H. Vu, D. Sam-Haroud and M.-C. Silaghi. Numerical Constraint Satisfaction Problems
with Non-isolated Solutions. Global Optimization and Constraint Satisfaction: First
International Workshop on Global Constraint Optimization and Constraint Satisfaction,
COCOS 2002, Revised Selected Papers, LNCS 2861, pages 194–210, Springer-Verlag 2003.
[Two rounds of reviews in COCOS 2002.]

Journal Papers

1. X.-H. Vu, M.-C. Silaghi, D. Sam-Haroud and B. Faltings. Numerical Constraint Satisfac-
tion Problems: Part I - General Search Strategies. ACM Transactions on Computational
Logic (TOCL). To be submitted in 2005.

2. X.-H. Vu, H. Schichl and D. Sam-Haroud. Numerical Constraint Satisfaction Problems:
Part II - Coordinating Propagation and Search on Directed Acyclic Graphs. ACM Trans-
actions on Computational Logic (TOCL). To be submitted in 2005.

3. X.-H. Vu, D. Sam-Haroud and B. Faltings. Numerical Constraint Satisfaction Problems:
Part III - Combining Multiple Inclusions in Constraint Propagation. ACM Transactions
on Computational Logic (TOCL). To be submitted in 2005.

1 The COCONUT (Continuous Constraints: Updating the Technology) project is a research project funded by
the European Union under the IST contract IST-2000-26063.

March 14, 2005

http://liawww.epfl.ch/
http://liawww.epfl.ch/
http://www.epfl.ch/
http://liawww.epfl.ch/Publications/Archive/vxhthesis.pdf
http://solon.cma.univie.ac.at/~neum/glopt/coconut/
http://www.vdc.com.vn/
http://www.vdc.com.vn/
http://www.fpt.com.vn/
http://www.fpt.com.vn/
http://www.computer.org/cspress/CATALOG/p2236.htm
http://www.computer.org/cspress/CATALOG/p2236.htm
http://www.computer.org/cspress/CATALOG/p2236.htm
http://www.computer.org/cspress/CATALOG/p2236.htm
http://www.springeronline.com/3-540-20463-6
http://www.springeronline.com/3-540-20463-6
http://www.springeronline.com/3-540-20463-6

Curriculum Vitae 273

Refereed Conference/Workshop Papers

1. X.-H. Vu, D. Sam-Haroud and B. Faltings. Combining Multiple Inclusion Representations
in Numerical Constraint Propagation. In Proceedings of the 16th IEEE International
Conference on Tools with Artificial Intelligence (ICTAI 2004), pages 458–467, Florida,
USA, November 2004. [Acceptance rate: 54/205 ≈ 26%. Nominated for the Best Paper
Award by the reviewers of this paper.]

2. X.-H. Vu, H. Schichl and D. Sam-Haroud. Using Directed Acyclic Graphs to Coordinate
Propagation and Search for Numerical Constraint Satisfaction Problems. In Proceedings
of the 16th IEEE International Conference on Tools with Artificial Intelligence (ICTAI
2004), pages 72–81, Florida, USA, November 2004. [Acceptance rate: 54/205 ≈ 26%.]

3. X.-H. Vu, D. Sam-Haroud and B. Faltings. Clustering for Disconnected Solution Sets of
Numerical CSPs. Recent Advances in Constraints: International Workshop on Constraint
Solving and Constraint Logic Programming, CSCLP 2003, Budapest, Hungary, June 30
– July 2, 2003, Selected Papers, pages 25–43, LNAI 3010, Springer-Verlag 2004.

4. X.-H. Vu, D. Sam-Haroud and M.-C. Silaghi. Numerical Constraint Satisfaction Problems
with Non-isolated Solutions. Global Optimization and Constraint Satisfaction: First
International Workshop on Global Constraint Optimization and Constraint Satisfaction,
COCOS 2002, Valbonne-Sophia Antipolis, France, October 2–4, 2002, Revised Selected
Papers, pages 194–210, LNCS 2861, Springer-Verlag 2003.

