11,316 research outputs found

    An inter-domain supervision framework for collaborative clustering of data with mixed types.

    Get PDF
    We propose an Inter-Domain Supervision (IDS) clustering framework to discover clusters within diverse data formats, mixed-type attributes and different sources of data. This approach can be used for combined clustering of diverse representations of the data, in particular where data comes from different sources, some of which may be unreliable or uncertain, or for exploiting optional external concept set labels to guide the clustering of the main data set in its original domain. We additionally take into account possible incompatibilities in the data via an automated inter-domain compatibility analysis. Our results in clustering real data sets with mixed numerical, categorical, visual and text attributes show that the proposed IDS clustering framework gives improved clustering results compared to conventional methods, over a wide range of parameters. Thus the automatically extracted knowledge, in the form of seeds or constraints, obtained from clustering one domain, can provide additional knowledge to guide the clustering in another domain. Additional empirical evaluations further show that our approach, especially when using selective mutual guidance between domains, outperforms common baselines such as clustering either domain on its own or clustering all domains converted to a single target domain. Our approach also outperforms other specialized multiple clustering methods, such as the fully independent ensemble clustering and the tightly coupled multiview clustering, after they were adapted to the task of clustering mixed data. Finally, we present a real life application of our IDS approach to the cluster-based automated image annotation problem and present evaluation results on a benchmark data set, consisting of images described with their visual content along with noisy text descriptions, generated by users on the social media sharing website, Flickr

    EC3: Combining Clustering and Classification for Ensemble Learning

    Full text link
    Classification and clustering algorithms have been proved to be successful individually in different contexts. Both of them have their own advantages and limitations. For instance, although classification algorithms are more powerful than clustering methods in predicting class labels of objects, they do not perform well when there is a lack of sufficient manually labeled reliable data. On the other hand, although clustering algorithms do not produce label information for objects, they provide supplementary constraints (e.g., if two objects are clustered together, it is more likely that the same label is assigned to both of them) that one can leverage for label prediction of a set of unknown objects. Therefore, systematic utilization of both these types of algorithms together can lead to better prediction performance. In this paper, We propose a novel algorithm, called EC3 that merges classification and clustering together in order to support both binary and multi-class classification. EC3 is based on a principled combination of multiple classification and multiple clustering methods using an optimization function. We theoretically show the convexity and optimality of the problem and solve it by block coordinate descent method. We additionally propose iEC3, a variant of EC3 that handles imbalanced training data. We perform an extensive experimental analysis by comparing EC3 and iEC3 with 14 baseline methods (7 well-known standalone classifiers, 5 ensemble classifiers, and 2 existing methods that merge classification and clustering) on 13 standard benchmark datasets. We show that our methods outperform other baselines for every single dataset, achieving at most 10% higher AUC. Moreover our methods are faster (1.21 times faster than the best baseline), more resilient to noise and class imbalance than the best baseline method.Comment: 14 pages, 7 figures, 11 table
    • …
    corecore