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ABSTRACT

AN INTER-DOMAIN SUPERVISION FRAMEWORK FOR

COLLABORATIVE CLUSTERING OF DATA WITH MIXED

TYPES

Artur Abdullin

December 2nd, 2013

We propose an Inter-Domain Supervision (IDS) clustering framework to discover clusters within

diverse data formats, mixed-type attributes and different sources of data. This approach can be used

for combined clustering of diverse representations of the data, in particular where data comes from

different sources, some of which may be unreliable or uncertain, or for exploiting optional external

concept set labels to guide the clustering of the main data set in its original domain. We additionally

take into account possible incompatibilities in the data via an automated inter-domain compatibility

analysis. Our results in clustering real data sets with mixed numerical, categorical, visual and text

attributes show that the proposed IDS clustering framework gives improved clustering results com-

pared to conventional methods, over a wide range of parameters. Thus the automatically extracted

knowledge, in the form of seeds or constraints, obtained from clustering one domain, can provide

additional knowledge to guide the clustering in another domain. Additional empirical evaluations

further show that our approach, especially when using selective mutual guidance between domains,

outperforms common baselines such as clustering either domain on its own or clustering all domains

converted to a single target domain. Our approach also outperforms other specialized multiple clus-

tering methods, such as the fully independent ensemble clustering and the tightly coupled multiview

clustering, after they were adapted to the task of clustering mixed data. Finally, we present a real
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life application of our IDS approach to the cluster-based automated image annotation problem and

present evaluation results on a benchmark data set, consisting of images described with their visual

content along with noisy text descriptions, generated by users on the social media sharing website,

Flickr.
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CHAPTER 1

INTRODUCTION AND MOTIVATION

1.1 Motivations

Advances in sensing, storage technology and dramatic growth in applications such as Internet search,

e-commerce, social media sites, and digital imaging have created large, high-dimensional data sets.

Most of this data is stored digitally in electronic media, thus providing a huge potential for the

development of automatic data analysis, classification, and retrieval techniques. In addition to

the growth in the amount of data, the variety of available data (text, image, and video) has also

increased especially on social media sites such as Flickr and Youtube. The availability of large data

collections with no or limited information concerning the membership of data items to a predefined

class, has turned increasing attention toward the need for unsupervised and semi-supervised learning.

In unsupervised learning or clustering, there are no explicit labels; instead cluster analysis groups

data based only on information found in the data that describes the objects and their relationships.

The goal is to assign objects such that objects within the same group are similar to one another

and different from the objects in other groups [Tan et al., 2005]. In semi-supervised learning, only

a small portion of the data is labeled, and the goal is to exploit both labeled and unlabeled data for

better learning [Basu et al., 2002b].

Recent years have seen an increasing interest in clustering data comprising multiple domains or

modalities, such as categorical, numerical, text, transactional, and visual modalities. This kind of

data is sometimes found within the context of clustering multiview, heterogeneous, or multimodal

data. Traditionally each of these different types of data has been best clustered with a different spe-

cialized clustering algorithm or with a specialized dissimilarity measure [Dhillon and Modha, 2001,

Banerjee et al., 2005, Huang, 1998a]. A very common approach to cluster data with mixed types

has been to either convert all data types to the same type (e.g: from categorical to numerical or

vice-versa) and then cluster the data with a standard clustering algorithm that is suitable for that

target domain; or to use a different dissimilarity measure for each domain, then combine them into
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one dissimilarity measure and cluster this dissimilarity matrix. However, there are many different

contexts in which the plurality of data exist. For example, in multiview data, the features of the

data can naturally be divided into subsets (views), such that each of which is sufficient to learn a

target concept. In multimodal data, there exist more than one modality in the data. One example

is online images (on Flickr or Facebook) with visual content features and tags. Another example

is data consisting of ratings, clickstreams, and transactions by users relating to items purchased

or viewed online. A third example would be user feedback in the form of user ratings and tex-

tual reviews/comments. Generally, due to the abundance of user-generated diverse data formats,

there is an increasing need for clustering algorithms that can exploit all or part of the diverse data

descriptions in a way that best combines the knowledge that can be extracted from each source.

1.2 Objectives

The objective of this work is to develop an unsupervised learning approach for combined clustering

of diverse representations of the data, in particular where data representatives come from different

sources or domains, consisting of possibly different types, and where the different sources of data

may disagree or be incompatible in how they delineate the groups or clusters.

1.3 Summary of contributions

We propose a new methodology for clustering data comprising multiple domains or parts, in such

a way that the separate domains mutually supervise each other within a framework that is similar

to semi-supervised learning. However, unlike semi-supervised learning, our methodology does not

assume the presence of any external labels from any part of the data; rather, each of the different

domains of the data separately undergoes an unsupervised learning process, while receiving some

guidance or supervision in the form of data constraints or seeds that are discovered from clustering

the other domains. As illustrated with an example in Figure 1.1, the entire process can be considered

to be very similar to the alternation of semi-supervised learning stages in the different data domains,

with each domain receiving selective guidance or supervision that is automatically discovered from

clustering the other domain. The same approach can also be used for multi-source data regardless

of the type of data in each source, since each source of data can be considered as a separate domain.

Our contributions can be summarized as follows:

• We propose a seed-based Inter-Domain Supervision approach to transfer knowledge from the
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Figure 1.1: An example that illustrates a typical scenario for the IDS clustering framework.

clustering in one domain to the other domains (Section 3.1).

• We propose different seed exchange mechanisms for the seed-based IDS, in order to control

the selectivity of the exchanged knowledge, based on linear-complexity unsupervised internal

cluster validity indices (Section 3.1.2).

• We propose a constraint-based Inter-Domain Supervision approach to handle inconsistent par-

titions between different domains, which can now be combined into a consistent clustering

result (Section 3.2).

• We propose a domain compatibility analysis approach for a more effective clustering of het-

erogeneous data, by exploiting the synergy between the different domains, even when some

inter-domain incompatibility exists in the descriptions of parts of the data (Section 3.4).

• We outline a general methodology to utilize a variety of other clustering approaches (ensemble,

multiview and collaborative clustering) to the problem of mixed data type clustering, although

some of them were generally designed for different purposes.

• We perform an exhaustive evaluation of the proposed methods for a variety of real data sets

with varying sizes, dimensionality, and number of clusters, and study the effect of the param-

eters governing the clustering process on the quality of the results. The data is composed of a

variety of types: numerical, categorical, visual image features, and text descriptions.
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• We propose an cluster-based automated annotation methodology that exploits both the image

visual content, and the associated text of a set of training images from Flickr, and furthermore

demonstrate the benefit of the proposed inter-domain compatibility analysis.

• Our empirical evaluations on clustering a variety of mixed type data sets show that our pro-

posed IDS framework can achieve a significant improvement over two baseline methods and two

sophisticated methods, based on most validity metrics, and can provide significant improve-

ment in Mean Average Precision (MAP) on the automated annotation task for the MIRFlickr

data, consisting of visual and text domains.

1.4 Organization of this Dissertation

The rest of this dissertation is organized as follows. Chapter 2 gives an overview of the pertinent

background and related work. Chapter 3 presents a new Inter-Domain Supervision (IDS) clustering

framework to cluster heterogeneous data with compatibility analysis. Chapter 4 presents experi-

mental results that evaluate our proposed approach in comparison with (1) two commonly used

approaches, treated as baselines: (1.a) independent clustering of split-domains, thus with no inter-

domain exchange of guidance, and (1.b) clustering a combined data obtained by a conversion of

the multiple domains into a single domain; (2) two alternative competitive approaches adapted to

the problem of clustering multiple data domains: (2.a) multiview clustering, and (2.b) ensemble

clustering. Finally, Chapter 5 presents our conclusions.
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CHAPTER 2

BACKGROUND AND RELATED WORK

2.1 Introduction and Chapter Organization

We start this chapter with a short introduction to the clustering problem and review different types

of data attributes. We then present the most common approaches to clustering heterogeneous data,

including conversion, splitting and combined dissimilarity measure approaches. We also discuss

several approaches that can be used for the purpose of clustering mixed data, although most of

them have been proposed for different purposes. In this respect, we review the related areas of

multiview clustering, ensemble clustering, and collaborative clustering, and explain how each one

can be modified for the specific purpose of clustering heterogeneous data. We follow our review of

clustering algorithms with a review of the cluster validity metrics that are typically used to evaluate

the results of clustering algorithms. Finally, we conclude with a comparison of the discussed methods.

2.2 Clustering

Data clustering is also known as cluster analysis, Q-analysis, typology, clumping, and taxonomy

depending on the field where it is applied [Jain and Dubes, 1988]. The goal of clustering is to

discover the natural groupings of a set of patterns, points, or objects. The problem of clustering,

in general, is to partition a set O = {o1,o2, ..., on} of objects embedded in a d-dimensional space

into k distinct sets of clusters C = {C1, C2, ..., Ck} based on a measure of similarity such that the

similarities between objects in the same cluster are high, while the similarities between objects in

different clusters are low. Clusters can differ in terms of their shape, size, and density. An ideal

cluster can be defined as a set of objects which is compact and separated from other clusters.

Traditionally, data clustering has been used for the following main purposes.

• Discovering an underlying structure: to gain insight into data, generate hypotheses, de-

tect anomalies, and identify salient features [Lakhina et al., 2005, Gal and Cohen-Or, 2006,

Boley et al., 1999].
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• Natural classification: to identify the degree of similarity among forms or organisms (phyloge-

netic relationship) [Remm et al., 2001].

• Compression: as a method for organizing the data and summarizing it through cluster proto-

types [Equitz, 1989].

• Recent applications of clustering: information retrieval, customer segmentation, recommenda-

tion systems, visualization, etc [Frakes and Baeza-Yates, 1992, Espinoza et al., 2005, Ungar et al., 1998].

Existing clustering algorithms can be broadly classified into partitional, hierarchical, and density-

based [Jain and Dubes, 1988]. A hierarchical clustering is a sequence of partitions in which each

partition is nested into the next partition in the sequence. The result is a hierarchical structure

of groups known as dendrogram. Hierarchical clustering algorithms [Johnson, 1967, Fisher, 1987,

Steinbach et al., 2000] recursively find nested clusters in either an agglomerative mode or a divisive

mode. Agglomerative hierarchical clustering starts with every single object in a single cluster.

Then it repeats merging the closest pair of clusters according to some similarity criteria until all

of the data are in a single cluster. In contrast to agglomerative mode, the divisive mode starts

with all data points in the same cluster and repeats splitting each cluster into smaller clusters.

Input to a hierarchical clustering algorithm is an n × n similarity matrix, where n is the number

of objects to be clustered. Partitioning clustering methods [MacQueen, 1967, Bezdek et al., 1984,

Krishnapuram and Keller, 1993] try to obtain a single partition of data without any other sub-

partition like hierarchical algorithms do, and are often based on the optimization of an appropriate

objective function [Gan et al., 2007]. As an input, a partitional clustering algorithm can use either

an n× d pattern matrix, where n objects are embedded in d-dimensional feature space, or an n× n

similarity matrix.

Hard (or crisp) clustering algorithms assign each object to a single cluster. On the other hand,

fuzzy (or soft) clustering algorithm assign every object to every cluster with a membership weight

that is between 0 (absolutely does not belong to the cluster) and 1 (absolutely belongs to the cluster)

[Bezdek, 1981]. Density-based clustering methods such as DBSCAN [Ester et al., 1996] seek clusters

by relying on the notion of dense regions of space that are separated by relatively vacuous areas.

Some of the algorithms are reviewed in Section 2.3.1.

2.2.1 Different attribute types

Each data object in a data set is described by a set of attributes. An attribute is a property of an

object that may vary, either from one object to another or from one time to another [Tan et al., 2005].
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Attribute Type Description Examples

Categorical
Nominal The values of a nominal

attribute are just
different names or codes.

zip codes, eye color,
gender

Ordinal The values of an ordinal
attribute provide enough

information to order
objects.

grades, street numbers,
quality (poor, good,

better)

Numerical
Interval For interval attributes,

the difference between
values are meaningful, e.i,

a unit of measurement
exists.

calendar dates,
temperature in

Fahrenheit.

Ratio For ratio variables, both
differences and ratios are

meaningful

temperature in Kelvin,
counts, age, mass, length

Transactional In transactional data each
data record or transaction
consists of a set of items

web user sessions,
clickstreams, items in a

shopping cart, documents

Table 2.1: Different attribute types.

For example, eye color varies from person to person, while the age of the same person varies over time.

The eye color is a categorical attribute with a small number of possible values (blue, brown, green,

etc), while age is a numerical attribute with a limited number of values. A useful way to specify

the type of the attribute is to identify the properties of the values that correspond to the underlying

properties of the attribute. For example, an attribute such as age has many of the properties of

numbers. The following properties of numbers are typically used to describe attributes:

1. Distinctness = and 6=

2. Order <, ≤, >, and ≥

3. Addition + and −

4. Multiplication ∗ and /

Given there properties, we can define four types of attributes: nominal, ordinal, interval, and ratio

(see Table 2.1).

Nominal and ordinal attributes are collectively referred to as categorical attributes and interval

and ratio attributes are called numerical attributes. Although some categorical attributes like zip

codes or IDs are represented by numbers, they do not share properties of these numbers and should
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be treated more like symbols. Numerical attributes are represented by numbers and have most of

the properties of numbers, they could be integer valued or continuous. In addition, to the numerical

and categorical attributes there is a third type - transactional. Transactional data is a special type of

data, where each data record or transaction consists of a set of items. Examples of this data include

(1) user activity records such as web user sessions or clickstreams, where the items are the set of

actions or pages that can be clicked and (2) text documents, where the items are the words or tokens.

Transactions could be represented by binary vectors with each dimension corresponding to one item,

in which an entry denotes the presence or absence of the corresponding item. Usually transactional

data sets have a high number of dimensions and in many cases, such as online transactions, in

particular web user sessions, are extremely sparse.

2.3 Clustering Data with Mixed Attribute Types

In order to cluster data consisting of mixed types, there are several approaches which will be described

in the following subsections in the order of sophistication level, ranging from simple data conversion,

distance measure combination and then dedicated mixed data type clustering algorithm, and finally

ensemble, multiview and collaborative clustering (see Figure 2.1).

Figure 2.1: Overview of the clustering approaches, typically used for heterogeneous data sets, and the
proposed IDS clustering framework.

2.3.1 Conversion and Splitting

There are different ways to handle data consisting of multiple domain with different types of at-

tributes, for the purpose of clustering. The first and most popular approach to clustering data with
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mixed attributes is convert all data to the same target domain and cluster it with a specially design

algorithm. We call this method the conversion approach. This approach is very common because

it is a convenient and a fast solution that does not discard any of the attributes, and because most

successful clustering algorithms are specialized for one specific target type of attributes.

The conversion algorithm requires data type conversion, there are different ways to convert one

data type to another. For example, to convert numerical type attribute z, ranging in [zmin, zmax],

to a categorical type attribute y, also known as “discretization” [Gan et al., 2007], three strategies

can be used:

1. mapping the n numerical values, zi, to N categorical values yi using direct categorization. The

categorical value is defined as yi = b N(zi−zmin)
(zmax−zmin)c+ 1, where b c denotes the largest integer less

than or equal to z. Obviously, if zi = zmax, we get yi = N + 1, and we should set yi = N .

2. mapping the n numerical values to N categorical values using a histogram binning based

method.

3. clustering the n numerical values into N clusters using any numerical clustering algorithm (e.g.

k-means). The optimal number of clusters N can be chosen based on some validation criteria.

There are also several methods to convert a categorical type attribute to the numerical domain:

1. by mapping the n values of a nominal attribute to binary values using 1-of-n encoding, resulting

in transactional-like data, with each nominal value becoming a distinct binary attribute

2. by mapping the n values of an ordinal nominal attribute to integer values in the range of 1 to

n, resulting in numerical data with n values

Transaction data can be thought of as a special type of categorical or numerical data having boolean

values, with all the possible items as attributes.

The second classical approach is to run a specially designed clustering algorithm independently

on each domain, respectively, and then take the best clustering result into account. We call this

method the splitting approach.

There are many specialized clustering algorithms for different types of data. For instance, categor-

ical attributes have been handled using k-modes [Huang, 1998a], ROCK [Guha et al., 2000] or CAC-

TUS [Ganti et al., 1999]. The main idea of the k-modes algorithm is to select k initial modes, followed

by allocating every object to the nearest mode. The k-modes algorithm uses the matching dissimi-

larity measure to measure the distance between categorical objects [Kaufman and Rousseeuw, 1990].
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ROCK is an adaptation of an agglomerative hierarchical clustering algorithm, which heuristically

optimizes a criterion function defined in terms of the number of ”links” between tuples, where the

number of links between two tuples is the number of common neighbors. Starting with each tuple in

its own cluster, the algorithm repeatedly merges the two closest clusters until the required number

of clusters remain. The central idea behind CACTUS is that a summary of the entire data set is

sufficient to compute a set of ”candidate” clusters which can then be validated to determine the

actual set of clusters. The CACTUS algorithm consists of three phases: computing the summary in-

formation from the data set, using this summary information to discover a set of candidate clusters,

and then determining the actual set of clusters from the set of candidate clusters.

The spherical k-means algorithm is a variant of the k-means algorithm that uses the cosine simi-

larity instead of the Euclidean distance. The algorithm computes a disjoint partitioning of the doc-

ument vectors, and for each partition, computes a centroid normalized to have unit Euclidean norm

[Dhillon and Modha, 2001]. This algorithm was successfully used for clustering transactional and

text data (text documents are often represented as high-dimensional and sparse vectors). LargeItem

[Wang et al., 1999] is an optimization algorithm designed for clustering transaction data based on

the notion of large items without using any measure of pairwise similarity. The LargeItem algorithm

consists of two phases: the allocation phase and refinement phase. Given a user-specified minimum

support θ (0 < θ < 1), an item i is large in a cluster C if its support, or number of transactions con-

taining the item, is at least θ|C|. Otherwise, item i is small in C. The criterion of a good clustering

is that there are many large items within a cluster and there is little overlapping of such items across

clusters. The objective function or cost function is defined in terms of the intracluster cost and

intercluster cost. CLOPE is an algorithm designed for clustering transactional or categorical data

[Yang et al., 2002]. Like most partitional clustering approaches, CLOPE has a criterion function

that guides the algorithm to approximate the best partition by iteratively scanning the data set.

This global criterion function tries to increase the intracluster overlapping of transaction items by

increasing the height-to-width ratio of the cluster histogram. Different numbers of clusters can be

obtained by varying a user-specified parameter r, which controls the tightness of the cluster.

Numerical data has been clustered using k-means [MacQueen, 1967], DBSCAN [Ester et al., 1996]

and others [Nasraoui and Krishnapuram, 2002, Nasraoui and Krishnapuram, 1996]. The k-means

algorithm [MacQueen, 1967] is a partitional or non-hierarchical clustering method, designed to clus-

ter numerical data in which each cluster has a center called mean or centroid. The k-means algorithm

proceeds as follow: for a given set of k initial clusters, the data are assigned to the nearest clus-

ter center and the cluster centers are recomputed. The two previous steps are repeated until the
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objective function (sum of distances from the data to their corresponding cluster centers) does not

significantly change or the memberships of the clusters no longer change. DBSCAN is a density-

based clustering algorithm designed to discover arbitrary shaped density-based clusters. A point x is

directly density reachable from a point y if it is not farther away from it than a given distance ε (i.e.,

is a part of its ε-neighborhood), and if the ε-neighborhood of y has more points than a user-specified

threshold parameter Nmin, such that one may consider y and x to be part of a cluster.

The limitations of all the above approaches are as follows:

• Specialized clustering algorithms can fall short when they must handle different data types for

which they are not specialized.

• Data type conversion can result in the loss of information (e.g: when a numerical range is

discretized into a small number of levels), waste of storage (e.g: categorical attributes are

typically transform into a large number of dimensions), or creation of artefacts in the data

(e.g: an unfortunate discretization of a numerical attribute can map a majority of data to a

single value).

• Different data sources can be hard to combine for the purpose of clustering because of the

problem of duplication of data and the problem of missing data from one of the sources,

in addition to the problem of heterogeneous types of data from multiple sources that are

incompatible with one another. This means that combining data may be harmful to the

knowledge discovery!