5. O. Shcherbina, A. Neumaier, D. Sam-Haroud, X.-H. Vu and T.-V. Nguyen. Bench-
marking Global Optimization and Constraint Satisfaction Codes. Global Optimization
and Constraint Satisfaction: First International Workshop on Global Constraint Opti-
mization and Constraint Satisfaction, COCOS 2002, Valbonne-Sophia Antipolis, France,
October 2–4, 2002, Revised Selected Papers, pages 211–222, LNCS 2861, Springer-Verlag
2003.

6. X.-H. Vu, D. Sam-Haroud and M.-C. Silaghi. Approximation Techniques for Non-linear
Problems with Continuum of Solutions. In Proceedings of the 5th International Sym-
posium on Abstraction, Reformulation and Approximation, SARA 2002, pages 224–241,
Alberta, Canada, August 2002, LNAI 2371, Springer-Verlag 2002.

7. X.-H. Vu, D. Sam-Haroud and M.-C. Silaghi. Résolution de problèmes non-linéaires
avec continuum de solutions. In Programmation en logique avec contraintes: Actes des
Onzièmes Journées Francophones de Programmation Logique et Programmation par Con-
traintes, JFPLC 2002, pages 27–41, Nice, France, May 2002, HERMES Science Publica-
tions.

Lausanne, March 14, 2005
z

March 14, 2005

http://www.computer.org/cspress/CATALOG/p2236.htm
http://www.computer.org/cspress/CATALOG/p2236.htm
http://www.computer.org/cspress/CATALOG/p2236.htm
http://www.computer.org/cspress/CATALOG/p2236.htm
http://www.springeronline.com/3-540-21834-3
http://www.springeronline.com/3-540-21834-3
http://www.springeronline.com/3-540-21834-3
http://www.springeronline.com/3-540-20463-6
http://www.springeronline.com/3-540-20463-6
http://www.springeronline.com/3-540-20463-6
http://www.springeronline.com/3-540-20463-6
http://www.springeronline.com/3-540-20463-6
http://www.springeronline.com/3-540-20463-6
http://www.springeronline.com/3-540-20463-6
http://www.springeronline.com/3-540-20463-6
http://www.springeronline.com/3-540-43941-2
http://www.springeronline.com/3-540-43941-2

274 Curriculum Vitae

March 14, 2005

	Abstract
	Résumé
	Acknowledgements
	List of Algorithms
	List of Definitions
	List of Figures
	List of Tables
	1 Introduction
	1.1 A Preview of Constraint Programming
	1.2 The Goal of the Thesis
	1.3 Contributions of the Thesis
	1.4 Organization of the Thesis

	2 Background and Definition
	2.1 Basic Concepts in Constraint Programming
	2.1.1 A Short History of Constraint Programming
	2.1.2 Constraint Satisfaction
	2.1.2.1 Constraint Satisfaction Problems
	2.1.2.2 Set Theory Concepts for Constraints
	2.1.2.3 Basic Concepts of Problem Solving
	2.1.2.4 Major Solution Approaches

	2.1.3 Numerical Constraint Satisfaction Problems
	2.1.3.1 Numerical Constraints
	2.1.3.2 Problem Formulation
	2.1.3.3 Factorable Form
	2.1.3.4 Separable Form
	2.1.3.5 Ternary Form

	2.2 Common Arithmetics for Numerical Computations
	2.2.1 Floating-Point Numbers and IEEE 754 Standard
	2.2.1.1 Number Representation
	2.2.1.2 IEEE 754 Standard and Conventions

	2.2.2 Interval Arithmetic
	2.2.2.1 Real Intervals
	2.2.2.2 Exact Interval Arithmetic
	2.2.2.3 Rounded Interval Arithmetic
	2.2.2.4 Interval Functions
	2.2.2.5 From Closed Intervals to Open Intervals

