10,578 research outputs found

    Oversampling for Imbalanced Learning Based on K-Means and SMOTE

    Full text link
    Learning from class-imbalanced data continues to be a common and challenging problem in supervised learning as standard classification algorithms are designed to handle balanced class distributions. While different strategies exist to tackle this problem, methods which generate artificial data to achieve a balanced class distribution are more versatile than modifications to the classification algorithm. Such techniques, called oversamplers, modify the training data, allowing any classifier to be used with class-imbalanced datasets. Many algorithms have been proposed for this task, but most are complex and tend to generate unnecessary noise. This work presents a simple and effective oversampling method based on k-means clustering and SMOTE oversampling, which avoids the generation of noise and effectively overcomes imbalances between and within classes. Empirical results of extensive experiments with 71 datasets show that training data oversampled with the proposed method improves classification results. Moreover, k-means SMOTE consistently outperforms other popular oversampling methods. An implementation is made available in the python programming language.Comment: 19 pages, 8 figure

    OL\'E: Orthogonal Low-rank Embedding, A Plug and Play Geometric Loss for Deep Learning

    Full text link
    Deep neural networks trained using a softmax layer at the top and the cross-entropy loss are ubiquitous tools for image classification. Yet, this does not naturally enforce intra-class similarity nor inter-class margin of the learned deep representations. To simultaneously achieve these two goals, different solutions have been proposed in the literature, such as the pairwise or triplet losses. However, such solutions carry the extra task of selecting pairs or triplets, and the extra computational burden of computing and learning for many combinations of them. In this paper, we propose a plug-and-play loss term for deep networks that explicitly reduces intra-class variance and enforces inter-class margin simultaneously, in a simple and elegant geometric manner. For each class, the deep features are collapsed into a learned linear subspace, or union of them, and inter-class subspaces are pushed to be as orthogonal as possible. Our proposed Orthogonal Low-rank Embedding (OL\'E) does not require carefully crafting pairs or triplets of samples for training, and works standalone as a classification loss, being the first reported deep metric learning framework of its kind. Because of the improved margin between features of different classes, the resulting deep networks generalize better, are more discriminative, and more robust. We demonstrate improved classification performance in general object recognition, plugging the proposed loss term into existing off-the-shelf architectures. In particular, we show the advantage of the proposed loss in the small data/model scenario, and we significantly advance the state-of-the-art on the Stanford STL-10 benchmark

    A False Acceptance Error Controlling Method for Hyperspherical Classifiers

    Get PDF
    Controlling false acceptance errors is of critical importance in many pattern recognition applications, including signature and speaker verification problems. Toward this goal, this paper presents two post-processing methods to improve the performance of hyperspherical classifiers in rejecting patterns from unknown classes. The first method uses a self-organizational approach to design minimum radius hyperspheres, reducing the redundancy of the class region defined by the hyperspherical classifiers. The second method removes additional redundant class regions from the hyperspheres by using a clustering technique to generate a number of smaller hyperspheres. Simulation and experimental results demonstrate that by removing redundant regions these two post-processing methods can reduce the false acceptance error without significantly increasing the false rejection error

    Scalable Solutions for Automated Single Pulse Identification and Classification in Radio Astronomy

    Full text link
    Data collection for scientific applications is increasing exponentially and is forecasted to soon reach peta- and exabyte scales. Applications which process and analyze scientific data must be scalable and focus on execution performance to keep pace. In the field of radio astronomy, in addition to increasingly large datasets, tasks such as the identification of transient radio signals from extrasolar sources are computationally expensive. We present a scalable approach to radio pulsar detection written in Scala that parallelizes candidate identification to take advantage of in-memory task processing using Apache Spark on a YARN distributed system. Furthermore, we introduce a novel automated multiclass supervised machine learning technique that we combine with feature selection to reduce the time required for candidate classification. Experimental testing on a Beowulf cluster with 15 data nodes shows that the parallel implementation of the identification algorithm offers a speedup of up to 5X that of a similar multithreaded implementation. Further, we show that the combination of automated multiclass classification and feature selection speeds up the execution performance of the RandomForest machine learning algorithm by an average of 54% with less than a 2% average reduction in the algorithm's ability to correctly classify pulsars. The generalizability of these results is demonstrated by using two real-world radio astronomy data sets.Comment: In Proceedings of the 47th International Conference on Parallel Processing (ICPP 2018). ACM, New York, NY, USA, Article 11, 11 page
    • …
    corecore