2.3.2 Clustering a Combined Dissimilarity Matrix

Besides data conversion, another common approach to clustering data with mixed attribute types is

to pre-compute a specially designed distance measure for each subset of same-type attributes, then

combine them into one dissimilarity measure and finally cluster the resulting dissimilarity matrix

using a relational or kernel clustering algorithm [Frigui et al., 2007]. Relational clustering is more

general in the sense that it is applicable to situations in which the objects to be clustered cannot

be represented by numerical features [Nasraoui et al., 1999, Nasraoui and Frigui, 2000]. There are

several well-known relational clustering algorithms in the literature. One of the most popular is the

sequential agglomerative hierarchical nonoverlapping (SAHN) model, which is a bottom-up approach

that generates crisp clusters by sequentially merging pairs of clusters that are closest to each other

in each step [Sheath and Sokal, 1973]. Depending on how “closeness” between clusters is defined,

the SAHN model gives rise to single, complete, or average linkage algorithms. A variation of this
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algorithm can be found in [Guha et al., 1998]. Another well-known relational clustering algorithm

is partitioning around medoids (PAM) [Kaufman and Rousseeuw, 1990]. This algorithm is based on

finding representative objects from the data set in such a way that the sum of the within cluster dis-

similarities is minimized. A modified version of PAM, called CLARA (clustering large applications)

to handle large data sets relies on a sampling approach to handle large data sets.

Regarding kernel clustering methods, several clustering methods have been modified to incorpo-

rate kernels, this includes modifications of the: k-means [Muller et al., 2001, Girolami, 2002], fuzzy

c-means [Zhang and Chen, ], SOM [Inokuchi and Miyamoto, 2004, MacDonald and Fyfe, 2000], and

Neural gas [Qinand and Suganthan, 2004]. Kernel-based learning algorithms are based on Cover‘s

theorem [Cover, 1965]. By nonlinearly transforming a set of complex and nonlinearly separable pat-

terns into a higher-dimensional feature space, we can obtain the possibility to separate these patterns

linearly. Kernel clustering methods can be broadly divided in three categories [Filippone et al., 2008],

which are based, on:

• Kernelization of the metric. Methods based on kernelization of the metric look for centroids

in the input space and the distances between patterns and centroids is computed by means of

kernels;

• Clustering in the feature space. Clustering in the feature space is made by mapping each

pattern using a nonlinear transformation Φ and then computing the centroids in the feature

space. Calling vΦ
i the centroids in the feature space, it is possible to compute the distance

between a data sample and its cluster centroid in feature space by means of the kernel trick;

• Description via support vectors. The description via support vectors makes use of One Class

SVM to find a minimum enclosing hypersphere in feature space able to enclose almost all data

in feature space excluding outliers [Ben-Hur et al., 2002, Ben-Hur et al., 2001]. Data points

are mapped from the input space to a high dimensional feature space using a kernel. In the

feature space, we look for the smallest hypersphere that encloses the data. This hypersphere is

mapped back to the input space, where it forms a set of contours which enclose the data points.

These contours are interpreted as nonlinear arbitrary shaped cluster boundaries. Finally, the

support vector clustering algorithm assigns the same label to the data that are enclosed by the

same surface in the input space.
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2.3.3 Algorithms for Mixed-Type Data Clustering

One approach to cluster data with mixed attribute types without any data conversions or pre-

computation of a combined distance measure, is to use specialized clustering algorithms, which

were designed to handle mixed-type data. Several algorithms for mixed data attributes exist,

for instance the k-prototypes [Huang, 1998b], INCONCO [Plant and Böhm, 2011], k-means-mixed

[Ahmad and Dey, 2007], and CAVE [Hsu and Chen, 2007]. The k-prototype algorithm integrates

the k-means [MacQueen, 1967] and the k-modes [Huang, 1998a] algorithms to allow for clustering

objects described by mixed numerical and categorical attributes. The k-prototypes works by simply

combining the Euclidean distance and categorical distance measures in a weighted sum. The choice

of the weight parameter and the weighting contribution of the categorical versus numerical domains

cannot vary from one cluster to another, and this can be considered as a limitation. The INCONCO

algorithm extends the Cholesky decomposition [Kershaw, 1978] to model dependencies in heteroge-

neous data and, relying on the principle of Minimum Description Length [Rissanen, 1978], integrates

numerical and categorical information in clustering. The limitations of the INCONCO algorithm in-

clude that it assumes a known probability distribution model for each domain. Also, it assumes that

the number of clusters must be identical and it is limited to two domains, specifically, categorical

and numerical features. The k-means-mixed clustering algorithm is based on the k-means paradigm

and works with mixed numerical and categorical features [Ahmad and Dey, 2007]. It uses a cost

function and distance measure that are based on the co-occurrence of values. The distance measure

also takes into account the significance of an attribute towards the clustering process. The definition

of a cluster center contains the proportional distribution of different categorical values in the cluster.

Hence, when the cost function computes the distance of an object from the existing cluster centers,

the function inherently considers the significance of each attribute and is based on the probability

of an element to be pulled towards a cluster depending on the distribution of the different attribute

values present in the cluster. CAVE is a clustering algorithm based on variance and entropy, that

is able to mine mixed data [Hsu and Chen, 2007]. The algorithm uses variance for measuring the

similarity of numerical values and integrates entropy with distance hierarchies for measuring the

similarity between categorical values. In particular, a distance hierarchy is composed of concept

nodes and links; where higher-level nodes represent more general concepts while lower-level nodes

represent mode specific concepts. In addition, each link is associated with a weight representing

a distance. The algorithm then aggregates the similarity quantities from the categorical and the

numerical parts to compute the similarity values between the mixed data.
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2.3.4 Multiview Clustering (MC)

The multiview setting typically applies to supervised learning problems that have a natural way to

divide their features into subsets (views) each of which are sufficient to learn the target concept.

Multiview algorithms train two independent hypotheses with bootstrapping by providing each other

with labels for the unlabeled data [Blum and Mitchell, 1998]. The training algorithms tend to max-

imize the agreement between the two independent hypotheses and optimally combine the multiple

views. In the rest of this section, we will use the terms graph and view interchangeably.

Bickel and Scheffer developed a multiview version of mixture-of-multinomials model based clus-

tering for text data [Bickel and Scheffer, 2004]. For the estimation of mixture-of-multinomials model

parameters, they use an Expectation Maximization (EM) approach. A drawback of the mixture-

of-multinomials is that documents with equal composition of words but with different word counts

yield different posteriors. To deal with this problem, they also introduce the multiview version of

spherical k-means algorithm which normalizes each document vector to unit length. They start from

randomly initialized concept vectors for each cluster and assign the documents that are closest to

its concept vector to the corresponding partition in the first view. In the next step, they estimate

the new concept vectors in the second view based on the clustering partition from the first view.

Then based on the new concept vectors, they compute a new clustering partition in the second view.

These steps keep alternating until the algorithm converges. Thus, at each step, a clustering partition

from one view is replaced by a clustering partition from another view.

Aside from Bickel and Scheffer [Bickel and Scheffer, 2004], the remaining multiview cluster-

ing algorithms have been based on graph clustering. Besides the direct combination of graphs,

[Abhishek and Hal, 2011] and [Abhishek et al., 2011] proposed to maximize the agreement between

different views. Relying on the central idea that the clustering from one view should agree with

the clustering from another view, they extended spectral clustering to multiple views based on the

co-training idea [Blum and Mitchell, 1998]. Their approach is based on the assumption that the

true underlying clustering would assign corresponding points in each view to the same cluster. First,

they perform spectral clustering on individual graphs to get the discriminative eigenvectors in each

view. Then they iteratively find a projection of the similarity matrix of the first view along the

eigenvectors of the second view and vice-versa. Then, using the projections of the first and second

views as the new graph of similarities, they compute the Laplacian and find updated values for the

discriminative eigenvectors in both views. After the final values of the eigenvectors of both views

are obtained, they select the most informative view and cluster the eigenvectors of the selected view
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with the k-means algorithm.

A completely different approach was proposed in [Zhou and Burges, 2007], that first “combines”

the two views/graphs and then proceeds with spectral clustering. They use a Markov random walk

model to combine multiple graphs. Assuming a random walk with the current position being at a

vertex in one graph, in the next step, the walker may continue her random walk in the same graph

with a certain probability, or jump to the other graph with the remaining probability and continue

her random walk there. A subset of vertices is regarded as a cluster if during the random walk, the

probability of leaving this subset is small while the stationary probability mass of the same subset

is large.

Another approach that was proposed in [de Sa, 2005] uses an algorithm for spectral clustering in

the multiview setting where there are two independent subsets of dimensions, each of which could be

used for clustering. The algorithm clusters the data in each view so as to minimize the disagreement

between the clusterings. The main idea is that two (or more) networks receiving data from different

views, but with no explicit supervisory label, should cluster the data in each view so as to minimize

the disagreement between clusterings. Both views are combined into a bipartite graph, where the

strength of the weight (Gaussian weighted normalized distance) between two nodes (patterns) in

different views depends on the number of co-occurring pairs of patterns that are sufficiently close in

both views. Using those weights, they define an affinity matrix which is then clustered by spectral

graph clustering [Ng et al., 2001].

Finally, [Tang et al., 2009] presented a Linked Matrix Factorization (LMF) algorithm to find a

shared partition of different views in both unsupervised and semi-supervised settings. In LMF, each

graph is approximated by matrix factorization with a graph-specific factor and a factor common to

all graphs, where the common factor provides features for all vertices. Then, vertices are clustered

in the new feature space common for all views with a spectral clustering algorithm.

2.3.5 Ensemble Clustering (EC)

The success of ensemble-based methods for supervised learning has motivated the development of

ensemble methods for unsupervised learning. The basic idea of clustering ensembles is to combine

multiple partitions into a single clustering solution. Clustering ensembles can go beyond what

is typically achieved by a single clustering algorithm in several respects: (i) robustness: better

average performance across the data sets; (ii) novelty: finding a combined solution unattainable by

any single clustering algorithm; (iii) stability and confidence estimation: clustering solutions with

lower sensitivity to noise, outliers, or sampling variations. This is because clustering uncertainty

15



can be assessed better from ensemble distributions; (iv) parallelization and scalability: the ability

to integrate solutions from multiple distributed sources of data or features [Topchy et al., 2004a,

Topchy et al., 2005].

Ensemble clustering must tackle three major problems which are specific to combination design:

• Consensus function: Unlike supervised classification, the patterns are unlabeled and therefore,

there is no explicit correspondence between the labels delivered by different clusterings. An

extra complexity arises when different partitions contain different numbers of clusters, often

resulting in an intractable label correspondence problem. The optimal correspondence can be

obtained using the Hungarian method for the minimal weight bipartite matching problem with

O(k3) complexity for k clusters [Kuhn, 1955, Frank, 2005].

• Diversity of clusterings: There are many different ways of generating a clustering ensem-

ble and then combining the partitions. Multiple data partitions could be generated by: (i)

applying different clustering algorithms, (ii) applying the same clustering algorithm with dif-

ferent values of parameters (different number of clusters, different number of neighbors, etc.)

or initializations, and (iii) combining different data representations (different sets of features

or different subsets of the original data) and clustering algorithms [Strehl and Ghosh, 2003],

[Topchy et al., 2004b], [Hore et al., 2009].

• Cluster ensemble selection: Given a large library of clustering solutions, the goal of cluster

ensemble selection is to choose a subset from the library to form a smaller cluster ensemble that

performs as well as, or better than, using all available clustering solutions [Fern and Lin, 2008].

Clustering ensembles can also be used in multiobjective clustering as a compromise between individ-

ual clusterings with conflicting objective functions and plays an important role in distributed data

mining [Strehl and Ghosh, 2003]. In [He et al., 2005], the authors proposed a divide and conquer

technique to cluster data with mixed types of attributes. First, the original mixed data set is divided

into two subsets: the pure categorical data set and the pure numerical data set. Next, an existing

clustering algorithm designed to cluster a specific type of data is employed to cluster each subset

separately and produce the corresponding clusterings. Last, the clustering results of the categori-

cal and numerical data sets are combined as a categorical data set, on which the categorical data

clustering algorithm is used to produce a final clustering.

The Weighted Cluster Ensembles method [Domeniconi and Al-Razgan, 2009] performs multiple

clustering of the data in multiple subspaces of the input space, thus creating diverse partitions
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that are later combined in an ensemble of weighted clusters. However, the goal of this method is

not to tackle different domains or mixed data types, but rather to perform ensemble clustering in

different subspaces of conventional data of the same type. Moreover, following the desiderata of

all ensemble learning methods, this method actually strives to combine individual clustering results

that are independent of one another, and thus are as diverse as possible. Also like all ensemble

learning methods, there is no interaction or cooperation between the multiple domains during the

cluster optimization process. This is exactly the opposite of our goal, which does not aim at ensemble

clustering, but rather aims at performing clustering in each domain, but where the different domains

actually do interact with each other to send and receive mutual guidance, ”while” striving to obtain

a better clustering in “each” domain, not only in the combined domains.

2.3.6 Collaborative Clustering (CC)

The problem of collaborative clustering can be defined as follows: “Given a finite number of disjoint

data sites with data patterns defined in the same or different feature spaces, develop a scheme of

collective development and reconciliation of a fundamental cluster structure across the sites that

is based on exchange and communication of local findings where the communication needs to be

realized at some level of information granularity” [Pedrycz and Rai, 2008]. One important feature is

that sharing the raw data together is not allowed given restrictions of privacy or other technical rea-

sons. However, some findings at the higher conceptual level of information granules could be shared

between the collaborating data sites. Usually, the information granules are cluster membership

partition matrices, constructed through fuzzy clustering [Dunn, 1973].

The main goal of collaboration is to give an ability for each node to benefit other nodes based on

their needs. It is important to note that the collaborative approach aims only at enriching the local

clustering solution of each individual node based on recommendations from other nodes. Thus, no

“combined” solution is desired. This means that the goal of collaborative clustering is distinct from

the goal of providing a clustering solution for the entire heterogeneous data set. In other words,

collaborative clustering is centered on data being distributed over multiple sites.

Pedrycz [Pedrycz and Rai, 2009] proposed an algorithm where two underlying processes are run

consecutively. It starts with fuzzy clustering procedures (FCM) [Bezdek et al., 1984] that are run

independently at each data site for a certain number of iterations until convergence. Next, the data

sites exchange the findings by transferring partition matrices, and afterward, an iterative process

which optimizes the objective function takes place. After convergence, the partition matrices are

exchanged between the data sites and the iterative computing of the partition matrices and the pro-
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totypes resume. Another interesting CC approach was presented in [Hammuoda and Kamel, 2006]

that proposed a distributed collaborative approach for document clustering. The main objective of

this paper was to allow peers in a network to form independent opinions of local document grouping,

followed by an exchange of cluster summaries in the form of key-phrase vectors. The nodes then

expand and enrich their local solution by receiving recommended documents from their peers based

on the peer judgement of the similarity of the local documents to the exchanged cluster summaries.

2.4 Semi-Supervised Clustering

Apart from clustering algorithms, which are unsupervised learners in the sense that they use unla-

beled data, recent years have seen increasing interest in another direction, known as semi-supervised

learning (SSL) which takes advantage of both labeled and unlabeled data. Many semi-supervised

algorithms have been proposed including co-training, transductive support vector machines, entropy

minimization, semi-supervised Expectation Maximization, graph-based approaches, and clustering-

based approaches. In semi-supervised clustering, labeled data can be used in the form of

• initial seeds [Basu et al., 2002a],

• constraints [Wagstaff et al., 2001],

• feedback [Cohn et al., 2003].

All these existing approaches are based on model-based clustering [Zhong and Ghosh, 2003] where

each cluster is represented by its centroid. Seed-based approaches use labeled data only to help ini-

tialize cluster centroids, while constrained approaches keep the grouping of labeled data unchanged

throughout the clustering process, and feedback-based approaches start by running a regular clus-

tering process and finally adjusting the resulting clusters based on labeled data (see Figure 2.2).

Finally, it is worth mentioning that, although rooted in ideas of SSL, our IDS clustering framework

is distinct. Semi-supervised clustering relies on user-supplied labels, whereas our proposed approach

is completely unsupervised and thus does not rely on any external labels. Instead, it relies on

selective, soft mutual guidance between the different domains of the data, while clustering.
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(a) Semi-supervised seed-based approach (b) Semi-supervised constraint-based approach

Figure 2.2: Seed-based and constraint-based semi-supervised clustering approaches

2.5 Limitations of Existing Methods and Comparison with

the Proposed Work

Using Multiview Clustering to Cluster Heterogeneous Data and Relationship to Our

proposed Framework

It is clear that most of the multiview methods, reviewed above, could be used for clustering hetero-

geneous data, and in most cases for data that is expressed as a graph. In those cases, the graphs

are combined either before or during clustering, based on the assumption that they are combinable

(see Figure 2.3). However what if the graphs are not compatible on certain parts of the data?

Such a situation is never hypothesized in MC algorithms, and therefore it cannot be handled. One

exception to the graph-based MC is [Bickel and Scheffer, 2004] which works directly on document

objects, not graphs, expressed in two views. However, one limitation of this approach is that the

entire partition membership matrix is transferred to the other view after its convergence in its own

view. It is easy to show that in case of incompatibility between views, this blind exchange will lead to

instability, leading to an infinite cycle of exchanges of partitions between the different views without

any improvement resulting from such an exchange. Thus, one limitation of existing MC methods is

the insistence on enforcing “agreement” between the different aspects of the data. Such an assump-

tion, when violated, may force incorrect results. In this dissertation, we propose an inter-domain

compatibility analysis to improve the clustering of heterogeneous data.
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Figure 2.3: Multiview clustering.

Using Ensemble Clustering to Cluster Heterogeneous Data and Relationship to our

proposed Framework

EC can handle heterogeneous data by dedicating a different clustering process to each domain

and aggregating the results within an ensemble framework (see Figure 2.4), which by intuition,

emphasizes a consensus or agreement between the different domains, as was done in [He et al., 2005].

One limitation of EC methods would be in dealing with incompatibilities between the different

domains. Our proposed Inter-Domain Supervision (IDS) approach may appear to be similar to

ensemble-based clustering. However, one main distinction is that our approach enables the different

algorithms running in each domain to reinforce or supervise each other during all the stages until

the final clustering is obtained. In other words, our approach is more collaborative. Ensemble-based

methods, on the other hand, were not intended to provide collaborative exchange of knowledge

between different data “domains” while algorithms are still running, but rather to combine the end

results of several runs or algorithms.

Also, even if the base clustering algorithms were distributed over different domains, EC methods

do not provide any reliable individual clustering result from each domain on its own during the

clustering process, but would rather require all the single-domain clusterings to complete and then

be combined before having any viable clustering result that is ready for use. In contrast, our

proposed IDS clustering approach works on producing reliable clustering in each domain from the

very beginning of the clustering process; thus it is able to provide a reliable result even at intermediate

stages, before all the clustering processes over all the domains are completed.
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Figure 2.4: Ensemble clustering.

Using Collaborative Clustering (CC) for Heterogeneous Data Clustering and Relation-

ship to Our Proposed Framework

Although this was not the purpose of CC, one way to harness CC to cluster heterogeneous data is

to consider each site as dedicated to only one pure domain of the data (see Figure 2.5). However,

CC does not provide a “combined” clustering result, and similarly to MC and EC, makes an im-

plicit assumption of necessary agreement between the different domains. To summarize, the main

differences between collaborative clustering and our proposed IDS approach are:

• in collaborative clustering, the data is physically distributed across different nodes or sites,

and in fact, this is the main assumption that guides the clustering strategy,

• the data sets at the different sites have the same type of features,

• collaborative clustering seeks to improve the local clustering solution at each node or site and

no final combined solution is desired.

Therefore, it is clear from the above distinctions that CC was designed to solve a problem that is

distinct from our heterogeneous data clustering problem.

2.6 Clustering Evaluation

The procedure of evaluating the results of a clustering algorithm is often referred to as cluster validity.

In general terms, there are three approaches to investigate cluster validity [Halkidi et al., 2002].
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Figure 2.5: Collaborative clustering.

The first approach is based on external criteria that assess the quality of the results of a clustering

algorithm based on a pre-specified or ground-truth structure, reflecting our intuition or knowledge

about the actual clustering structure of the data. Typically the ground-truth comes in the form of

known data labels.

The second approach is based on internal criteria, that evaluate the clustering results based only

how they fit the vectors of the data set themselves (e.g. distance or similarity matrix).

The third approach of clustering validity is based on relative criteria, meaning the evaluation of

a clustering structure by comparing it to other clustering schemes, resulting by the same algorithm

but with different input parameter values.

The first two approaches typically rely on statistical tests, or a computing validity score or index,

and their major drawback is their high computational cost. Moreover, a typical validity index aims

at measuring the degree to which a data set confirms same assumed distribution or structure. On the

other hand, the third approach aims at finding the best clustering result that a clustering algorithm

can define under certain assumptions and parameters. For example, it can be used to automatically

determine an optimal number of clusters.