	2.2.3 Affine Arithmetic
	2.2.3.1 Affine Form
	2.2.3.2 Affine Operations
	2.2.3.3 Non-Affine Operations
	2.2.3.4 Variants of Affine Arithmetic

	2.3 Fundamental Consistency Notions
	2.3.1 Global Consistency
	2.3.2 Classical Local Consistency Notions
	2.3.2.1 Node Consistency
	2.3.2.2 Arc Consistency
	2.3.2.3 Path Consistency
	2.3.2.4 k-Consistency

	2.3.3 Local Consistency Notions for Numerical Constraints
	2.3.3.1 Hull Consistency
	2.3.3.2 kB-Consistency
	2.3.3.3 Box Consistency

	2.3.4 Extended Local Consistency Notions
	2.3.4.1 (i, j)-Consistency
	2.3.4.2 Relational Consistency
	2.3.4.3 Singleton Consistency

	3 An Overview of Solution Methods
	3.1 Mathematical Solution Methods
	3.1.1 Fundamental Interval Fixed Point Methods
	3.1.1.1 Krawczyk Iteration for Linear Equations
	3.1.1.2 Interval Gauss-Seidel Iteration
	3.1.1.3 Krawczyk Iteration for Nonlinear Equations
	3.1.1.4 Hansen-Sengupta Iteration
	3.1.1.5 Interval Newton Iteration

	3.1.2 Other Interval Methods for Linear Systems
	3.1.2.1 Interval Gauss Elimination
	3.1.2.2 Hull Method
	3.1.2.3 Linear Interval Inequalities

	3.1.3 Exclusion Tests
	3.1.3.1 Lipschitz Functions
	3.1.3.2 Taylor Expansion

	3.1.4 Exclusion Regions
	3.1.5 Existence and Uniqueness Tests
	3.1.5.1 Epsilon-Inflation

	3.1.6 Inclusion Tests

	3.2 Constraint Programming Methods
	3.2.1 Classical Complete Search Methods
	3.2.2 Branch-and-Prune Methods
	3.2.2.1 Hull Consistency by Search
	3.2.2.2 Hull Consistency by Propagation
	3.2.2.3 Box Consistency by Search
	3.2.2.4 Box Consistency by Propagation
	3.2.2.5 kB-Consistency by Search

	3.2.3 Cooperation of Solution Techniques
	3.2.3.1 Cooperation of Domain Reduction Techniques
	3.2.3.2 Cooperation of Symbolic-Interval Techniques

	3.3 Relaxation Based Methods
	3.3.1 Linear Relaxation with Linear Programming
	3.3.1.1 Linear Relaxation Based on Quadratic Terms
	3.3.1.2 More General Linear Relaxation Techniques

	3.3.2 Exclusion Test Using Linear Programming
	3.3.2.1 Exclusion Test Using Dual Simplex Method
	3.3.2.2 Exclusion Test Using Taylor Expansion and Linear Programming

	3.3.3 Linear Relaxation with Fixed Point Methods
	3.3.3.1 Linear Relaxation of Separable Functions
	3.3.3.2 Linear Relaxation of Factorable Systems

	3.3.4 Convexification Based Methods

	3.4 Incomplete Search Methods

	4 Improvements to Search Strategies for Numerical CSPs
	4.1 Introduction
	4.2 Motivation
	4.3 Representation of Non-isolated Solutions
	4.3.1 Inner and Outer Approximations
	4.3.2 Union Approximations
	4.3.3 Qualification of Union Approximations

	4.4 Exhaustive Search for CSPs with Non-isolated Solutions
	4.4.1 Domain Reduction Operators
	4.4.2 Complementary Boxing Operators
	4.4.3 Domain Splitting Operators
	4.4.4 Controlling the Reduction of Small Domains
	4.4.5 Compact Representation of Solutions
	4.4.6 Search Algorithms