2.6.1 Internal index metrics

• The Davies-Bouldin (DB) index is a function of the ratio of the sum of within-cluster scatter to

between-cluster separation [Davies and Bouldin, 1979]. Hence the ratio is small if the clusters

are compact and far from each other. That is, the DB index will have a small value for a good
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clustering. The DB index is defined as:

DB =
1

k

k∑
i=1

max
j:i6=j

δi + δj
∆ij

,

where δi is the mean distance of the points belonging to cluster i to their centroid µi and ∆ij

is the distance between the centroids µi and µj .

• The Silhouette index is calculated based on the average silhouette width for each sample s(i),

average silhouette width, Sk, for each cluster and overall silhouette width, S, for the entire

data set [Rousseeuw, 1987]. The average silhouette width for each sample s(i) is defined as

follows:

s(i) =
b(i)− a(i)

max {a(i), b(i)}
,

where a(i) is the average dissimilarity of data point xi with the data within the same cluster

and b(i) is the minimum over all clusters of the average dissimilarity of xi with the data from

each other cluster. The mean of the silhouette widths for a given cluster Ir is called cluster

mean silhouette width and is defined as

Sr =
1

nr

∑
i∈Ir

s(i),

where nr is the number of data points in Ir. Finally, the global silhouette width or index

for the entire data set is defined as the average of the mean silhouettes of all the clusters, as

follows:

S =
1

k

k∑
r=1

Sr.

Using this approach, each cluster can be represented by its silhouette, which is based on the

comparison of its compactness and separation from other clusters. A silhouette value s(i) close

to 1 means that the data sample is well-clustered and assigned to an appropriate cluster. A

silhouette value close to zero means that the data sample could be assigned to another cluster,

and the data sample lies halfway between both clusters. A silhouette value close to -1 means

that the data sample is misclassified and is located somewhere in between the clusters.

• The Dunn index is based on the concept of cluster sets that are compact and well separated

[Dunn, 1974]. The main goal of the measure is to maximize the inter-cluster distances and

minimize the intra-cluster distances. The size or diameter of a cluster ∆r can be defined as
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maximum distance between any two points inside a cluster r:

∆r = max
xi,xj∈Ir

D(xi, xj).

Let δrr′ be the distance between clusters r and r′ and defined as follows:

δrr′ = min
xi∈Ir,xj∈Ir′,r 6=r′

D(xi, xj).

Then the Dunn index with the k clusters is defined as:

DI =

min
r 6=r′

δrr′

max
1≤r≤k

∆r
.

A higher value of the Dunn index means a better clustering.

• The Xie-Beni (XB) index is an index of fuzzy clustering, but it also can be used in crisp

clustering [Xie and Beni, 1991]. It is defined as the ratio of the mean quadratic distance

between every point and its cluster centroid to the minimum distance between cluster centroids:

XB =
1

N

N∑
i=1

c2iliD(xi, µli)
2

min
l 6=l′

D(µl, µl′)2
,

where cili is the fuzzy membership (or in case of crisp clustering, crisp membership) of data

point i and µli is the cluster centroid of cluster li. A lower value of the XB index means a

better clustering.

2.6.2 External index metrics

External metrics are only used if the external ground-truth class labels are available with the data.

• Purity is a simple evaluation measure that assumes that an external class label is available to

evaluate the clustering results. First, each cluster is assigned to the class which is most frequent

in that cluster, then the accuracy of this assignment is measured by the ratio of the number

of correctly assigned data samples to the number of data points. A bad clustering has purity

close to 0, and a perfect clustering has a purity of 1. Purity is very sensitive to the number of

clusters; in particular, purity is 1 if each point gets its own cluster [Manning et al., 2008].

• Entropy is a commonly used external validation measure that measures the purity of the
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clusters with respect to the given class labels [Shannon, 1948]. To find the entropy of the

clustering, we compute the probability, plr = nlr/nr, that a member of cluster r belongs to

class l, where nr is the number of data points in cluster r and nlr is the number of data points

of class l in the cluster r. Then using the class distribution, the entropy of each cluster r is

calculated using the standard entropy formula er = −
∑L
l=1 plr log2 plr, where L is the number

of classes. The total entropy for a set of clusters is calculated as the sum of the entropies of

each cluster weighted by the size of each cluster:

E =
1

N

k∑
r=1

nrer,

where k is the number of clusters, and N is the total number of data points. A perfect clustering

has an entropy close to 0 which means that every cluster consists of points with only one class

label. A bad clustering has an entropy close to 1.

• Normalized mutual information (NMI) estimates the quality of the clustering with respect to

a ground-truth class membership [Strehl et al., 2002]. It measures how closely the clustering

algorithm could reconstruct the underlying label distribution in the data and is defined as

follows

NMI =
I(X,Y )√
H(X)H(Y )

,

where I(X;Y ) = H(X)−H(X|Y ) is the mutual information between random variables X and

Y , H(X) and H(Y ) are the marginal entropies, and H(X|Y ) is the conditional entropy of X

given Y . The minimum NMI is 0 if the clustering assignment is random with respect to class

membership. X and Y represent the class label and cluster label, respectively. The maximum

NMI is 1 if the clustering algorithm perfectly recreates the class memberships.

2.7 Chapter Summary and Discussion

In Table 2.2, we summarize the existing approaches for clustering mixed data types and give an

overview of the proposed IDS framework. We distinguish them based on the following criteria:

• whether there is knowledge exchange between domains during the clustering process,

• the way they handle the clustering of mixed type data,

• the advantages of the clustering approach,

• the disadvantages or limitations of the clustering approach.
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In the next chapter, we present the proposed IDS approach.

Table 2.2: Overview of clustering approaches.

Approach Domain Integration How they handle

clustering of

mixed-type data

Pros Cons

Algorithms for

specific types of data,

Subsection 2.3.1.
• Not integrated

• No interaction

between the

domains

Splitting into different

domains. Conversion

to one type or domain

Very simple and fast

• Limited to a

specific data

type

• Potential loss

of information

• Possible cre-

ation of arti-

facts in the

data

• Assumes the

same number

of clusters in

all domains
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Approach Domain Integration How they handle

clustering of

mixed-type data

Pros Cons

Combining distances

into a single distance

matrix, Subsection

2.3.2.

Fully integrated, but

domains do not

interact during the

clustering process

Similarity function

which combines

different types of data
• Simple

• Can use exist-

ing algorithms

for clustering

the distance

matrix

• Must devise a

specialized dis-

tance or simi-

larity function

that can ad-

equately com-

bine both do-

mains

• Assumes the

same number

of clusters in

all domains

• Must worry

about weight-

ing the con-

tribution of

each domain

to the distance

computation

• Assumes all

domains are

compatible

with each

other
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Approach Domain Integration How they handle

clustering of

mixed-type data

Pros Cons

Algorithms for mixed

data, Subsection

2.3.3.

Fully integrated Unified model that

combines the

clustering objectives

into one cost function

Work only on specific

combinations of data

types
• Limited to a

specific data

types and

clustering

algorithm

• Limited to only

two types or

source of data

• Assumes the

same number

of clusters

• Assumes all

domains are

compatible one

another

Multiview clustering

(MC), Subsection

2.3.4.

Fully integrated In most cases, data

from each domain is

expressed as a graph

and then graphs are

combined together

• A broad vari-

ety of existing

MC methods

• Can use an

existing algo-

rithms

• MC methods

enforce “agree-

ment” between

the different

aspects of the

data

• Assumes the

same number

of clusters

• Assumes all

domains are

compatible one

another
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Approach Domain Integration How they handle

clustering of

mixed-type data

Pros Cons

Ensemble clustering

(EC), Subsection

2.3.5.

Not integrated By dedicating a

different clustering

process to each

domain and

aggregating the

results within an

ensemble framework

• A broad vari-

ety of existing

EC methods

• Allows a differ-

ent number of

clusters

• Can use any

existing algo-

rithms as a

base clustering

algorithm

• Ensemble size

has to be at

least 3

• Assumes all

domains are

compatible

one another

to form a

consensus

Collaborative

clustering (CC),

Subsection 2.3.6.

Fully integrated via a

combined objective

function

Considers each site as

dedicated to only one

pure domain of the

data

Can use an existing

algorithm as a base

clustering
• CC only seeks

to improve the

local clustering

solution at

each node

• Assume the

same type of

data at each

site

• Assumes all

domains are

compatible one

another
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Approach Domain Integration How they handle

clustering of

mixed-type data

Pros Cons

Proposed

Inter-Domain

Supervision (IDS)

Framework, Chapter

3.

Can be selective

about whether and for

which part of the data

to integrate

Separate domains

mutually supervise

each other within a

SSL framework

• Can adapt a

broad variety

of existing

SS methods

(constraint or

seed)

• Can handle a

different num-

ber of clusters

per domain

• Can use any

existing algo-

rithm as the

base learner

• Performs selec-

tive integration

of the domains

in different

data subsets

depending on

their compati-

bility for each

subset

To be determined
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CHAPTER 3

METHODOLOGY

As we have concluded from the previous chapter, most of the current clustering approaches are

limited to a particular data type or rely on a specific similarity function, which usually comes from

a domain expert. During the clustering process they often assume the same number of clusters in

each domain and assume a specific distribution model for each data domain [Plant and Böhm, 2011,

Hsu and Chen, 2007, Ahmad and Dey, 2007, Huang, 1998b]. Most of the methods were not intended

to provide a collaborative exchange of knowledge between the different data “domains” during the

progression of the clustering algorithms, but rather combine the end results.

In this chapter, we propose a new methodology for clustering data comprising multiple domains

or parts, in such a way that the separate domains mutually supervise each other within a semi-

supervised learning framework. We call our approach Inter-Domain Supervision Clustering (IDS

Clustering). Unlike current uses of semi-supervised learning, our methodology does not assume the

presence of labels for part of the data; rather, that each of the different domains of the data separately

undergoes an unsupervised learning process, while sending and receiving guidance information in the

form of data constraints or seeds to/from the other domains. The entire process can be considered

as an alternation of semi-supervised learning stages in the different data domains.

Our proposed IDS framework can use specifically designed clustering algorithms which can be

distinct and specialized for each domain or type of data, however all the algorithms are bound

together within a collaborative scheme:

1. For categorical data types, the algorithms k-modes [Huang, 1998a], ROCK [Guha et al., 2000],

CACTUS [Ganti et al., 1999], etc, can be used.

2. For transactional or text data, the spherical k-means algorithm [Dhillon and Modha, 2001], or

other specialized algorithm can be used.

3. For numerical data types, one can use the k-means [MacQueen, 1967], DBSCAN [Ester et al., 1996],

or any other clustering algorithm for such data.
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Symbol Description

T One single source or domain of the data (e.g: attribute of one type)
MT The cluster membership matrix of domain T
vTMT

A validity index vector computed for each cluster in the data domain
T using MT

xbTMT
The Xie-Beni index vector computed for each cluster in the data

domain T using MT

dbTMT
The Davies-Bouldin index vector computed for each cluster in the

data domain T using MT

t The number of iterations in which there is no supervision between
domains

k The number of clusters
kT The number of clusters in domain T
J The Jaccard coefficient matrix
N The number of objects in the data set
X The set of data objects
x A data object or record
UT,j The set of points that belong to cluster j in domain T
D The distortion measure between the data points or objects
M The set of must-link constraints
C The set of cannot-link constraints
W The set of violation costs for must-link constraints
W̄ The set of violation costs for cannot-link constraints
ncT Number of constraints in domain T
nT Number of exchange points in domain T , from which pairwise

constraints would be send to another domain
µ A cluster representative or centroid
L The set of cluster labels
l A cluster label
I() Indicator function, I(x) = 1, iff x is true and I(x) = 0, otherwise

Table 3.1: List of notations

4. For graph data, one can use KMETIS [Karypis and Kumar, 1998], spectral clustering [Shi and Malik, 2000],

or any other specialized algorithm for graphs.

In Section 3.1 and 3.2, we propose two different models for mutual supervision between different

domains of the data: (i) via seed exchange and (ii) via constraints, respectively.

Then in section 3.4, we explore the role of compatibility between the different domains in hetero-

geneous data before applying our Inter-Domain Supervision clustering. Our findings indicate that

a preliminary domain compatibility analysis step sets the stage for a more effective clustering of

heterogeneous data that can exploit the synergy between the different domains in a more selective

manner.

Table 3.1 lists the important notation that will be used throughout the rest of the chapter.
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3.1 Seed-based Inter-Domain Supervision (Seed-based IDS)

3.1.1 The Case of an Equal Number of Clusters in Each Data Type or

Domain

The proposed seed-based IDS framework, can handle data records composed of two parts of data of

any type, for example: numerical and categorical, numerical and transactional, text and visual, and

etc. For the sake of simplicity, let’s assume that first part of data consists of attribute of numerical

type and the second part consists of attributes of categorical type. Our semi-supervised inspired

framework consists of the following stages, as shown in Figure 3.1:

1. Splitting Across Domains: The first stage consists of dividing the set of attributes into two

subsets: one subset, called domain T1, with only attributes of numerical type (age, income,

etc), and another subset, called domain T2, with attributes of categorical type (eyes color,

gender, etc).

2. Baseline Clustering Per Domain: The next stage is to cluster each subset using a specif-

ically designed algorithm for that particular data type. In our experiments, we used k-means

[MacQueen, 1967] for numerical type attributes T1, and k-modes [Huang, 1998a] for categor-

ical type attributes T2. Both algorithms start from the same random initial seeds and run

for a small number of iterations (tn and tc for k-means and k-modes, respectively), yielding

(data-cluster) membership matrices MT1
and MT2

, respectively.

3. Best Cluster Selection from All Domains: In the third stage, we compare the cluster

centroids obtained in the first domain, T1, and the second domain, T2, and find the best

combination of both for each of the domains.

(a) Cluster Matching: First, we solve a cluster correspondence problem between the two

domains using the Hungarian matching method [Frank, 2005, Kuhn, 1955] using as weight

matrix, the entry-wise reciprocal of the Jaccard coefficient matrix, which is computed

using the cluster memberships MT1 and MT2 of the T1 and T2 domains respectively.

(b) Cluster Validation Across Domains: Then using the membership matrices MT1
and

MT2
, we compute cluster validity indices vT1

MT1
∈ Rk and vT1

MT2
∈ Rk in data domain T1

for each cluster centroid obtained respectively, from clustering the data in domain T1

and from clustering the data in domain T2 from the previous stage 2. Similarly, we also

compute the same validity indices vT2

MT1
and vT2

MT2
in data domain T2 for each cluster
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centroid obtained respectively, from clustering the data in domain T1 and from clustering

the data in domain T2. Note that we compute the cluster validity index vi not for the

entire clustering but for each cluster centroids (seed) separately in each domain. In Section

3.1.2 we explore the role of different validity measures in the seed exchange process.

(c) Best Cluster Selection Across Domains: To find the best combination of centroids

for domain T1, we compare vT1

MT1
and vT1

MT2
for each centroid resulting from clustering the

data in domain T1 and resulting from clustering the data in domain T2, and then take

only those centroids which score a lower (or higher, see Section 2.6 for details) value in

the validity index v, thus forming better clusters in one domain compared to the other.

We then perform a similar operation for domain T2 . The outputs of this stage are two

sets, each consisting of the best combination of cluster centroids or prototypes for each

of the data domains T1 and T2, respectively.

4. Inter-Domain Supervised Clustering in Domain 1: In this stage, we use the best seeds

obtained from stage 3 to recompute the cluster centroids in the first domain by running k-

means for a small number (tn) of iterations; then compare these recomputed centroids against

the cluster centroids that were computed in the second domain in the previous iteration (as

explained in detail in stage 3) and find the best cluster centroids’ combination for the second

domain (T2).

5. Inter-Domain Supervised Clustering in Domain 2: In this stage, we use the best seeds

obtained from stage 4 to initialize the k-modes algorithm in domain T2, and run it for tc

iterations. Then again, we compare these recomputed centroids against the cluster centroids

computed in the first domain in the previous iteration (as explained in detail in stage 3) and

find the best cluster centroids’ combination for the first domain (T1).

6. We repeat stages 4 and 5 until both algorithms converge or the number of exchange iterations

exceeds a maximum number.

3.1.2 Different Seed Exchange Mechanisms

In the previous section we presented an overview of the seed-based IDS approach. We now look at

stage 3 in detail and consider there mechanisms for seed exchange:

• Normal or “blind” exchange. In this type of exchange mechanism, we do not look for the best

possible seeds combination, instead, we blindly exchange seeds between domains. At every

34



Figure 3.1: Overview of the Seed-based Inter-Domains Supervised clustering algorithm.

iteration in stage 3, domain T1 will receive seeds from domain T2 while domain T2 will receive

seeds from domain T1.

• Xie-Beni (XB) index-based exchange. At stage 3, using the membership matrices MT1
and

MT2
, we compute the XB [Xie and Beni, 1991] indices xbT1

MT1
and xbT1

MT2
in data domain T1

for each cluster centroid, obtained respectively, from clustering the data in domain T1 and

from clustering the data in domain T2 from the previous stage 2. We also compute the XB

indices xbT2

MT1
and xbT2

MT2
in data domain T2 for each cluster centroid, obtained respectively

from clustering the data in domain T1 and from clustering the data in domain T2. To find the

best combination of centroids for domain T1, we compare xbT1

MT1
and xbT1

MT2
for each centroid

resulting from clustering the data in domain T1 and resulting from clustering the data in domain

T2, and then take only those centroids which score a lower value in the DB index, thus forming

better clusters in one domain compared to the other. We then perform a similar operation for

domain T2. The outputs of this stage are two sets, each consisting of the best combination of

cluster centroids or prototypes for each of the data domains T1 and T2, respectively, according

to the XB validity index.

• Davies-Bouldin (DB) index-based exchange. This type of seed exchange is very similar to the

previous mechanism, the only difference is that instead of using the XB index, we use the DB

[Davies and Bouldin, 1979] index. Formally, using the membership matrices MT1
and MT2

,

we compute the DB indices dbT1

MT1
and dbT1

MT2
in data domain T1 for each cluster centroid
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Figure 3.2: Seed-based IDS, stage 3: best seeds combination selection.

obtained respectively, from clustering the data in domain T1 and from clustering the data

in domain T2 from the previous stage, and repeat the same kind of procedure for domain

T2. Note that computing a DB index for every cluster centroid is essentially the same as

computing the original overall DB index but without taking the sum over all centroids. To

find the best combination of centroids for domain T1, we compare dbT1

MT1
and dbT1

MT2
for each

centroid resulting from clustering the data in domain T1 and resulting from clustering the

data in domain T2, and then take only those centroids which score a lower value in the DB

index, thus forming better clusters in one domain compared to the other. We then perform a

similar operation for domain T2. The outputs of this stage are two sets, each consisting of the

best combination of cluster centroids or prototypes for each of the data domains T1 and T2,

respectively, according to the DB validity index.

The general procedure of the seed exchange mechanism using a generic validity index (v) is presented

in Figure 3.2. In Section 4.2.1, we present experiments for the different exchange mechanisms using

real life data sets.

3.1.3 Computational Complexity

The complexity of the proposed approach is mainly determined by the complexity of the embedded

base algorithms used in each domain. In addition, there is an overhead complexity resulting from the

coordination and alternating seed exchange process between the different domains during the mutual

supervision process. The main overhead computation in the latter step is the cluster matching,

validity scoring, and comparison performed in stage 3 (which is then repeatedly invoked at the

36



end of the subsequent stages 4 and 5). Stage 3 involves the following computations: first, the

computation of the Jaccard coefficient matrix using the cluster memberships of the domains in time

O(k2N) (assuming the number of clusters to be of similar order k), then solving the correspondence

problem between the two domains using the Hungarian method in time O(k3), and finally, computing

the DB (or XB) validity indices for each cluster centroid in both domains in time O(k2N). Thus,

the total overhead complexity of stage 3 is O(k2N) since k � N . With the k-means and k-modes

as the base algorithms, the total computational complexity of the proposed approach is O(N).

3.1.4 The Case of a Different Number of Clusters or Different Cluster

Partitions in each Data Type or Domain

In our current design above, the number of clusters is assumed to be the same in each domain.

This can be considered as the most basic default approach, and has the advantage of being easier to

design. However, for clustering real life data, there are two challenges:

• Case 1: The first challenge is when each data domain naturally gives rise to a different number

of clusters, which is simple to understand.

• Case 2: The second challenge is when regardless of whether the number of clusters are similar

or different in the different domains, their nature is actually completely different, and this will

be illustrated with the following example.

How do we combine the results of clustering in different domains if the numbers of clusters are

different? Let us look at the example shown in Figure 3.3, which for visualization purposes, artificially

splits two numerical features into two distinct domains, thus illustrating the difficulties with mixed

domains. Here we have two domains or (artificially different) data types T1 and T2. In total, taking

into account both data domains or types T1 and T2, we have ten distinct clusters, however if we

cluster each domain separately, we see that in T1, we have six clusters, while in T2, we have only four

clusters. This illustrates Case 2 and gives rise to the problem of judiciously combining the clustering

results emerging from each domain into a coherent clustering result with correct cluster labelings for

all the data points.

We propose the following algorithm to cluster such a data set, that we emphasize, actually targets

completely different data domains or types that cannot be compared using traditional attribute-based

distance measures. The stages of the algorithm are listed below:

1. Split-Domain Clustering: First, cluster T1 with kT1 number of clusters and cluster T2 with

kT2
number of clusters. Let MT1

be the cluster membership matrix of domain T1 and MT2
be
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Figure 3.3: Different number of clusters per domain.

Figure 3.4: An illustration of the split-domain clustering stage.

the cluster membership matrix of domain T2. Therefore, MT1
is an N × kT1

matrix and MT2

is an N × kT2
matrix, where N is the number of data records. The membership matrix MT is

such that entry MT [i, j] is 1 or 0 depending on whether or not point i belongs to cluster j in

the current domain T (see Figure 3.4).

2. Inter-Domain Cluster Matching: Next, we compute the Jaccard coefficient matrix J of

size kT1
× kT2

in which entry J [j1, j2] is defined as follows:

J [j1, j2] =
|UT1,j1 ∩ UT2,j2 |
|UT1,j1 ∪ UT2,j2 |

,

where UT,j is the set of points that belong to cluster j in domain T , i.e.,

UT,j = {xi|MT (i, j) > 0} .

3. All-Domain Cluster Merging: Finally, we merge the clustering results of domains T1 and

T2 using Algorithm 1, where Tmax is the domain with the highest number of clusters, i.e, with
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kTmax = max{kT1 , kT2} and MTmax is the membership matrix of that domain. Tother is the

other domain with a number of clusters kTother
(kTother

≤ kTmax
) and its membership matrix

is MTother
.

Algorithm 1: Merging Algorithm for domains differing in the number of clusters

input : J , MTmax , MTother
, kTmax , α1, α2

output: Mmerge

Uap = ∅;
for j1 = 1 to kTmax

do // for all clusters in the domain with more
clusters

UTmax,j1 = {xi|MTmax(i, j1) > 0}; // find points in cluster j1 in this
domain

candidates = {j2|J(j1, j2) > α1}; // find the possible candidate clusters
with domain intersection higher than α1

for All j2 = 1 ∈ candidates do
UTother,j2 = {xi|MTother

(i, j2) > 0}; // find points in cluster j2 from
other domain

Ucp = UTmax,j1 ∩ UTother,j2 ; // find the common points between these
two clusters

Uap = Uap ∩ Ucp; // common points already assigned to a cluster
Umerge = (UTmax,j1 ∩ U ′Tother,j2

) ∩ U ′ap; // points which belong to Tmax but

not in Tother, and were not assigned to a cluster

if
|Umerge|
|Ucp| > α2 then // if intersection ratio is higher than noise

level

Unew = {xi|xi ∈ Umerge}; // then assign intersection points to a
new cluster

UTmax,j1 = UTmax,j1 − Unew; // remove intersection points from
first cluster in this domain

end

end

end

3.1.5 Computational Complexity

The complexity of the merging algorithm is mainly determined by stage 2, where we compute the

Jaccard coefficient matrix J using the cluster memberships of the domains in time O(kT1kT2N). The

complexity of Algorithm 1 itself is O(kT1
kT2

). Thus, the total complexity of the merging algorithm

is O(N).
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3.2 Constraint-based Inter-Domain Supervision

3.2.1 Mutual Inter-Domain Supervision using Hidden Markov Random

Fields (HMRF): HMRF-KMeans

One of the leading methods for constrained-based semi-supervision is the HMRF-KMeans algorithm,

that we use as a building block for our approach. The HMRF-KMeans algorithm [Basu et al., 2004]

provides a principled probabilistic framework for incorporating supervision into prototype based

clustering by using an objective function that is derived from the posterior energy of the Hidden

Markov Random Fields framework for the constrained cluster label assignments. The HMRF con-

sists of the hidden field of random variables with unobservable values corresponding to the cluster

assignments/labels of the data, and an observable set of random variables which are the input data.

The neighborhood structure over the hidden labels is defined based on the constraints between data

point assignments (the neighbors of a data point are the points that are related to it via must-link

or cannot-link constraints, see Figure 3.5). The HMRF-KMeans algorithm is an Expectation Max-

Figure 3.5: An illustration of the Hidden Markov Random Fields framework for the constrained cluster label
assignments.

imization (EM) based partitional clustering algorithm for semi-supervised clustering that combines

the constraint-based and distance-based approaches in a unified model. First, let us introduce the

pertinent notation: X refer to a set of objects, whose representatives are enumerated as {xi}Ni=1, xim

represents the mth component of the d-dimensional vector xi. This semi-supervised clustering model

accepts as input a set of data points X with a specified distortion measure D between the points,

and external supervision that is provided by a set of must-link constraints M = {(xi, xj)} (with its

set of associated violation costs W ) and a set of cannot-link constraints C = {(xi, xj)} (with its
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associated violation costs W̄ ). The goal of the algorithm is to partition the data into k clusters so

that the total of the distortions D between the points and their corresponding cluster representa-

tives {µh}kh=1 is minimized while violating a minimum number of constraints. The HMRF-KMeans

objective function in (3.1) consists of four terms. The first term sums the distances between data

objects and their corresponding cluster representatives. The second term adds a must-link viola-

tion penalty, which penalizes distant points that violate the must-link constraint higher compared

to nearby points. This has the effect of penalizing the objective function to bring a pair of points

that violate a must-link constraint closer to each other. Analogously, the next term represents the

penalties for violating cannot-link constraints between pairs of data points thus encouraging the

distance learning step to put cannot-linked points farther apart. Finally, the last term represents a

normalization constant. The objective function [Basu et al., 2004] is given by

Jobj =
∑
xi∈X

D(xi, µli) +
∑

(xi,xj)∈M

wijφD(xi, xj)I[li 6= lj ]

+
∑

(xi,xj)∈C

w̄ij(φDmax
− φD(xi, xj))I[li = lj ] + logZ, (3.1)

where D(xi, µli) is the distortion between xi and µli , wij is the cost of violating the must-link

constraint (i, j), φD(xi, xj) is the penalty scaling function, chosen to be a monotonically increasing

function of the distance between xi and xj according to the current distortion measure D. I is

the indicator function (I(true) = 1, I(false) = 0), so that the must-link term is active only when

cluster labels of xi and xj are different. In the next term, w̄ij is the cost of violating the cannot-

link constraint (i, j), φDmax
is the maximum value of the scaling function φD for the data set, and

Z is a normalization constant (see Figure 3.6). Thus, the task is to minimize Jobj over cluster

representatives {µh}kh=1, cluster label configuration L = {li}Ni=1 (every li takes values from the set

{1, ..., k}), and D (if the distortion measure is parameterized). Many distortion measures can be

parameterized [Xing et al., 2002] and integrated into the HMRF-KMeans algorithm. In this work,

we do not parametrize any distortion measure, and instead keep it as a function only of the data

objects D = D(xi, xj).

The main idea of HMRF-KMeans is as follows: in the E-step, given the current cluster represen-

tatives, every data point is re-assigned to the cluster that minimizes its contribution to Jojb. In the

M-step, the cluster representatives {µh}kh=1 are re-estimated from the previous cluster assignments

to minimize Jobj for the current assignment. The E-step and M-step are repeatedly alternated till a
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Figure 3.6: An illustration of the HMRF-Kmeans [Basu et al., 2004] objective function. Blue arrows rep-
resent the distortion between data records and cluster centroids, green arrows represent the must-link con-
straints, and red arrows represent the cannot-link constraints.

specified convergence criterion is reached.

The HMRF-KMeans algorithm is flexible in the choice of the distortion measure D, however a

single distortion measure must be used since the data is supposed to be of the same type or domain.

In contrast, our data records consist of different domains, thus we will invoke several HMRF-KMeans

processes one per domain, with each one receiving supervising constraints that were discovered in

the other domains . For the sake of simplicity, we shall limit the data to consist of two parts in

the rest of this paper: numerical and categorical. We start by dividing the set of attributes into

two subsets: one subset, called domain T1, with only attributes of one type, say numerical, such

as T1 = {age, income, ..., etc}, and a second subset, called T2, with attributes of the other (say

categorical) type such as T2 = {eye color, gender, ..., etc}. The first subset consists of dT1
attributes

from domain T1 and the second subset consists of dT2 attributes from domain T2, such that that

dT1
+ dT2

= d, the total number of dimensions in the data. We use the Euclidean distance and

simple matching distance δ as a distortion measure D for the numerical and categorical domains,

respectively. We also define the penalty scaling function φD(xi, xj) to be equal to the corresponding

distance function, and set the pairwise constraint violation costs W and W̄ to unit costs, so that

wij = w̄ij = 1 for any pair (i, j).

Putting all this into (3.1) gives the following objective functions for the numerical domain T1,

with xim denoting the mth attribute of data record xi,

JT1 =
∑
xi∈X

√∑
m∈T1

(xim − µlim)2 +
∑

(xi,xj)∈MT2

√∑
m∈T1

(xim − xjm)2I[li 6= lj ]

+
∑

(xi,xj)∈CT2

(φDT1,max
−
√∑
m∈T1

(xim − xjm)2)I[li = lj ] + logZT1
, (3.2)

and for the categorical domain T2:
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JT2 =
∑
xi∈X

∑
m∈T2

δ(xim, µlim) +
∑

(xi,xj)∈MT1

∑
m∈T2

δ(xim, xjm)I[li 6= lj ]

+
∑

(xi,xj)∈CT1

(dT2
−
∑
m∈T2

δ(xim, xjm))I[li = lj ] + logZT2
. (3.3)

where MTi
is a set of must-link constraints inferred based on the clustering of domain Ti,, and CTi

is a set of cannot-link constraints inferred based on the clustering of domain Ti,. We further set the

normalization constants ZT1
and ZT2

to be constant throughout the clustering iterations, and hence

drop these terms from Equations 3.2 and 3.3.

In the seed-based mutual-supervision approach in Section 3.1, the number of clusters was assumed

to be the same in each domain. This can be considered as the default approach, and has the

advantage of being easier to design. However, in real life data, the different domains can have

different numbers of clusters. One advantage of the constraint-based supervision used in the new

methodology presented in this paper, is that it naturally solves the problem of clustering domains

with different numbers of clusters.

3.2.2 Algorithm Flow

Our initial implementation, described below, can handle data records composed of two parts (such as

numerical and categorical) within a semi-supervised inspired framework that consists of the following

stages as shown in Figure 3.7:

1. Domain Splitting: The first stage consists of dividing the set of attributes into two subsets:

one subset, called domain T1, with only attributes of one type, e.g. numerical, (age, income,

etc), and another subset, called domain T2, with attributes of another type, e.g. categorical

(eyes color, gender, etc).

2. Baseline Clustering in the First Domain: The next stage is to cluster one of the subsets

T1 or T2 with the HMRF-KMeans algorithm without any constraints. Ideally, we try to start

from the most promising domain in terms of data quality and guiding the clustering process,

let us for simplicity assume that we start with domain T1. The HMRF-KMeans algorithm runs

for a small number of iterations tT1
and yields a set of kT1

cluster representatives {µh}
kT1

h=1 in

that domain by minimizing Equation 3.2 with no constraints coming from the other domain,

i.e. CT2
= MT2

= ∅.

3. Inter-Domain Constraint Generation: In the third stage, for each of the kT1
cluster
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representatives µh we find the nT1 closest points, according to the corresponding distance

measure in domain T1. Then using those kT1
× nT1

points, we generate pairwise must-link

constraints MT1
using points that belong to the same cluster, and cannot-link constraints

CT1 using points that belong to different clusters. These constraints will later be sent to the

clustering process in the other domain (T2) in the next stage.

4. Constraint-based Clustering on Domain 2 and New Constraint Generation: In

this stage, we cluster data in domain T2 with the HMRF-KMeans algorithm using the entire

objective function penalized via the must-link constraints MT1
and cannot-link constraints

CT1 obtained from the domain clustered in the previous stage. The HMRF-KMeans algorithm

runs for a small number of iterations tT2
and yields a set of cluster representatives {µh}

kT2

h=1

by minimizing Equation 3.3. Then again, for each cluster representative µh we find the nT2

closest points, according to the corresponding distance measure in domain T2, and generate

must-link constraints MT2
and cannot-link constraints CT2

using those points (as explained in

detail in stage 3).

5. Constraint-based Clustering on Domain 1 and New Constraint Generation: Simi-

larly, in the next stage, we use the previous domain’s must-link constraints MT2
and cannot-link

constraints CT2 obtained from stage 4 to penalize the objective function (3.2) in the HMRF-

KMeans algorithm which runs for tT1
iterations and yields a set of cluster representatives

{µh}
kT1

h=1 by minimizing Equation 3.2. Then, for each cluster representative µh, we recompute

the nT1 closest points, and generate must-link constraints MT1 and cannot-link constraints CT1

using those points.

We repeat stages 4 and 5 until both algorithms converge or the number of exchange iterations exceeds

a maximum number.

3.2.3 Computational Complexity

The complexity of the proposed approach is mainly determined by the HMRF-KMeans algorithm,

which incurs the heaviest cost during the initialization stage that uses both types of constraints

and the unlabeled data to first compute the transitive closure on the must-link constraints to get

connected components λ, consisting of points connected by must-link constraints [Basu et al., 2004],

a procedure that costs O(N3) time and O(N2) space. Then for each pair of connected components

with at least one cannot-link constraint between them, we add cannot-link constraints between every

pair of points in that pair of connected components. This operation takes O(λ2) time, thus O(k2)
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Figure 3.7: Outline of the mutual inter-domain supervision based heterogeneous data clustering using HMRF-
KMeans.

of time, since λ is in the order of k. The second stage of the initialization is the cluster selection

which is O(k2). The initialization step in the HMRF-KMeans is optional but essential for the

success of the partitional clustering algorithm. The EM-based minimization of the HMRF-KMeans

algorithm is O(N). Finally, we need to account for the overhead complexity resulting from the

process of coordination of and alternation of the constraint exchanges between the different domains

during the mutual supervision process. This process finds the k × nT closest points to the cluster

representatives in time O(N) for each domain, then generates the pairwise must-link and cannot-

link constraints using those points in constant time. Thus the total computational complexity of

the proposed approach is O(N3) or O(N), depending on whether we perform the initialization step

with complete transitive closure or not, respectively.

3.3 How to use Other Existing Clustering Paradigms for the

Purpose of Clustering Heterogeneous Data

3.3.1 Ensemble Clustering

In Section 2.3.5, we described how ensemble clustering can be used to cluster heterogeneous data,

by dedicating a different clustering process to each domain and aggregating the results within a

consensus function. In out current implementation, we used 5 independent instances of two clustering

algorithms. Figure 3.8 shows an example of the case, where we use 2 instances of k-means for

numerical attributes and 3 instances of k-modes for the categorical attributes. Each instance of the
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Figure 3.8: Ensemble clustering framework for clustering data with mixed attributes types.

algorithm had different initialization but the same number of clusters. As consensus function, we

experimented with two approaches:

• Voting: The clustering results of the numerical instances of k-means and categorical instances of

k-modes are combined as a categorical data set. Final clustering is produced through a majority

vote of each record in the combined categorical data set. Unlike supervised classification, the

patterns are unlabeled and therefore, there is no explicit correspondence between the labels

delivered by different clusterings. We used Hungarian method to find optimal correspondence

between clustering results of each instance.

• Clustering: The clustering results of the numerical instances of k-means and categorical in-

stances of k-modes are combined as a categorical data set, on which the k-modes is used to

produce a final clustering.

3.3.2 Multiview Clustering

Another competitive approach to the IDS framework is multiview clustering. We follow a similar

idea to [Bickel and Scheffer, 2004], but instead of using only the spherical k-means for both views, we

use a regular k-means for the numerical attributes, k-modes clustering algorithm for the categorical

attributes (see Figure 3.9), and spherical k-means for the transactional like data (text and bag

of words-visual domains in the MIRFlickr data set, see Chapter 4). After each iteration of the

algorithm, we compute the objective function for each view, if the objective function did not change

in the past three iterations, we terminate the optimization process. After termination, partitions πT1

and πT2 can be different. In order to compute the final clustering, first we compute the consensus
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Figure 3.9: Multiview clustering framework for clustering data with mixed attributes types.

mean for each cluster and view. For the numerical and transactional like attributes it is defined as

µT1

l =

∑
x
T1
i ∈π

T1
l ∧x

T2
i ∈π

T2
l

xT1
i∥∥∥∥∥∥ ∑

x
T1
i ∈π

T1
l ∧x

T2
i ∈π

T2
l

xT1
i

∥∥∥∥∥∥
, (3.4)

and for the categorical attributes:

µT2

l = Mode
(
xT1
i ∈ π

T1

l ∧ x
T2
i ∈ π

T2

l

)
. (3.5)

Then, based on the consensus centroids, we compute the final partition. We assign each observation

to the cluster with the minimum sum of normalized Euclidean or matching distances in case of

numerical or categorical types of attributes, respectively.

πj = {xi ∈ X :

∑
m∈T1

(xim − µjm)
2

max
xa,xb∈X,a 6=b

( ∑
m∈T1

(xam − xbm)
2

) +

∑
m∈T2

δ (xim, µjm)

max
xa,xb∈X,a 6=b

(∑
m∈T2

δ (xam, µbm)
)

<

∑
m∈T1

(xim − µlm)
2

max
xa,xb∈X,a 6=b

( ∑
m∈T1

(xam − xbm)
2

) +

∑
m∈T2

δ (xim, µlm)

max
xa,xb∈X,a 6=b

(∑
m∈T2

δ (xam, µbm)
) , j 6= l}. (3.6)
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Figure 3.10: Domain Compatibility Analysis.

3.4 Discovering Domain Compatibility in Heterogeneous Data

Unlike semi-supervised learning where the external labels for some of the data comes with full

certainty, the mutual supervision between different domains is naturally uncertain, and may even

be misguiding instead of supervising. This occurs when the domains are incompatible in how they

represent the data. One important issue in clustering heterogeneous data is that the different domains

may exhibit some compatibility (or agreement) for part of the data, while exhibiting incompatibility

for the rest of the data. We call the set consisting of the first type of data, the compatible set, and

call the set containing the rest of the data, the incompatible set.

Ideally, one would be motivated to build different descriptive or summarization models and

different predictive models for the data depending on whether or not the data is deemed to be in

the compatible set. That way, when data is available in different domains, these domains can be

utilized to a full advantage in a judicious manner (separately or in combination) without forfeiting

the abundance of data in the multiple domains. Therefore, to extend the methods in Section 3.1 and

3.2, we explore clustering the heterogeneous data separately depending on its compatibility status.

In order to do this, we need to determine the domain compatibility.

For this purpose, we propose a method to identify the compatible and incompatible sets, based

on performing the following three steps:

1. first, we cluster each domain with a reliable method that is unlikely to miss any clusters. We can

use ensemble clustering [Dudoit and Fridlyand, 2003, Dimitriadou et al., 2001, Strehl and Ghosh, 2003]
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for this purpose, although we have previously also investigated using Bisecting clustering, which

did not perform as well as ensemble clustering;

2. then, we identify the corresponding clusters between the domains by solving a matching prob-

lem using the Hungarian method [Kuhn, 1955], which uses as input an inter-cluster matching

weight inversely proportional to the Jaccard coefficient between the data membership assign-

ment in each pair of clusters.

3. Finally, we compare the membership matrices and find the data records that were assigned to

the same (corresponding) or different clusters. If a data record was assigned to corresponding

clusters in both domains, it would indicate that the different domains agreed on this data, and

if a data record was assigned to different clusters, this would indicate that the clusterings from

different domains disagreed on this data, in which case it is considered part of the incompatible

set.

The general flow of this procedure is presented in Figure 3.10 and Algorithm 2. Finally, we can

apply the Inter-Domain Supervised clustering approach on each one of the two extracted data sets.