	4.5 Experiments
	4.6 Conclusion

	5 Modification and Abstraction of Inclusion Techniques
	5.1 Introduction
	5.2 Extended Functions
	5.3 Modification to Interval Arithmetic
	5.4 Revised Affine Arithmetic
	5.4.1 Revised Affine Form
	5.4.2 Multiplication
	5.4.3 Division
	5.4.4 Non-Affine Unary Operations

	5.5 Abstraction of Inclusion Concepts
	5.5.1 Inclusion Representations
	5.5.2 Inclusion Functions

	5.6 Conclusion

	6 Numerical Constraint Propagation on Directed Acyclic Graphs
	6.1 Introduction
	6.2 DAG Representations for Numerical CSPs
	6.2.1 Basic Concepts of Directed Acyclic Graphs
	6.2.2 DAG Representations

	6.3 Forward-Backward Propagation on DAG Representations
	6.3.1 Forward Evaluation on DAG Representations
	6.3.2 Backward Propagation on DAG Representations

	6.4 Partial DAG Representations for Numerical CSPs
	6.5 Constraint Propagation on Partial DAG Representations
	6.6 Coordinating Constraint Propagation and Search
	6.7 Experiments
	6.8 Conclusion

	7 Combination of Inclusion Techniques in Constraint Propagation
	7.1 Introduction
	7.2 A Combination Scheme for Constraint Propagation
	7.2.1 Node Range Evaluations
	7.2.2 Induced Constraint Systems for Domain Reduction
	7.2.3 CIRD -- A Generic Combination Scheme

	7.3 Specific Combination Strategies as Instances of CIRD
	7.3.1 Step 1a: Initial Node Evaluation
	7.3.2 Step 1b: Initialization of Waiting Lists
	7.3.3 Step 2a: Getting the Next Node
	7.3.4 Step 2b: Node Evaluation
	7.3.5 Step 2c: Node Pruning
	7.3.5.1 Backward Propagation
	7.3.5.2 Affine Pruning

	7.4 Experiments
	7.4.1 Comparisons with Interval Constraint Propagation Techniques
	7.4.2 Comparisons with Linear Relaxation Based Techniques

	7.5 Potential Directions for CIRD
	7.6 Conclusion

	8 Clustering Techniques for Disconnected Solution Sets
	8.1 Introduction
	8.2 Goals of Clustering
	8.2.1 Basic Concepts
	8.2.2 Goal Setting

	8.3 Algorithms
	8.3.1 Optimal Max-Connected Clustering
	8.3.2 Separator Computation
	8.3.3 Max-Connected Clustering
	8.3.4 Separator-Driven Clustering
	8.3.5 Combinations of Algorithms
	8.3.5.1 Combination of MCC and Colonization
	8.3.5.2 Combination of SDC and Colonization

	8.4 Experiments
	8.5 Conclusion

	9 Conclusions
	9.1 Contributions
	9.2 Limitations and Challenges
	9.3 Further Research
	9.4 The Final Conclusion

	A Extended Concepts of Interval Arithmetic
	A.1 A Short History of Interval Arithmetic
	A.2 Typical Interval Functions
	A.2.1 Natural Interval Form
	A.2.2 Centered Interval Form
	A.2.3 Mixed Centered Interval Form
	A.2.4 Taylor Interval Form
	A.2.5 Linear Interval Mapping

	A.3 Advanced Concepts on Intervals
	A.3.1 Interval Matrix
	A.3.2 Interval Matrix Inverse
	A.3.3 Interval Slope

	B Fixed Point Theory in Metric Spaces
	B.1 Basic Concepts on Metric Spaces
	B.2 Fundamental Fixed Point Theorems

	C Numerical Benchmarks
	C.1 Problems with Continuums of Solutions
	C.2 Test Case T1: Problems with Isolated Solutions
	C.3 Test Case T2: Problems with Isolated Solutions
	C.4 Test Case T3: Problems with Isolated Solutions
	C.5 Test Case T4: Problems with Continuums of Solutions
	C.6 Test Case T5: Problems with Continuums of Solutions

	Bibliography
	Glossary
	Index
	Curriculum Vitae