Algorithm 2: Finding compatible and incompatible sets

input : domain T1, domain T2, of data set X
output: Compatible set Ucomp, Incompatible set Uincomp
Ucomp, Uincomp = ∅;
Cluster T1 with Ensemble clustering - MT1

;
Cluster T2 with Ensemble clustering - MT2

;
Find cluster correspondence between MT1 and MT2 using the Hungarian method ;
Ucomp = {xi ∈ X|MT1(i, j) > 0,MT2(i, j) > 0};
Uincomp = X \ Ucomp;

3.5 Summary of the Chapter

In this chapter, we presented a seed-based inter-domain supervised approach to allow the transfer

of information from the clustering in one domain to another. We also proposed a constraint-based

inter-domain supervised approach to handle inconsistent partitions (different number of clusters)

between different domains, which can now be combined into a consistent clustering result. We

finally presented an approach for the domain compatibility analysis to help achieve a more effective

clustering of heterogeneous data, that exploits the synergy between the different domains. In the

next chapter, we will present our experiments to test the effectiveness of our approach compared to

the most common existing techniques.
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CHAPTER 4

EXPERIMENTAL RESULTS AND APPLICATION TO IMAGE ANNOTATION

In this chapter, we start by summarizing the evaluation metrics that will be used to validate our

experimental results, outline our experimental plan, and then describe the benchmark data sets in

Section 4.1. We report the experimental results for the seed-based IDS approach and the constraint-

based IDS approach in Section 4.2. We then present an empirical study of domain compatibility

analysis in Section 4.3. In Section 4.4, we apply our IDS methodology to automatic annotation of

Flickr images based on clustering the images in two domains: visual features and text associated

with the images. Finally, we summarize the chapter in Section 4.5.

The proposed inter-domain supervision (IDS) framework was evaluated using several internal and

external clustering evaluation measures [Halkidi et al., 2002] (see Section 2.6). The characteristics

of the evaluation measures are summarized in Table 4.1. Note that in calculating all internal indices,

we used the same distance measures that were used in the clustering algorithms, namely, squared Eu-

clidean distance for numerical data types, simple matching distance [Kaufman and Rousseeuw, 1990]

for categorical data types, and cosine distance for asymmetric binary transactional data given in

Type Validation Index Minimum Value Maximum Value Value for
“Perfect Clustering”

Internal

Davies-Bouldin (DB) 0 1 0
Silhouette −1 1 1

Dunn 0 1 1
Xie-Beni (XB) 0 ∞ 0

External

Accuracy 0 1 1
Precision 0 1 1

Recall 0 1 1
F-measure 0 1 1

Purity 0 1 1
Entropy 0 ∞ 0

NMI 0 1 1

Table 4.1: Overview of the clustering evaluation measures.
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Equations 4.1.

DsqE(xi, xj) =
∑
m

(xim − xjm)2

Dcos(xi, xj) = 1−

∑
m
ximxjm√∑

m
x2
im

∑
m
x2
jm

(4.1)

Dbinary(xi, xj) =
∑
m

I(xim 6= xjm),

where xim denotes the mth attribute of data record xi and I is the indicator function (I(true) = 1,

I(false) = 0). In the following, N denotes the number of data points, and k is the number of

clusters.

Note that for the MIRFlickr data set, we do not have an external class label, but rather a set of

tags for each image. Thus, in addition to the regular validity indices, we also compute those same

validity indices in the tag space (instead of the original data space) to capture how the clusters

conform with the ground-truth tags for the data. These validity indices are referred to as Tags DB,

Tags Silhouette and Tags Dunn in Table 4.13.

Tables 4.2 and 4.3 summarize the experiments that we performed in Sections 4.2 and 4.3, respec-

tively. Tables 4.4 and 4.5 summarize the experiments performed in Section 4.4.

4.1 Real-Life Data Sets

We experimented with four real-life data sets with the characteristics shown in Table 4.6. The

Adult, Credit approval, and Heart disease data sets were obtained from the UCI Machine Learning

Repository [Frank and Asuncion, 2010] and the MIRFlickr25000 (MIRFlickr) data set was obtained

from LIACS Medialab at Leiden University [Huiskes and Lew, 2008].

• Adult Data. The Adult data set was extracted by Barry Becker from the 1994 Census database.

The data set has two classes: People who make over $50K a year and people who make less than

$50K. The original data set consists of 48, 842 instances. After deleting instances with missing

and duplicate attributes, we obtained 45, 179 instances. For detailed attribute description, see

Table 4.7.

• Heart Disease Data. The Heart disease data, generated at the Cleveland Clinic, contains a

mixture of categorical and numerical features. The data comes from two classes: people with

no heart disease and people with different degrees of heart disease.
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Section Experiment Data Set Parameters Figure or Table

4.2.1

Seed-based IDS: Value of the
objective function with
different seed exchange
mechanisms

Adult
k = 2, 1 run, maximum 2
seeds per domain.

Figure 4.2
Heart disease Figure 4.3
Credit card

approval
Figure 4.4

MIRFlickr k = 16, 1 run, maximum 16
seeds per domain.

Figure 4.5

Seed-based IDS: Clustering
results for different seed
exchange mechanisms

Adult
k = 2, 10 runs, maximum 2
seeds per domain.

Table 4.10
Heart disease Table 4.11
Credit card

approval
Table 4.12

MIRFlickr k = 16, 10 runs, maximum 16
seeds per domain.

Table 4.13

4.2.2
Constraint-based IDS: Effect
of the number of constraints

Adult k = 2, 676 runs,
tT1

= tT2
= 1.

Figure 4.6

Heart disease k = 2, 841 runs,
tT1

= tT2
= 1.

Figure 4.7
Credit card

approval
Figure 4.8

4.2.3

Value of the objective
function for the seed-based
IDS, constraint-based IDS,
splitting, and multiview
clustering algorithms

Adult k = 2, 1 run, maximum 2
seeds per domain,
nT1

= nT2
= 5, tT1

= tT2
= 1.

Figure 4.9
Heart disease Figure 4.9
Credit card

approval
Figure 4.10

MIRFlickr k = 16, 1 run, maximum 16
seeds per domain,
nT1

= nT2
= 5, tT1

= tT2
= 1.

Figure 4.10

Clustering results for the
seed-based IDS,
constraint-based IDS,
splitting, conversion,
ensemble, and multiview
clustering

Adult k = 2, 10 runs, maximum 2
seeds per domain,
nT1 = nT2 = 5, tT1 = tT2 = 1.

Table 4.14

Heart disease k = 2, 50 runs, maximum 2
seeds per domain,
nT1

= nT2
= 5, tT1

= tT2
= 1.

Table 4.15
Credit card

approval
Table 4.16

MIRFlickr k = 16, 10 runs, maximum 16
seeds per domain,
nT1 = nT2 = 5, tT1 = tT2 = 1.

Table 4.17

Table 4.2: Experimental plan overview for Section 4.2.
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Experiment/Algorithm Subsets of
MIRFlickr
data set

Parameters Figure or table

Value of the objective
function for the seed-based

IDS

Compatible,
incompatible

k = 16, 1 run, maximum
16 seeds per domain.

Figure 4.13

Clustering results of the
seed-based IDS

Mixed,
incompatible,

and
compatible

k = 16, 10 run,
maximum 16 seeds per

domain.

Table 4.18

Constrain-based IDS versus
the baseline splitting

algorithm: optimal number of
constraints

Compatible
k = 16, 196 runs,
tT1 = tT2 = 1.

Figure 4.14

Constrain-based IDS: optimal
number of constraints

Compatible,
mixed

Figure 4.15

Constrain-based IDS: optimal
number of constraints

Compatible,
incompatible

Figure 4.16

Value of the objective
function for the

constraint-based IDS

Compatible,
incompatible

k = 16, 1 run, nT1 = 11,
nT2 = 5, tT1 = tT2 = 1.

Figure 4.17

Clustering results of the
constraint-based IDS

Mixed,
incompatible,
and
compatible

k = 16, 10 runs,
nT1 = 11, nT2 = 5,
tT1

= tT2
= 1.

Table 4.19

Clustering results of the
conversion algorithm

k = 16, 10 runs.
Table 4.20

Clustering results of the
splitting algorithm

Table 4.21

Clustering results of
ensemble clustering

2 instance for the text
domain, 3 instance for

the visual domain,
k = 16, 10 runs.

Table 4.22

Clustering results of
multiview clustering

1 view for the text
domain, 1 view for the
visual domain, k = 16,

10 runs.

Table 4.23

Table 4.3: Experimental plan overview for Section 4.3.
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MIRFlickr
data set

Validation
scheme

Algorithm Parameters Figure or table

The size of the
training set is
22, 430 data
records, and
the size of the
test set is
1, 000 data
records.

Option 1:
10-NN to the
cluster’s
centroid

Seed-based
IDS

k = 50, 100, 200, and 300
clusters, DB index-based seed
exchange mechanism.

Table 4.24a
shows
MAPfmax=3

and
MAPfmax=5

results.
Figure 4.19a
shows
MAPfmax=3

results.

k = 50, 100, 200, and 300
clusters, XB index-based seed
exchange mechanism.
k = 50, 100, 200, and 300
clusters, normal seed
exchange mechanism.

Constraint-
based
IDS

nT1
= 11, nT2

= 5,
tT1

= tT2
= 1,

k = 50, 100, 200, and 300
clusters.

Conversion k = 50, 100, 200, and 300
clusters.

Multiview
k-means

1 view for the text domain, 1
view for the visual domain,
k = 50, 100, 200, and 300
clusters.

Ensemble
voting

2 instance for the text
domain, 3 instance for the
visual domain, k = 16, 10
runs.

Splitting k = 50, 100, 200, and 300
clusters.

Option 2:
10-NN to the
query image in
the same
cluster

Seed-based
IDS

k = 50, 100, 200, and 300
clusters, DB index-based seed
exchange mechanism.

Table 4.24b
shows
MAPfmax=3

and
MAPfmax=5

results.
Figure 4.19b
shows
MAPfmax=3

results.

k = 50, 100, 200, and 300
clusters, XB index-based seed
exchange mechanism.
k = 50, 100, 200, and 300
clusters, normal seed
exchange mechanism.

Constraint-
based
IDS

nT1
= 11, nT2

= 5,
tT1

= tT2
= 1,

k = 50, 100, 200, and 300
clusters.

Conversion k = 50, 100, 200, and 300
clusters

Multiview
k-means

1 view for the text domain, 1
view for the visual domain,
k = 50, 100, 200, and 300
clusters

Ensemble
voting

2 instance for the text
domain, 3 instance for the
visual domain,
k = 50, 100, 200, and 300
clusters.

Splitting k = 50, 100, 200, and 300
clusters.

Table 4.4: Experimental plan overview for Section 4.4: first set of the experiments.
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Validation
scheme

Algorithm MIRFlickr
data set

Parameters Figure or table

Option 1:
10-NN to the
cluster’s
centroid

Seed-based
IDS

Training set:
2, 629 data
records from
the compatible
set, test set:
100 data
records from
the compatible
and mixed
sets.

k = 16, 32, 50, 80, and 100
clusters, DB index-based seed
exchange mechanism.

Table 4.25a
shows
MAPfmax=3

and
MAPfmax=5

results.
Figure 4.20a
shows
MAPfmax=3

results.

k = 16, 32, 50, 80, and 100
clusters, XB index-based seed
exchange mechanism.
k = 16, 32, 50, 80, and 100
clusters, normal seed
exchange mechanism.

Constraint-
based
IDS

nT1
= 11, nT2

= 5,
tT1

= tT2
= 1,

k = 16, 32, 50, 80, and 100
clusters.

Conversion Training set:
2, 629 data
records from
the mixed set,
test set: 100
data records
from the
compatible
and mixed
sets.

k = 16, 32, 50, 80, and 100
clusters.

Multiview
k-means

1 view for the text domain, 1
view for the visual domain,
k = 16, 32, 50, 80, and 100
clusters.

Ensemble
voting

2 instance for the text
domain, 3 instance for the
visual domain,
k = 16, 32, 50, 80, and 100
clusters.

Splitting k = 16, 32, 50, 80, and 100
clusters.

Option 2: the
10-NN to a
query image in
a same cluster
validation
scheme.

Seed-based
IDS

Training set:
2, 629 data
records from
the compatible
set, test set:
100 data
records from
the compatible
and mixed set.

k = 16, 32, 50, 80, and 100
clusters, DB index-based seed
exchange mechanism.

Table 4.25b
shows
MAPfmax=3

and
MAPfmax=5

results.
Figure 4.20b
shows
MAPfmax=3

results.

k = 16, 32, 50, 80, and 100
clusters, XB index-based seed
exchange mechanism.
k = 16, 32, 50, 80, and 100
clusters, normal seed
exchange mechanism.

Constraint-
based
IDS

nT1
= 11, nT2

= 5,
tT1

= tT2
= 1,

k = 16, 32, 50, 80, and 100
clusters.

Conversion Training set:
2, 629 data
records from
the mixed set,
test set: 100
data records
from the
compatible
and mixed set.

k = 16, 32, 50, 80, and 100
clusters.

Multiview
k-means

1 view for the text domain, 1
view for the visual domain,
k = 16, 32, 50, 80, and 100
clusters.

Ensemble
voting

2 instance for the text
domain, 3 instance for the
visual domain,
k = 16, 32, 50, 80, and 100
clusters.

Splitting k = 16, 32, 50, 80, and 100
clusters.

Table 4.5: Experimental plan overview for Section 4.4: second set of the experiments.
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Data set # of Records # of Attributes
in Domain 1

# of Attributes
in Domain 2

Missing
Values

# of Classes # of Clusters

Adult Data 45, 179 6 (Numerical) 8 (Categorical) Yes 2 2
Heart Disease

Data
303 6 (Numerical) 7 (Categorical) Yes 2 2

Credit Approval
Data

690 6 (Numerical) 9 (Categorical) Yes 2 2

MIRFlickr-25000
Data

23, 430 2, 105 (Text) 1, 000 (Visual) Yes 38 16

Table 4.6: Real-life data set properties.

# Name Data Type Range or Values

1 Age Numerical [17, 90]
2 Work class Categorical Private, Self-emp-not-inc, Self-emp-inc, etc.
3 Final weight Numerical [13492, 1490400]
4 Education Categorical Bachelors, Some-college, 11th, HS graduate, etc
5 Education Numerical [1, 16]
6 Martial status Categorical Married, Divorced, Never married, etc.
7 Occupation Categorical Tech-support, Sales, Transport, etc
8 Relationship Categorical Wife, Husband, Not in family, Unmarried, etc.
9 Race Categorical White, Asian-Pacific-Islander, Black, etc
10 Sex Categorical Female, Male
11 Capital gain Numerical [0, 99999]
12 Capital loss Numerical [0, 4356]
13 Hours per week Numerical [1, 99]
14 Native country Categorical US, Cambodia, England, Canada, etc.

Table 4.7: Adult data set attribute description.

# Name Data Type Range or Values

1 Age Numerical [29, 77]
2 Sex Categorical Female, Male
3 Chest pain type Categorical Typical angina, Atypical angina, etc.
4 Resting blood pressure in mm Hg Numerical [94, 200]
5 Serum cholestoral in mg/dl Numerical [126, 564]
6 Fasting blood sugar > 120 mg/dl Categorical True, False
7 Resting electrocardiographic results Categorical Normal, ST-T wave abnormality, etc.
8 Maximum heart rate achieved Numerical [71, 202]
9 Exercise induced angina Categorical Yes, No
10 ST depression Numerical [0, 6.2]
11 Slope of the peak exercise ST segment Categorical Up-sloping, Flat, Down-sloping
12 Number of major vessels Numerical [0, 3]
13 Thal Categorical Normal, Fixed defect, Reversible defect

Table 4.8: Heart disease data set attribute description.
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# Name Data Type Range or Values

1 A1 Categorical b, a
2 A2 Numerical [13.75, 80.25]
3 A3 Numerical [0, 28]
4 A4 Categorical u, y, l, t
5 A5 Categorical g, p, gg
6 A6 Categorical c, d, cc, i, j, k, m, r, q, w, x, e, aa, ff
7 A7 Categorical v, h, bb, j, n, z, dd, ff, o
8 A8 Numerical [0, 28.5]
9 A9 Categorical t, f
10 A10 Categorical t, f
11 A11 Numerical [0, 67]
12 A12 Categorical t, f
13 A13 Categorical g, p, s
14 A14 Numerical [0, 2000]
15 A15 Numerical [0, 100000]

Table 4.9: Credit card approval data set attribute description.

• Credit Card Approval Data. The data set has 690 instances, which were classified in two

classes: approved and rejected. See Table 4.9 for details. Note that the attribute names and

descriptions have been obfuscated on purpose to maintain the anonymity of the data subjects.

• MIRFlickr Data. The MIRFlickr-25000 image data set consists of 25, 000 pictures and associ-

ated text, downloaded from the popular online photo-sharing service Flickr [Huiskes and Lew, 2008].

After removing missing values in both domains, we obtained 23, 430 instances. The data set

comes with the Flickr text description given by users, which can be considered as low level,

noisy text. By processing this content, a 2, 105-word dictionary is defined based on the most

frequent terms [Caicedo et al., 2012]. The bag-of-features approach is used to represent visual

content using a dictionary of 1, 000 visual patterns which were extracted based on the image

content. To do that, we used the same prepossessing steps as in [Caicedo et al., 2012]. Blocks

of 8 × 8 pixels were extracted from a set of training images with an overlap of 4 pixels along

the x- and y-axes to build a set of training blocks. Each block is processed in the three RGB

color channels using the discrete cosine transform (DCT) and the 21 largest coefficients per

channel are used as features, leading to a block descriptor of 63 features with color and tex-

ture information [Monay and Gatica-Perez, 2007]. The k-means algorithm is applied to the

block set to construct a vocabulary of 1, 000 visual terms, which serve as reference vectors to

quantize feature vectors extracted from blocks in any image. This image collection has also

been manually annotated using a set of 38 semantic terms or tags provided as ground-truth for
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Figure 4.1: Representation of a data record from the MIRFlickr data set.

validating information retrieval tasks. The annotation vector has binary elements indicating

whether the photo can be described by the term or not. Figure 4.1 shows a sample from the

data set.

The Adult, Heart disease, and Credit card approval data sets were clustered into 2 clusters, since

each data set has 2 classes. The MIRFlickr data set was clustered in 16 clusters, since the value

of the Silhouette index of the clustering results of Splitting algorithm with k = 16 clusters had the

highest value.

4.2 Results for the Inter-Domain Supervised Clustering

4.2.1 Results for the Seed-based IDS Clustering: Effect of the Seed Ex-

change Mechanism and Convergence

In Section 3.1.2, we proposed there types of seed exchange mechanisms. In this section, we present

the convergence and exchange analysis and clustering performance of these mechanisms, evaluated

on real life data sets. Figures 4.2, 4.3, 4.4, and 4.5 show how the value of the objective function

changes with the number of iterations for the different exchange mechanisms for the seed-based

IDS approach. For the numerical domain, we show the value of the k-means objective function; for

the categorical domain, we plot the k-modes objective function; and for the text or visual domain,

we show the value of the spherical k-means objective function. The seed-based IDS with no seed

exchange is equivalent to the splitting approach (dashed line in Figures 4.2, 4.3, 4.4, and 4.5). Note

that we obtained Figures 4.2-4.5 from on a typical run of the seed-based IDS approach. On the
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contrary, Tables 4.10, 4.11, 4.12, and 4.13 show average results (in the format of mean±std[min,

median, max] with the best results in a bold font) of the seed-based IDS clustering using these three

exchange mechanisms based on 10 independent runs of the algorithm. Below, we analyze the results

for each data set.

• Adult data set: Figures 4.2 (a,c,e) show the value of the k-means objective function with

respect to the number of iterations for different seed exchange mechanisms, and Figures 4.2

(b,d,f) show the value of the k-modes objective function, also with respect to the number of

iterations. Figures 4.2a and 4.2b present the results of the normal or “blind” seed exchange,

while Figures 4.2c and 4.2d present the results of the XB index-based seed exchange, and

Figures 4.2e and 4.2f show the results of the DB index-based seed exchange. As we can

see from these figures, the proposed seed-based IDS approach with normal seed exchange

exhibits an oscillating behavior. The value of the objective functions in the numerical and

categorical domain keep moving from one local minimum to another (one of them happens

to be better than the no-exchange baseline), and neither of the objective functions can reach

convergence. In the numerical domain, the proposed approach reaches a lower value of the

objective function compared to the objective function of the baseline (no-exchange) splitting

algorithm, but sudden seed exchange between the domains forces the objective function to

switch to another state. We observed the same kind of behavior in the categorical domain, as

shown in Figure 4.2b. The XB and DB based seed exchange approaches give exactly the same

results as the splitting algorithm, with an exception that with the XB index exchange in the

categorical domain, there is a seed exchange between domains but that does not induce any

change in the categorical objective function. Table 4.10 shows the results of the seed-based

IDS using different exchange mechanisms for the Adult data set. As this table shows, the seed-

based IDS with DB-based seed exchange performs better in both domains, showing significant

improvements in all validation indices with the exception of entropy in the categorical domain,

where normal exchange was the winner.

• Heart disease data set: Figures 4.3 (a-f) show very similar results to the results of the Adult

data set. The normal seed exchange also shows oscillating behavior in both domains, but

this time, the splitting algorithm performs better in both domains. The XB seed exchange

outperforms the splitting algorithm with 2 seed exchanges in the first iteration in the numerical

domain, and performs worse in the categorical domain with one seed replacement. The DB

index based seed exchange outperforms all other seed exchange mechanisms and gives improved
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(a) Normal exchange: numerical domain (b) Normal exchange: categorical domain

(c) XB exchange: numerical domain (d) XB exchange: categorical domain

(e) DB exchange: numerical domain (f) DB exchange: categorical domain

Figure 4.2: Value of the objective functions (with number of exchange seeds) for seed-based IDS with different
exchange mechanisms for the Adult data set (dashed line: baseline splitting algorithm with no exchange).
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(a) Normal exchange: numerical domain (b) Normal exchange: categorical domain

(c) XB exchange: numerical domain (d) XB exchange: categorical domain

(e) DB exchange: numerical domain (f) DB exchange: categorical domain

Figure 4.3: Value of the objective functions (with number of exchange seeds) for seed-based IDS with
different exchange mechanisms for the Heart disease data set (dashed line: baseline splitting algorithm with
no exchange).
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(a) Normal exchange: numerical domain (b) Normal exchange: categorical domain

(c) XB exchange: numerical domain (d) XB exchange: categorical domain

(e) DB exchange: numerical domain (f) DB exchange: categorical domain

Figure 4.4: Value of the objective functions (with number of exchange seeds) for seed-based IDS with different
exchange mechanisms for the Credit card approval data set (dashed line: baseline splitting algorithm with
no exchange).
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(a) Normal exchange: text domain (b) Normal exchange: visual domain

(c) XB exchange: text domain (d) XB exchange: visual domain

(e) DB exchange: text domain (f) DB exchange: visual domain

Figure 4.5: Value of the objective functions (with number of exchange seeds) for seed-based IDS with
different exchange mechanisms for the MIRFlickr data set (dashed line: baseline splitting algorithm with no
exchange).
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Data type Numerical
Algorithm Normal exchange XB exchange DB exchange

DB Index 4.00± 0.41[3.67, 4.00, 5.05] 3.66± 0.42[3.24, 3.63, 4.70] 3.09± 1.09[0.42, 3.44, 3.77]
Silhouette Index 0.22± 0.03[0.17, 0.23, 0.27] 0.24± 0.07[0.19, 0.22, 0.43] 0.29± 0.18[0.18, 0.21, 0.71]

Dunn Index 0.0001± 0[0.0001, 0.0001, 0.0001] 0.0001± 0[0.0001, 0.0001, 0.0001] 0.0001± 0[0.0001,0.0001,0.0001]

Purity 0.53± 0.10[0.39, 0.55, 0.68] 0.61± 0.02[0.56, 0.60, 0.74] 0.62± 0.07[0.52, 0.60, 0.75]
Entropy 0.79± 0.01[0.78, 0.79, 0.81] 0.77± 0.03[0.70, 0.75, 0.78] 0.77± 0.03[0.72, 0.78, 0.79]

NMI 0.01± 0.01[0.0003, 0.016, 0.03] 0.06± 0.03[0.004, 0.05, 0.10] 0.06± 0.03[0.02, 0.05, 0.10]

Data type Categorical
Algorithm Normal exchange XB exchange DB exchange

DB Index 1.34± 0.08[1.12, 1.36, 1.40] 1.33± 0.25[1.10, 1.37, 1.92] 1.22± 0.14[1.10, 1.12, 1.40]
Silhouette Index 0.24± 0.01[0.24, 0.25, 0.25] 0.25± 0.01[0.23, 0.25, 0.27] 0.25± 0.01[0.23, 0.24, 0.27]

Dunn Index 0.125± 0[0.125, 0.125, 0.125] 0.125± 0[0.125, 0.125, 0.125] 0.125± 0.0[0.125, 0.125, 0.125]

Purity 0.57± 0.02[0.53, 0.56, 0.58] 0.58± 0.03[0.55, 0.59, 0.61] 0.59± 0.06[0.50, 0.56, 0.67]
Entropy 0.71± 0.01[0.71, 0.71, 0.73] 0.72± 0.01[0.69, 0.72, 0.73] 0.73± 0.02[0.71, 0.73, 0.78]

NMI 0.08± 0.01[0.06, 0.07, 0.09] 0.09± 0.01[0.07, 0.10, 0.10] 0.09± 0.001[0.08, 0.09, 0.11]

Table 4.10: Clustering results of seed-based IDS for the Adult data set with different seed exchange mecha-
nisms (10 runs, k = 2 clusters per domain).

results in the numerical domain, while giving similar results as the splitting algorithm in the

categorical domain. As Table 4.3 shows, the DB index seed exchange outperforms all other

methods in all evaluation metrics in both domains.

Data type Numerical
Algorithm Normal exchange XB exchange DB exchange

DB Index 1.92± 0.17[1.62, 1.97, 2.26] 1.78± 0.15[1.63, 1.73, 2.02] 1.73± 0.15[1.54, 1.71, 2.14]
Silhouette Index 0.31± 0.02[0.29, 0.30, 0.31] 0.32± 0.03[0.29, 0.32, 0.40] 0.33± 0.04[0.26, 0.33, 0.41]

Dunn Index 0.003± 0.001[0.001, 0.003, 0.005] 0.003± 0.002[0.001, 0.004, 0.01] 3.3e− 3± 2.2e− 3[1.2e− 5, 2.3e− 4, 0.35]

Purity 0.68± 0.02[0.66, 0.67, 0.73] 0.71± 0.01[0.69, 0.71, 0.73] 0.72± 0.03[0.65, 0.72, 0.76]
Entropy 0.88± 0.04[0.81, 0.90, 0.92] 0.85± 0.01[0.81, 0.84, 0.88] 0.84± 0.03[0.79, 0.84, 0.91]

NMI 0.10± 0.03[0.07, 0.08, 0.17] 0.14± 0.01[0.11, 0.14, 0.19] 0.15± 0.03[0.08, 0.16, 0.20]

Data type Categorical
Algorithm Normal exchange XB exchange DB exchange

DB Index 0.81± 0.02[0.79, 0.80, 0.82] 0.78± 0.11[0.65, 0.76, 0.99] 0.76± 0.01[0.75, 0.76, 0.76]
Silhouette Index 0.27± 0.01[0.25, 0.26, 0.27] 0.29± 0.01[0.24, 0.29, 0.30] 0.30± 0.01[0.29, 0.30, 0.31]

Dunn Index 0.13± 0.01[0.13, 0.13, 0.14] 0.14± 0[0.14, 0.14, 0.14] 0.14± 0[0.14, 0.14, 0.14]

Purity 0.75± 0.02[0.72, 0.74, 0.75] 0.77± 0.02[0.72, 0.77, 0.81] 0.78± 0.03[0.71, 0.77, 0.81]
Entropy 0.84± 0.02[0.82, 0.84, 0.85] 0.81± 0.02[0.79, 0.81, 0.81] 0.74± 0.04[0.70, 0.75, 0.87]

NMI 0.21± 0.01[0.12, 0.21, 0.27] 0.24± 0.02[0.16, 0.23, 0.28] 0.25± 0.04[0.13, 0.24, 0.30]

Table 4.11: Clustering results of seed-based IDS for the Heart disease data set with different seed exchange
mechanisms (50 runs, k = 2 clusters per domain).

• Credit card approval data set: Again, the results of the proposed approach using the normal

seed exchange show an oscillating behavior of the objective functions in both domains. Even

with such an unstable optimization process, the seed-based IDS algorithm reaches significantly

improved clustering results in both domains, see Figures 4.4a and 4.4b compared to the baseline

splitting algorithm. With the XB index-based seed exchange, we reach the same value of the

objective functions but this time, the seed-based IDS algorithm converges after 10 iterations,

see Figures 4.4c and 4.4d. In contrast, using the DB index-based seed exchange, we reach

convergence after only 3 iteration, with a higher value of the objective functions in both
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domains, and yet still better than that of the splitting baseline algorithm. Table 4.12 shows the

numerical results of all three seed exchange mechanisms: The DB index-based seed exchange

shows superior results in all evaluation measures in the numerical domain. In the categorical

domain, DB index-based seed exchange outperforms the other mechanisms in the internal

validity measures, while yielding to the XB index-based seed exchange in the external validity

measures.

Data type Numerical
Algorithm Normal exchange XB exchange DB exchange

DB Index 2.24± 0.36[1.12, 2.28, 3.81] 2.09± 0.53[1.50, 1.74, 3.80] 1.98± 0.63[0.01, 2.06, 3.81]
Silhouette Index 0.52± 0.07[0.20, 0.51, 0.66] 0.54± 0.09[0.29, 0.55, 0.68] 0.56± 0.14[0.20, 0.55, 0.97]

Dunn Index 0.0002± 0.0002[0, 0.0001, 0.0009] 0.0003± 0.0003[0, 0.0002, 0.0009] 0.0078± 0.0497[1.2e− 5, 2.3e− 4, 0.35]

Purity 0.62± 0.03[0.54, 0.60, 0.70] 0.65± 0.02[0.57, 0.65, 0.70] 0.65± 0.05[0.47, 0.66, 0.70]
Entropy 0.95± 0.02[0.87, 0.92, 0.99] 0.91± 0.03[0.84, 0.92, 0.98] 0.91± 0.04[0.84, 0.91, 0.99]

NMI 0.07± 0.01[0.005, 0.06, 0.12] 0.09± 0.03[0.008, 0.08, 0.18] 0.10± 0.04[1.3e− 4, 0.09, 0.18]

Data type Categorical
Algorithm Normal exchange XB exchange DB exchange

DB Index 1.69± 0.26[1.16, 1.82, 1.95] 1.58± 0.39[0.97, 1.82, 2.86] 1.41± 0.31[0.97, 1.38, 1.95]
Silhouette Index 0.22± 0.02[0.18, 0.23, 0.36] 0.22± 0.04[0.15, 0.23, 0.35] 0.23± 0.05[0.16, 0.23,0.36]

Dunn Index 0.12± 0.01[0.11, 0.12, 0.22] 0.12± 0.02[0.11, 0.11, 0.22] 0.12± 0.03[0.11, 0.11,0.22]

Purity 0.71± 0.02[0.54, 0.73, 0.78] 0.75± 0.06[0.54, 0.78, 0.83] 0.73± 0.08[0.54, 0.77, 0.80]
Entropy 0.85± 0.07[0.64, 0.75, 0.98] 0.77± 0.07[0.64, 0.72, 0.96] 0.80± 0.08[0.70, 0.78, 0.98]

NMI 0.19± 0.02[0.02, 0.22, 0.28] 0.22± 0.08[0.02, 0.26, 0.36] 0.19± 0.08[0.01, 0.22, 0.30]

Table 4.12: Clustering results of seed-based IDS for the Credit card approval data set with different seed
exchange mechanisms (50 runs, k = 2 clusters per domain).

• MIRFlickr data set: As shown in Figures 4.5a and 4.5b, the normal seed exchange mechanism

is able to achieve convergence after 16 iterations in both domains. Moreover, in the text

domain, it leads to a lower value of the objective function than the objective function of the

baseline splitting algorithm. The results of the XB seed exchange show lower performance

compared to the baseline splitting algorithm and other seed exchange mechanisms, and also

failed to converge (see Figures 4.5c and 4.5d). The results of the DB seed exchange yields

to the results of the splitting algorithm in the text domain and outperforms it in the visual

domain. As shown in Table 4.13, the DB seed exchange mechanism outperforms all other seed

exchange methods in both domains. Note that for the MIRFlickr data set, we do not have an

external class label, but rather a set of tags for each image. Thus, in addition to the regular

validity indices, we also compute those same validity indices in the tag space (instead of the

original data space) to capture how the clusters conform with the ground-truth tags for the

data. These validity indices are referred to as Tags DB, Tags Silhouette and Tags Dunn in

Table 4.13.

To conclude, the proposed seed-based IDS algorithm with the DB index-based seed exchange

mechanism leads to better clustering results, algorithm stability and a faster convergence, than the
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Data type Text
Algorithm Normal exchange XB exchange DB exchange

DB Index 2.46± 0.06[2.39, 2.44, 2.56] 2.31± 0.11[2.19, 2.28, 2.51] 2.29± 0.06[2.22, 2.28, 2.40]
Silhouette Index 0.01± 0.001[0.009, 0.01, 0.01] 0.01± 0.003[0.008, 0.01, 0.016] 0.01± 0.002[0.007, 0.011, 0.016]

Dunn Index 0.01± 0.003[0.006, 0.01, 0.014] 0.01± 0.004[0.007, 0.01, 0.02] 0.01± 0.006[0.007, 0.01, 0.02]

Tags DB Index 61.40± 18.78[39.94, 60.91, 98.35] 50.20± 16.08[29.94, 50.01, 79.63] 48.58± 14.29[26.27, 43.89, 69.95]
Tags Silhouette Index 0.14± 0.03[0.11, 0.13, 0.20] 0.15± 0.04[0.12, 0.17, 0.19] 0.16± 0.03[0.11, 0.17, 0.21]

Tags Dunn Index 0.0001± 0[0.0001, 0.0001, 0.0001] 0.0001± 0[0.0001, 0.0001, 0.0001] 0.0001± 0[0.0001, 0.0001, 0.0001]

Data type Visual
Algorithm Normal exchange XB exchange DB exchange

DB Index 2.53± 0.25[2.33, 2.41, 3.15] 2.71± 0.13[2.53, 2.69, 3.00] 2.20± 0.14[1.99, 2.20, 2.52]
Silhouette Index 0.08± 0.01[0.05, 0.08, 0.09] 0.07± 0.01[0.05, 0.07, 0.08] 0.10± 0.01[0.08, 0.10, 0.11]

Dunn Index 0.003± 0.003[0.0004, 0.003, 0.009] 0.002± 0.002[0.0004, 0.0015, 0.005] 0.005± 0.001[0.004, 0.005, 0.005]

Tags DB Index 65.42± 9.47[53.42, 62.29, 80.57] 72.70± 16.25[47.45, 68.84, 99.42] 69.55± 13.91[53.02, 66.85, 93.60]
Tags Silhouette Index 0.08± 0.009[0.07, 0.08, 0.10] 0.08± 0.007[0.07, 0.08, 0.10] 0.09± 0.01[0.07, 0.09, 0.10]

Tags Dunn Index 0.0001± 0[0.0001, 0.0001, 0.0001] 0.0001± 0[0.0001, 0.0001, 0.0001] 0.0001± 0[0.0001, 0.0001, 0.0001]

Table 4.13: Clustering results of seed-based IDS for the MIRFlickr data set with different seed exchange
mechanisms (10 runs, k = 16 clusters per domain).

seed-based IDS with the XB index-based and normal seed exchange mechanisms in terms of the

internal and external validity measures.

4.2.2 Results for the Constraint-based IDS Clustering: Studying the Im-

pact of the Number of Constraints

The mechanism of the proposed constraint-based IDS clustering depends on the amount of infor-

mation exchanged between the domains. This amount is determined by the number of constraints

ncT or number of exchange points per cluster nT . The number of constraints generated in domain

T1 and sent to domain T2 is defined as the number of possible pairs generated between a total of

nT1kT1 points, which is

ncT1
=

(nT1kT1)(nT1kT1 − 1)

2
, (4.2)

where kT1 is the number of clusters in domain T1. For example, if the numbers of exchange points in

each domain are nT1
= 5, nT2

= 10 and the numbers of clusters are kT1
= 2, kT2

= 3 then ncT1
= 45

and ncT2
= 435 constraints, making in total 480 pairwise constraints.

Figures 4.6, 4.7, and 4.8 show the performance of the constraint-based IDS with respect to the

different number of exchange points in the different domains. The heat maps (a) and (b) in each

sub-figure show the percent-wise improvement (or decline) over the baseline value of NMI with no

constraint exchange,

∆NMI =
(NMIIDS −NMIsplitting)

NMIsplitting
100% (4.3)

with respect to the number of exchange points from the different domains. The heat maps (c) and
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(d) similarly show the improvement (or decline) but in terms of the DB index, i.e.

∆db = − (dbIDS − dbsplitting)
dbsplitting

100%. (4.4)

We change the sign of the ∆db value in (4.4) so that a lower value of the DB index reflects better

clustering and all the heat maps follow the same color code. The color bar on the heat map ranges

from −100% (decay) to 100% (improvement), starting from the dark blue color (decay), continuing

to the “cold” colors (neutral), then reaching the “warm” colors (improvement) and ending with dark

red. Each point in the heat map is a result of an independent run of the constraint-based IDS

approach, the size of each map is 29×29 amounting in total to 841 experiments per data set (for the

Adult data set the size of the heat map is 26×26, making in total 676 experiments), with a minimum

number of exchange points per cluster, nT,min = 2 and maximum nT,max = 30. The Adult, Heart

disease, and Credit card approval data sets were clustered with kT1 = kT2 = 2 clusters per domain,

and we let the algorithm run for tT1
= tT2

= 1 iterations in each turn of the exchange. Results for

each data set are presented below:

• Adult data set: Figure 4.6a shows that the value of ∆NMI in the numerical domain is ex-

tremely stable and higher than that of NMIsplitting of the baseline splitting algorithm by

10− 20%; while in the categorical domain, it is higher by 20− 60%, except for one strip cor-

responding to the number of exchange points in the numerical domain, nT1
= 8 or nT1

= 9,

and any number of exchange points, nT2
, in the categorical domain, see Figure 4.6b. In Figure

4.6c we see a similar trend, but this time, almost the same strip indicates extremely high im-

provement over the baseline splitting algorithm in terms of the DB index. Such disagreement

between an external and internal validity measure is not uncommon and indicates that the

cluster structure does not match the “true” class labels. In the categorical domain, in Figure

4.6d, we see that, with the exception of the same number of exchange points nT1
= 8− 9 the

constraint-based IDS results are worse than the baseline splitting algorithm results. We can

conclude for this data that there is an asymmetrical benefit from the inter-domain supervision,

with the categorical domain offering more guidance toward a better internal cluster structure.

• Heart disease data set: In the numerical domain, Figures 4.7a and 4.7c show a smooth heat

surface, indicating the algorithm‘s stability, and overall (up to 40%) improvement over the

baseline splitting algorithm. Also, these figures show the overall agreement between external
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(a) Value of the ∆NMI in the numerical domain (b) Value of the ∆NMI in the categorical domain

(c) Value of the ∆db index in the numerical do-
main

(d) Value of the ∆db index in the categorical do-
main

Figure 4.6: Constraint-based IDS (kT1 = kT2 = 2, tT1 = tT2 = 1): effect of the number of constraints in
the Adult data set. Warm colors indicate improvement and cold colors indicate decline over the baseline
splitting algorithm.

and internal validity measures, indicating that the clustering structure and ground-truth class

distribution are the same. In the categorical domain, Figures 4.7b and 4.7d show similar

behavior with even more improvement resulting from the exchange, in some cases over 40%

compared to the baseline algorithm. From the asymmetry of the maps, it seems that the

categorical domain provides guidance over a wide range of exchange numbers.

• Credit card approval data set: Again, in the numerical domain, as seen in Figures 4.8a and

4.8c, the external and internal validity indices disagree and with an increase of the number

of exchange points from the categorical domain, the improvement in terms of NMI increases,

in contrast to an increase in the decay of the DB index. As for the categorical domain, we

see an improvement in terms of NMI as long as nT1
> 4; while for the DB index, we see an

improvement when 10 ≤ nT1
≤ 25 and nT2

> 8.
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(a) Value of the ∆NMI in the numerical domain (b) Value of the ∆NMI in the categorical domain

(c) Value of the ∆db index in the numerical do-
main

(d) Value of the ∆db index in the categorical do-
main

Figure 4.7: Constraint-based IDS (kT1 = kT2 = 2, tT1 = tT2 = 1): effect of the number of constraints in the
Heart disease data set. Warm colors indicate improvement and cold colors indicate decline over the baseline
splitting algorithm.

We do not present such exhaustive experiments for the MIRFlickr data set due to the high compu-

tation cost as a result of the high number of points and clusters in each domain (kT = 16). After

several trials, we found that we achieve the best results with nT1
= 5 and nT2

= 5, making in total

3, 160 pairwise constraints from 5× 16 = 80 points per domain.

To conclude, in Figures 4.6-4.8, we observe that the “warm” colors are dominant, meaning that

the proposed constraint-based IDS clustering generally results in an improvement over the splitting

algorithm in the following aspects:

• over a wide range of the algorithm parameters,

• for different data sets with different sizes and number of features,

• in different validation measures,
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(a) Value of the ∆NMI in the numerical domain (b) Value of the ∆NMI in the categorical domain

(c) Value of the ∆db index in the numerical do-
main

(d) Value of the ∆db index in the categorical do-
main

Figure 4.8: Constraint-based IDS (kT1 = kT2 = 2, tT1 = tT2 = 1): effect of the number of constraints in the
Credit card approval data set. Warm colors indicate improvement and cold colors indicate decline over the
baseline splitting algorithm.

• for some data sets, the improvement is asymmetric, with one domain contributing more to

guide the other,

• for some data sets, validations in terms of an external (NMI) and internal (DB) validity

measures give opposite results. This reflects some disagreement between the internal structure

and external labels. Of course, the external validity option is generally impossible without

external “true” class labels, which is the case with most real-life data.

4.2.3 Comparison of the Proposed IDS Framework with Other Clustering

Methods

We compare the proposed seed-based and constraint-based Inter-Domain Supervised clustering ap-

proaches with the following techniques:
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1. Splitting algorithm. A classical baseline approach, where we split the data according to its

domain and run a specialized clustering algorithm on each domain separately. This is equivalent

to traditional clustering with no exchange (see Section 2.3.1).

2. Conversion algorithm: Another traditional algorithm where we convert all data to the same

attribute type and cluster it using a specialized clustering algorithm (see Section 2.3.1). Note

that for the MIRFlickr data set, since both domains have the same bag of features or words

(BOF or BOW) format, there is no need for converting one domain to another, instead we

normalized each domain to an L2-norm of 1, merged the data records together and normalized

them again to an L2-norm of 1. Despite a similar BOW format, the two domains arise from

conceptually different sources (visual versus text, and can therefore have different structure).

3. Ensemble clustering with voting methods as a consensus function using as base algorithm

k-means, k-modes, and spherical k-means for numerical, categorical, and BOW domains, re-

spectively (see Section 3.3.1).

4. Ensemble clustering with post clustering of the cluster membership matrix (see Section 3.3.1).

5. Multiview clustering algorithm, where two independent hypotheses are trained on different

domains with bootstrapping by providing each other with cluster labels for the unlabeled

domain (see Section 3.3.2).

Figures 4.9 and 4.10 show how the value of the objective functions of the the seed-based IDS,

constraint-based IDS, splitting, and multiview k-means algorithms behave during the clustering

process. We do not show the values of the objective functions of the conversion and ensemble

methods, since in these algorithm, there is no interaction between the domains. These figures were

constructed based on a typical run of each algorithm. Tables 4.14, 4.15, 4.16, and 4.17 show average

results (in the format of mean±std[min, median, max] with the best results in a bold font) of repeated

experiments for each data set and algorithm. We repeated each experiment 50 times for the Heart

disease and Credit card approval data sets and 10 times for the larger Adult and MIRFlickr data

sets.

• Adult data set: Figures 4.9a and 4.9b show the value of the objective function for the compared

algorithms in the numerical and categorical domains, respectively. In the numerical domain,

the constrained-based IDS outperforms the seed-based IDS, splitting, and multiview clustering

algorithms obtaining a lower value of the objective function. We run the seed-based IDS with
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(a) Adult data set: numerical domain. (b) Adult data set: categorical domain.

(c) Heart disease data set: numerical domain. (d) Heart disease data set: categorical domain.

Figure 4.9: Value of the objective functions for seed-based IDS (red diamonds), constraint-based IDS (green
stars), splitting clustering (dashed black squares), and multiview clustering (dotted black circles). See the
value of the validity indices in Table 4.14 for the Adult data set and Table 4.15 for the Heart disease data
set. The number of clusters is set to k = 2 for both data sets.
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(a) Credit card approval data set: numerical do-
main.

(b) Credit card approval data set: categorical do-
main.

(c) MIRFlickr data set: text domain. (d) MIRFlickr data set: visual domain.

Figure 4.10: Value of the objective functions for seed-based IDS (red diamonds), constraint based IDS (green
stars), splitting clustering (dashed black squares), and multiview clustering (dotted black circles). See the
value of the validity indices in Table 4.16 for the Credit card approval data set and Table 4.17 for the
MIRFlickr data set. The number of cluster is k = 2 for the Credit card approval data set, and k = 16 for
the MIRFlickr data set.
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the DB index-based seed exchange mechanism and the following parameters: k = 2 clusters

with 2 seeds per cluster, while for the constraint-based IDS: nT1
= nT2

= 5, tT1
= tT2

= 1. The

seed-based IDS approach shows exactly the same results as the baseline splitting algorithm in

both domains and yields to the multiview and constraint-based IDS clustering in the numerical

domain. In the categorical domain, the constraint-based IDS shows better results than all

other algorithms. Table 4.14a shows the results of the seed-based IDS, constraint-based IDS,

splitting, and conversion methods with the best results shown in a bold font. The seed-based

IDS framework outperforms all other techniques in terms of internal validity indices in the

numerical domain, while the constraint-based IDS shows better results in term of external

validity measures in the categorical domain. Note the extremely low minimum value of the

DB and high value of the Silhouette indices of the seed-based IDS in both domains indicating

the superior potential capabilities of the IDS approach. Table 4.14b shows the results of the

proposed IDS approaches, ensemble techniques, and multiview k-mean clustering algorithm.

Again, the Seed-based IDS outperforms the other methods in both domains in terms of internal

validity indices, yielding to the ensemble clustering method only in terms of external indices.

• Heart disease data set: As Figure 4.9c illustrates, the constraint-based IDS outperforms the

other methods in the numerical domain, while the seed-based IDS obtains similar results to

the splitting algorithm. In the categorical domain, the seed-based IDS also shows similar

results to the splitting algorithm but outperforms the constraint-based IDS and multiview

clustering, see Figure 4.9d. Table 4.15a shows the results of the proposed IDS approaches

and traditional clustering techniques. Here, the traditional methods outperform the proposed

approaches in the numerical domain in all the validity measures. In the categorical domain, we

see a completely opposite picture, where the constraint-based IDS obtains significantly better

clustering results than all other techniques. Table 4.15b shows that the constraint-based IDS

outperforms the ensemble and multiview clustering in the internal validity measures, but yields

to ensemble clustering in the external indices. In the categorical domain, we observe a similar

behavior again. The proposed IDS approaches outperform in the internal validity indices

and concede to ensemble clustering in terms of the external indices. We ran the seed-based

IDS with the following parameters: k = 2 clusters and number of seeds equal 2, and for the

constraint-based IDS: nT1
= 5, nT2

= 11, and tT1
= tT2

= 1.

• Credit card approval data set: Figure 4.10a shows that the value of the objective function

of the constraint-based IDS is much lower than the objective function of the other methods,
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therefore it achieves better clustering. The seed-based IDS yields to the multiview clustering

but outperforms the traditional splitting algorithm. In the categorical domain, the constraint-

based IDS yields to the multiview k-means but outperforms the seed-based IDS approach,

which shows similar results to the splitting algorithm, see Figure 4.9b. Table 4.16a illustrates

that the constraint-based IDS outperforms traditional approaches in terms of DB, Silhouette

and purity in the numerical domain. Also note the low minimum value of the DB and high

maximum value of the Silhouette index in the numerical domain for the seed-based IDS ap-

proach, showing that this approach can win by a large margin, trying to reach these best results

in an unsupervised way. The proposed IDS approaches yield to the conversion algorithm in

term of the Dunn index, entropy, and NMI. On the other hand, in the categorical domain, the

IDS approach outperforms the traditional splitting and conversion algorithms. Table 4.16b

shows that the constraint-based IDS approach outperforms all other techniques in terms of

all internal validity indices in the numerical domain but concedes to the ensemble clustering

algorithm in terms of all external indices. One possible reason is that the cluster structure does

not match the “true” class labels or ground truth, which is common in unsupervised learning.

We ran the seed-based IDS with the following parameters: k = 2 clusters and number of seeds,

and for the constraint-based IDS: nT1
= 5, nT2

= 11, and tT1
= tT2

= 1.

• MIRFlickr data set: Figure 4.10c shows that the value of the objective function of the proposed

constraint-based IDS approach outperforms other methods in the text and visual domains. The

seed-based IDS approach yields to the constraint-based IDS in both domains but outperforms

the traditional splitting algorithm and multiview clustering. Table 4.17a illustrates that the

seed-based IDS approach yields to the splitting algorithm in all internal and tags DB indices

but outperforms all other methods in terms of tags Silhouette and Dunn indices in the text

domain. In the visual domain, we observe a similar behavior except that the constraint-based

IDS performs better in terms of the Silhouette index. Table 4.17b shows that overall, the

proposed IDS approaches outperform ensemble techniques and multiview clustering.

Note that the objective function of the constraint-based IDS (see Formula 3.1) is different from the

standard k-means-like (sum of squared distances) objective function used in all other algorithms.

The difference is in the two additional positive penalty terms, responsible for the must-link and

cannot-link constraints. These terms are penalties for the unsatisfied must-link and cannot-link

constraints. At the beginning of the optimization process, most of the constraints are naturally not

met and the value of the objective function is still high. Then, closer to the convergence point, most
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(a) Text: graffiti. (b) Text: flower, green, orange, petal,
spider, yellow.

(c) Text: grey, horse, friend. (d) Text: animal, close up, detail,
flower, insect, red, water.

Figure 4.11: Sample data from the compatible clusters.

of the constraints are satisfied and the value of each of the penalty terms approaches zero. This

explains why the objective function of the constraint-based IDS always starts from a higher value

than others but quickly reaches a lower value, reflecting a better clustering.

4.3 Results of the Compatibility Analysis Experiments

Using the methodology described in Section 3.4, we extracted two subsets of the MIRFlickr data

set depending on whether the domains were compatible or incompatible. The compatible subset

consists of 2, 679 data records, while the size of the incompatible subset was 20, 751 data records.

Since the incompatible subset had almost eight times as many data records as the compatible set,

we used only 2, 679 randomly selected data records to perform our experiments, and therefore get

comparable metrics that are not biased by the size of the data sets. We also randomly selected

2, 679 data records from the entire data set, and called this set the mixed set. Figures 4.11 and 4.12

illustrate four randomly selected images from the data along with their text data from the compatible

and incompatible subsets, respectively. To show the importance of the domain compatibility in
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(a) Text: hawaii, light house, vacation. (b) Text: gold, record, sing, vintage,
vinyl.

(c) Text: canon, japan, flower, rainy. (d) Text: Indonesia, sun, temple.

Figure 4.12: Sample data from the incompatible clusters.
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(a) MIRFlickr data set: text domain (b) MIRFlickr data set: visual domain.

Figure 4.13: Value of the objective function (and number of exchange seeds) within seed-based IDS for
the compatible (solid blue line) and incompatible (dashed blue line) sets. Red diamonds represent a seed
exchange between domains. The maximum number of seed exchanged between domains is 16, same as the
number of clusters.

clustering heterogeneous data, we performed three similar experiments for each clustering technique.

In the first experiment, we used only data from the mixed subset; in the second experiment, we used

data from the incompatible subset; and in the third, we used data from the compatible subset.

We repeated each experiment 10 times and as before, we report the validity indices in the format:

mean±std[min, median, max]. The results of these experiments are described below:

Seed-based IDS: Table 4.18 shows the results for the compatible set which significantly outper-

form the results for the other subsets with better results in terms of all internal and external validity

measures. Figure 4.13 shows a typical run of the seed-based IDS for the compatible and incompati-

ble sets. The seed-based IDS results are better in the compatible set than in the incompatible set,

showing that the proposed IDS approach is more active and involves more seed exchanges between

domains in the compatible set. This happens because the cluster structure in the text domain and

in the visual domain agree in the compatible set: an image-text pair is always assigned to the same

cluster in both domains and every seed exchange guides the clustering process a better clustering.

We also observe that the visual domain benefits from more exchanged seeds received from the text

domain (Figure 4.13b).

Constraint-based IDS: Again, Table 4.19 shows that the proposed constraint-based IDS ap-

proach for the compatible set outperforms the results for the mixed and incompatible sets in both

the text and visual domains. Figures 4.14, 4.15, and 4.16 show the improvement or decay of the

constrained-based IDS with respect to the different number of exchange points in the different
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Data type Text domain
Algorithm Mixed set Incompatible set Compatible Set

DB Index 2.11± 0.01[1.96, 2.10, 2.25] 2.14± 0.08[2.02, 2.12, 2.27] 2.05± 0.04[2.00, 2.04, 2.13]
Silhouette Index 0.01± 0.006[0.002, 0.009, 0.018] 0.009± 0.002[0.007, 0.009, 0.01] 0.02± 0.003[0.013, 0.018, 0.025]

Dunn Index 0.055± 0.04[0.03, 0.03, 0.11] 0.044± 0.002[0.042, 0.043, 0.049] 0.076± 0.008[0.02, 0.06, 0.09]

Tags DB Index 25.64± 6.60[16.37, 24.77, 34.88] 28.34± 5.99[18.90, 28.84, 39.24] 20.87± 3.14[13.95, 20.61, 25.09]
Tags Silhouette Index 0.13± 0.06[0.08, 0.13, 0.16] 0.13± 0.034[0.08, 0.13, 0.16] 0.16± 0.03[0.10, 0.16, 0.19]

Tags Dunn Index 0.0001± 0[0.0001, 0.0001, 0.0001] 0.0001± 0[0.0001, 0.0001, 0.0001] 0.0001± 0[0.0001, 0.0001, 0.0001]

Data type Visual domain
Algorithm Mixed set Incompatible set Compatible Set

DB Index 2.25± 0.22[2.02, 2.20, 2.73] 2.28± 0.16[2.06, 2.30, 2.46] 2.14± 0.15[1.80, 2.14, 2.32]
Silhouette Index 0.09± 0.008[0.07, 0.09, 0.10] 0.09± 0.009[0.08, 0.09, 0.11] 0.11± 0.01[0.10, 0.11, 0.13]

Dunn Index 0.027± 0.019[0.0024, 0.021, 0.06] 0.027± 0.02[0.02, 0.03, 0.06] 0.04± 0.017[0.004, 0.042, 0.054]

Tags DB Index 40.76± 7.60[32.00, 38.3, 53.89] 37.10± 4.04[31.40, 36.06, 44.94] 26.28± 4.52[20.5769, 26.5659, 34.1164]
Tags Silhouette Index 0.09± 0.01[0.07, 0.09, 0.09] 0.08± 0.01[0.06, 0.08, 0.08] 0.10± 0.01[0.07, 0.10, 0.10]

Tags Dunn Index 0.0001± 0[0.0001, 0.0001, 0.0001] 0.0001± 0[0.0001, 0.0001, 0.0001] 0.0001± 0[0.0001, 0.0001, 0.0001]

Table 4.18: Clustering results of the seed-based IDS (with DB-exchange) for the mixed, incompatible, and
compatible sets (10 runs, k = 16 clusters per domain).

Data type Text domain
Algorithm Mixed set Incompatible set Compatible Set

DB Index 2.01± 0.01[2.00, 2.01, 2.03] 2.04± 0.01[2.03, 2.04, 2.06] 1.92± 0.01[1.91, 1.92, 1.96]
Silhouette Index 0.016± 0.001[0.015, 0.016, 0.016] 0.015± 0.001[0.014, 0.015, 0.017] 0.03± 0.001[0.026, 0.028, 0.03]

Dunn Index 0.01± 0.014[0, 0.01, 0.03] 0.0001± 0[0.0001, 0.0001, 0.0001] 0.03± 0.026[0, 0.05, 0.05]

Tags DB Index 36.14± 1.11[34.11, 36.37, 37.37] 31.1629± 1.5180[28.76, 30.91, 34.1797] 18.05± 1.54[16.42, 17.30, 20.48]
Tags Silhouette Index 0.1102± 0.0021[0.10, 0.11, 0.11] 0.0745± 0.0007[0.074, 0.074, 0.075] 0.15± 0.003[0.14, 0.15, 0.15]

Tags Dunn Index 0.0001± 0[0.0001, 0.0001, 0.0001] 0.0001± 0[0.0001, 0.0001, 0.0001] 0.0001± 0[0.0001, 0.0001, 0.0001]

Data type Visual domain
Algorithm Mixed set Incompatible set Compatible Set

DB Index 1.93± 0.04[1.89, 1.92, 1.2.07] 2.14± 0.05[1.92, 2.01, 2.17] 1.91± 0.02[1.89, 1.91, 2.00]
Silhouette Index 0.10± 0.002[0.10, 0.10, 0.11] 0.1076± 0.0021[0.1054, 0.1072, 0.1111] 0.12± 0.002[0.12, 0.12, 0.13]

Dunn Index 0.0251± 0.0142[0.0205, 0.0206, 0.0654] 0.0140± 0.021[0.0008, 0.0008, 0.0582] 0.05± 0.014[0.04, 0.04, 0.07]

Tags DB Index 38.73± 3.0666[34.86, 37.80, 45.08] 37.42± 4.1019[31.02, 37.31, 46.11] 30.12± 3.79[22.60, 30.76, 37.14]
Tags Silhouette Index 0.0942± 0.0057[0.08, 0.09,−.10] 0.094± 0.004[0.09, 0.09, 0.091] 0.099± 0.005[0.0939, 0.0986, 0.10]

Tags Dunn Index 0.0001± 0[0.0001, 0.0001, 0.0001] 0.0001± 0[0.0001, 0.0001, 0.0001] 0.0001± 0[0.0001, 0.0001, 0.0001]

Table 4.19: Clustering results of the constraint-based IDS for the mixed, incompatible, and compatible sets
(10 runs, k = 16 clusters per domain, nT1 = 11, nT2 = 5, and tT1 = tT2 = 1).

domains for the compatible set of the MIRFlickr data set over the baseline splitting algorithm,

incompatible, and mixed sets, respectively.

• In Figure 4.14, the heat maps (a) and (b) in each sub-figure show the percent-wise improvement

(or decline) over the value of the tag DB index for the splitting algorithm,

∆dbTag = −

(
dbTagcompatible − db

Tag
splitting

)
dbTagsplitting

100%. (4.5)

with respect to the number of exchange points from the different domains, while the heat maps

(c) and (d) show the same improvement (or decline) in terms of the DB index, i.e.

∆db = − (dbcompatible − dbsplitting)
dbsplitting

100%. (4.6)

• In Figure 4.15, the heat maps (a) and (b) in each sub-figure show the percent-wise improvement
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(or decline) over the value of the tag DB index for the mixed set,

∆dbTagmixed = −

(
dbTagcompatible − db

Tag
mixed

)
dbTagmixed

100%. (4.7)

with respect to the number of exchange points from the different domains, while the heat maps

(c) and (d) show the same improvement (or decline) in terms of the DB index, i.e.

∆dbmixed = − (dbcompatible − dbmixed)
dbmixed

100%. (4.8)

• In Figure 4.16, the heat maps (a) and (b) in each sub-figure show the percent-wise improvement

(or decline) over the value of the tag DB index for the incompatible set,

∆dbTagincompatible = −

(
dbTagcompatible − db

Tag
incompatible

)
dbTagincompatible

100%. (4.9)

with respect to the number of exchange points from the different domains, while the heat maps

(c) and (d) show the same improvement (or decline) in terms of the DB index, i.e.

∆dbincompatible = − (dbcompatible − dbincompatible)
dbincompatible

100%. (4.10)

The color bar on the heat map ranges from −100% (decay) to 100% (improvement), starting from

the dark blue color (decay), continuing to the “cold” colors (neutral), then reaching to the “warm”

colors (improvement) and ending with the dark red. Each point in the heat map is a result of an

independent run of the constraint-based IDS approach, the size of each map is 14×14, making in total

196 experiments for each set, with a minimum number of exchange points per cluster, nT,min = 2

and maximum nT,max = 15.

• Figure 4.14a shows that the value of the ∆dbTag in the text domain gradually increases with

an increase in the number of exchange points from the text domain, except for one strip

corresponding to the number of exchange points in the text domain, nT1 = 12, and any number

of exchange points, nT2
, in the visual domain. The performance of the constraint-based IDS

in the text domain is not effected by the exchange points coming from the visual domain. We

obtained a maximum improvement of 64% over the baseline splitting algorithm with nT1 = 11

exchange points in the text domain and nT2
= 5 exchange points in the visual domain. Figure

4.14b shows that any value of the exchange points coming from both domains helps to improve
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the results compared to the baseline splitting algorithm by 20− 30%. Figures 4.14c and 4.14d

show a smooth heat surface, indicating the algorithm’s stability, and an overall (up to 20%)

improvement over the results of the baseline splitting algorithm.

(a) Value of the ∆dbTag index in the text
domain

(b) Value of the ∆dbTag index in the visual
domain

(c) Value of the ∆db index in the text do-
main

(d) Value of the ∆db index in the visual do-
main

Figure 4.14: Constraint-based IDS (kT1 = kT2 = 16, tT1 = tT2 = 1): effect of the number of constraints in
the compatible set of the MIRFlickr data set. Warm colors indicate improvement and cold colors indicate
decline over the baseline splitting algorithm.

• Figures 4.15a and 4.15b show the overall improvement of the results of the compatible set over

the results of the mixed set in the text and visual domains, respectively. Figures 4.15c and

4.15d show a smooth heat surface, indicating the algorithm’s stability, and an overall (up to

20%) improvement over the results of the results of the mixed set.

• The heat maps in Figure 4.16 are similar to the previous heat maps in Figure 4.15, but

with a higher improvement over the results of the incompatible set. Figure 4.16.a shows

up to 80% improvement with nT1
= 12 exchange points in the text domain and nT2

= 13

exchange points in the visual domain. Again, the values of the improvement of the internal DB

index ∆dbincompatible in the text and visual domains show a smooth heat surface, indicating
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(a) Value of the ∆dbTag
mixed index in the text

domain
(b) Value of the ∆dbTag

mixed index in the visual
domain

(c) Value of the ∆dbmixed index in the text
domain

(d) Value of the ∆dbmixed index in the visual
domain

Figure 4.15: Constraint-based IDS (kT1 = kT2 = 16, tT1 = tT2 = 1): effect of the number of constraints in
the compatible set of the MIRFlickr data set. Warm colors indicate improvement and cold colors indicate
decline over the mixed set.

the algorithm’s stability, and an overall (up to 30%) improvement over the results of the

incompatible set.

Figure 4.17 shows the value of the objective function for the constraint-based IDS for the compatible

and incompatible sets. The value of the objective function of the compatible set is 5% lower than

the value of the objective function for the incompatible set, which indicates a better clustering.

Conversion, Splitting, Ensemble, and Multiview clustering: Tables 4.20, 4.21, 4.22, and

4.23 show the clustering results of the mixed, incompatible, and compatible sets for the conversion,

splitting, ensemble, and multiview clustering algorithms, respectively. As we can see from these

tables, the results for the compatible set dominate over the results for the incompatible and mixed

sets.
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(a) Value of the ∆dbTag
incompatible index in the

text domain
(b) Value of the ∆dbTag

incompatible index in the
visual domain

(c) Value of the ∆dbincompatible index in the
text domain

(d) Value of the ∆dbincompatible index in the
visual domain

Figure 4.16: Constraint-based IDS (kT1 = kT2 = 16, tT1 = tT2 = 1): effect of the number of constraints in
the compatible set of the MIRFlickr data set. Warm colors indicate improvement and cold colors indicate
decline over the incompatible set.

4.4 Application: Image Auto-Annotation

For the purpose of application, we performed two sets of experiments:

• In the first set of experiments, we split the MIRFlickr data set in two sets: training and testing.

The size of the training set is 22, 430 data records and the size of the testing set is 1, 000 data

records. We cluster the training set into k = 50, 100, 200, and 300 clusters. In the seed-

based IDS, constraint-based IDS, conversion, multiview, and ensemble clustering algorithms,

we cluster the text and visual domains together, and in the splitting algorithm, we cluster only

the visual domain.

• In the seconds set of experiments, we first performed a compatibility analysis and then split

the MIRFlickr data set in two training sets and one test set. The size of the first training

set is 2, 629 data records consisting of data records from the compatible set, while the second
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(a) MIRFlickr data set: text domain (b) MIRFlickr data set: visual domain.

Figure 4.17: Value of the objective function for constraint-based IDS for the compatible (solid green line) and
incompatible (dashed dark green line) sets (k = 16 clusters per domain, nT1 = 5, nT2 = 5, and tT1 = tT2 = 1).

Data type Text domain
Algorithm Mixed set Incompatible set Compatible Set

DB Index 2.51± 0.13[2.29, 2.52, 2.72] 2.55± 0.12[2.42, 2.50, 2.75] 2.43± 0.07[2.34, 2.44, 2.55]
Silhouette Index 0.053± 0.001[0.051, 0.053, 0.054] 0.053± 0.002[0.048, 0.053, 0.056] 0.068± 0.004[0.06, 0.068, 0.074]

Dunn Index 0.2449± 0.0294[0.1891, 0.2588, 0.2588] 0.1760± 0.0515[0.1295, 0.1597, 0.2433] 0.28± 0.0161[0.2462, 0.2825, 0.3038]

Tags DB Index 41.75± 4.12[34.48, 42.42, 47.68] 43.85± 5.18[35.42, 43.15, 55.84] 27.78± 6.54[17.01, 29.61, 35.33]
Tags Silhouette Index 0.10± 0.01[0.08, 0.10, 0.11] 0.095± 0.008[0.08, 0.09, 0.10] 0.10± 0.007[0.08, 0.089, 0.10]

Tags Dunn Index 0.0001± 0[0.0001, 0.0001, 0.0001] 0.0001± 0[0.0001, 0.0001, 0.0001] 0.0001± 0[0.0001, 0.0001, 0.0001]

Data type Visual domain
Algorithm Mixed set Incompatible set Compatible Set

DB Index 2.44± 0.07[2.34, 2.44, 2.55] 2.55± 0.12[2.42, 2.49, 2.75] 2.51± 0.13[2.29, 2.51, 2.72]
Silhouette Index 0.05± 0.001[0.05, 0.05, 0.05] 0.053± 0.0023[0.05, 0.054, 0.06] 0.068± 0.005[0.059, 0.069, 0.074]

Dunn Index 0.28± 0.016[0.24, 0.28, 0.30] 0.25± 0.03[0.19, 0.26, 0.26] 0.18± 0.05[0.13, 0.16, 0.24]

Tags DB Index 41.75± 4.12[34.48, 42.42, 47.68] 43.85± 5.18[35.42, 43.15, 55.84] 27.78± 6.54[17.01, 29.61, 35.33]
Tags Silhouette Index 0.10± 0.01[0.08, 0.10, 0.11] 0.095± 0.008[0.08, 0.09, 0.10] 0.10± 0.007[0.08, 0.089, 0.10]

Tags Dunn Index 0.0001± 0[0.0001, 0.0001, 0.0001] 0.0001± 0[0.0001, 0.0001, 0.0001] 0.0001± 0[0.0001, 0.0001, 0.0001]

Table 4.20: Clustering results of the conversion algorithm for the mixed, incompatible, and compatible sets.
(10 runs, k = 16 clusters per domain).

training set consisted of 2, 629 randomly selected data records from the mixed set. The test

set consisted of 50 data records from the compatible set and 50 data records from the mixed

sets, making in total 100 data records. We cluster both training sets into k = 16, 32, 50, 80,

and 100 clusters. We cluster the compatible training set using the seed-based and constraints-

based IDS, and the mixed training set using the conversion, multiview, ensemble, and splitting

clustering algorithms because these algorithms do not have any compatibility analysis in their

original definitions.

The image auto-annotation process then proceeds as follows:

1. First, we cluster a training set with a corresponding number of clusters.

2. Then for the image auto-annotation, we used two different nearest-neighbor (NN) schemes

[Cover and Hart, 1967] (see Figure 4.18):
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Data type Text domain
Algorithm Mixed set Incompatible set Compatible Set

DB Index 2.04± 0.39[1.98, 2.02, 2.11] 2.04± 0.0251[1.99, 2.05, 2.07] 2.03± 0.04[1.92, 1.97, 2.06]
Silhouette Index 0.017± 0.0012[0.015, 0.017, 0.019] 0.016± 0.001[0.014, 0.017, 0.018] 0.018± 0.002[0.015, 0.017, 0.019]

Dunn Index 0.055± 0.031[0.031, 0.031, 0.103] 0.071± 0.014[0.063, 0.066, 0.093] 0.04± 0.007[0.04, 0.04, 0.05]

Tags DB Index 31.46± 5.59[24.52, 30.92, 44.58] 27.33± 4.51[20.32, 27.31, 36.03] 24.13± 5.63[19.31, 22.43, 36.97]
Tags Silhouette Index 0.12± 0.03[0.08, 0.12, 0.17] 0.12± 0.016[0.09, 0.11, 0.14] 0.08± 0.01[0.05, 0.08, 0.12]

Tags Dunn Index 0.0001± 0[0.0001, 0.0001, 0.0001] 0.0001± 0[0.0001, 0.0001, 0.0001] 0.0001± 0[0.0001, 0.0001, 0.0001]

Data type Visual domain
Algorithm Mixed set Incompatible set Compatible Set

DB Index 1.90± 0.05[1.83, 1.90, 1.97] 1.91± 0.06[1.83, 1.89, 2.00] 1.90± 0.08[1.77, 1.91, 2.04]
Silhouette Index 0.117± 0.002[0.11, 0.12, 0.12] 0.12± 0.003[0.11, 0.12, 0.12] 0.13± 0.01[0.12, 0.13, 0.14]

Dunn Index 0.046± 0.034[0.02, 0.02, 0.10] 0.09± 0.01[0.08, 0.09, 0.11] 0.06± 0.01[0.05, 0.05, 0.08]

Tags DB Index 41.55± 4.57[34.17, 40.85, 49.12] 42.58± 5.29[36.14, 42.18, 52.31] 28.84± 6.88[19.60, 22.39, 40.57]
Tags Silhouette Index 0.09± 0.007[0.08, 0.09, 0.10] 0.09± 0.008[0.07, 0.09, 0.10] 0.10± 0.01[0.08, 0.1179, 0.10, 0.12]

Tags Dunn Index 0.0001± 0[0.0001, 0.0001, 0.0001] 0.0001± 0[0.0001, 0.0001, 0.0001] 0.0001± 0[0.0001, 0.0001, 0.0001]

Table 4.21: Clustering results of the splitting algorithm for the mixed, incompatible, and compatible sets
(10 runs, k = 16 clusters per domain).

Data type Text domain
Algorithm Mixed set Incompatible set Compatible Set

DB Index 2.70± 0.18[2.45, 2.74, 3.00] 2.82± 0.15[2.58, 2.80, 3.04] 2.93± 0.39[2.45, 2.88, 3.53]
Silhouette Index 0.0014± 0.0017[0.001, 0.004, 0.008] 0.0031± 0.001[0.0018, 0.002, 0.008] 0.012± 0.003[0.008, 0.012, 0.017]

Dunn Index 0.0001± 0[0.0001, 0.0001, 0.0001] 0.0001± 0[0.0001, 0.0001, 0.0001] 0.0001± 0[0.0001, 0.0001, 0.0001]

Tags DB Index 37.07± 2.93[32.80, 37.74, 41.10] 33.8585± 4.92[27.14, 33.33, 44.36] 21.65± 5.52[14.37, 19.87, 31.66]
Tags Silhouette Index 0.11± 0.02[0.08, 0.1051, 0.14] 0.12± 0.02[0.09, .12, 0.14] 0.08± 0.015[0.05, 0.07, 0.12]

Tags Dunn Index 0.0001± 0[0.0001, 0.0001, 0.0001] 0.0001± 0[0.0001, 0.0001, 0.0001] 0.0001± 0[0.0001, 0.0001, 0.0001]

Data type Visual domain
Algorithm Mixed set Incompatible set Compatible Set

DB Index 6.30± 1.338[3.60, 6.40, 9.05] 5.42± 0.97[4.32, 5.1794, 7.0726] 3.56± 0.75[2.75, 3.42, 5.01]
Silhouette Index 0.002± 0.02[0.024, 0.0013, 0.03] 0.006± 0.0205[−0.0129,−0.0013, 0.0549] 0.062± 0.022[0.025, 0.057, 0.095]

Dunn Index 0.004± 0.003[0.002, 0.002, 0.012] 0.006± 0.013[0.0008, 0.0009, 0.044] 0.012± 0.018[0.0009, 0.004, 0.054]

Tags DB Index 37.07± 2.93[32.80, 37.74, 41.10] 33.85± 4.92[27.14, 33.33, 44.36] 21.65± 5.52[14.37, 19.87, 31.66]
Tags Silhouette Index 0.11± 0.02[0.08, 0.11, 0.14] 0.12± 0.02[0.10, 0.12, 0.15] 0.08± 0.02[0.05, 0.07, 0.11]

Tags Dunn Index 0.0001± 0[0.0001, 0.0001, 0.0001] 0.0001± 0[0.0001, 0.0001, 0.0001] 0.0001± 0[0.0001, 0.0001, 0.0001]

Table 4.22: Clustering results of the ensemble voting algorithm for the mixed, incompatible, and compatible
sets (10 runs, k = 16 clusters per domain, 2 instances for the text domain, and 3 instances for the text
domain).

• Option 1: the 10-NN to a cluster‘s centroid. For each cluster, we find the 10 closest

images to the cluster‘s centroid (in the visual domain) and extract a set of tags associated

with each image. We then find and store a set, Tr, of the top fmax most frequent tags

associated with each cluster. Finally, when a query image arrives, we assign the image to

the closest cluster and use the associated cluster’s tags to auto-annotate the query image.

• Option 2: the 10-NN to the query image in the same cluster. When a query image arrives,

we assign the image to the closest cluster (in the visual domain). Then in that cluster,

we find the 10 nearest images to the query image. For each such image, we find the set

of its associated tags. We then combine these 10 sets of tags, and store a set, Tr, of the

top fmax most frequent tags to use them to auto-annotate the query image.
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Data type Text domain
Algorithm Mixed set Incompatible set Compatible Set

DB Index 3.31± 0.07[3.24, 3.30, 3.49] 3.43± 0.05[3.36, 3.43, 3.50] 3.39± 0.36[2.73, 3.47, 3.74]
Silhouette Index 0.004± 0.0002[0.0045, 0.0045, 0.0045] 0.004± 0.0002[0.004, 0.0045, 0.005] 0.015± 0.002[0.012, 0.016, 0.018]

Dunn Index 0.0001± 0[0.0001, 0.0001, 0.0001] 0.0001± 0[0.0001, 0.0001, 0.0001] 0.0001± 0[0.0001, 0.0001, 0.0001]

Tags DB Index 35.48± 4.91[27.46, 35.59, 42.69] 41.67± 3.54[33.11, 42.64, 45.75] 24.40± 7.24[14.49, 24.56, 35.22]
Tags Silhouette Index 0.08± 0.013[0.08, 0.08, 0.10] 0.08± 0.005[0.08, 0.09, 0.10] 0.10± 0.01[0.08, 0.09, 0.12]

Tags Dunn Index 0.0001± 0[0.0001, 0.0001, 0.0001] 0.0001± 0[0.0001, 0.0001, 0.0001] 0.0001± 0[0.0001, 0.0001, 0.0001]

Data type Visual domain
Algorithm Mixed set Incompatible set Compatible Set

DB Index 2.07± 0.09[1.90, 2.05, 2.28] 1.99± 0.04[1.93, 1.99, 2.06] 2.18± 0.13[2.04, 2.17, 2.50]
Silhouette Index 0.10± 0.005[0.09, 0.10, 0.10] 0.11± 0.004[0.105, 0.112, 0.12] 0.11± 0.01[0.08, 0.11, 0.12]

Dunn Index 0.035± 0.02[0.02, 0.02, 0.07] 0.055± 0.03[0.008, 0.062, 0.10] 0.046± 0.013[0.015, 0.05, 0.05]

Tags DB Index 35.48± 4.911[27.46, 35.59, 42.69] 41.67± 3.54[33.11, 42.64, 45.75] 24.40± 7.24[14.49, 24.56, 35.22]
Tags Silhouette Index 0.08± 0.01[0.07, 0.08, 0.08] 0.09± 0.005[0.08, 0.095, 0.10] 0.09± 0.01[0.008, 0.086, 0.10]

Tags Dunn Index 0.0001± 0[0.0001, 0.0001, 0.0001] 0.0001± 0[0.0001, 0.0001, 0.0001] 0.0001± 0[0.0001, 0.0001, 0.0001]

Table 4.23: Clustering results of multiview clustering for the mixed, incompatible, and compatible sets (10
runs, k = 16 clusters per domain).

Figure 4.18: An example illustrating the two cluster-based annotation schemes, with final number of tags,
fmax = 2.

The performance of all clustering methods was evaluated using the average mean precision (MAP),

defined in the standard way:

MAPfmax
=

1

|Q|

|Q|∑
i=1

1

fmax

fmax∑
f=1

|Tr(f) ∩ Tg|
|Tr(f)|

(4.11)

where Q is the test set of query images, Tg is the ground-truth set of tags associated with the query

image, and fmax takes the discrete values from 1 to 5 tags.

The results for both experimental setups are presented below:

• Table 4.24 shows the MAPfmax=3 and MAPfmax=5 results for the seed-based IDS (for each seed

exchange mechanism), constraint-based IDS, conversion, multiview, ensemble, and splitting

clustering algorithms for both validation options for the first experimental setup. For the
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(a) Option 1: the 10-NN to a cluster‘s centroid
annotation scheme.

(b) Option 2: the 10-NN to the query image in
the same cluster annotation scheme.

Figure 4.19: Value of MAPfmax=3 for the image auto-annotation of the MIRFlickr data set for the different
validation options: seed-based IDS with normal seed exchange (solid red diamonds), constraint-based IDS
(solid green stars), conversion clustering (dotted black circles), multiview clustering (solid magenta circles),
ensemble clustering (solid blue circles), and splitting clustering (dashed black squares). See the value of
MAPfmax=3 and MAPfmax=5 in Table 4.24.

first validation option, the constraint-based IDS outperforms all other clustering methods for

k = 50, 200, and 300 clusters, for both values of MAP, while the seed-based IDS shows a better

clustering result with k = 100. For the second validation option, again, the constraint-based

IDS outperforms the other clustering techniques in both values of MAP. Note that the ensemble

clustering shows similar results to the constraint-based IDS results for MAPfmax=3 but yields

in terms of MAPfmax=5. Figures 4.19a and 4.19b show the value of MAPfmax=3 with respect

to the different number of clusters for the annotation options 1 and 2, respectively.

• Table 4.25 shows MAPfmax=3 and MAPfmax=5 results for the seed-based IDS (for each seed

exchange mechanism), constraint-based IDS, conversion, multiview, ensemble, and splitting

clustering algorithms for both validation options with the compatibility analysis. For the

first validation option, the seed-based IDS with DB index-based seed exchange mechanism

outperforms all other methods with k = 50, 80, and 100 clusters. The constraint-based IDS

shows a better clustering result with k = 16, but yields to the seed-based IDS with normal

seed exchange when k = 32. For the second validation option, the results are less consistent,

showing overall improvement of the proposed IDS framework over other clustering methods.

Figure 4.20a and 4.20b show the value of the MAPfmax=3 with respect to the different number

of cluster for the validation option 1 and 2, respectively.
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(a) Option 1: the 10-NN to a cluster‘s centroid
validation scheme.

(b) Option 2: the 10-NN to a query image in a
same cluster validation scheme.

Figure 4.20: Value of the MAPfmax=3 for the image auto-annotation with the compatibility analysis of the
MIRFlickr data set for the different validation options: seed-based IDS with DB index-based seed exchange
(solid red diamonds), constraint-based IDS (solid green stars), conversion clustering (dotted black circles),
multiview clustering (solid magenta circles), ensemble clustering (solid blue circles), and splitting clustering
(dashed black squares). See the value of the MAPfmax=3 and MAPfmax=5 in Table 4.20.

4.5 Summary of the Chapter

In this chapter, we presented experimental results for the three seed exchange mechanisms for the

seed-based IDS: DB index-based, XB index-based, and normal seed exchange mechanisms. The

proposed seed-based IDS algorithm with the DB index-based seed exchange mechanism shows a

better clustering results, algorithm‘s stability and a faster convergence, than the seed-based IDS

with the XB index-based and normal seed exchange mechanisms in terms of the internal and ex-

ternal validity measures. For the proposed constraint-based IDS, we found an optimal number of

constraints for each data set, we observe that the constraint-based IDS clustering generally results

in an improvement over the splitting algorithm in the following aspects:

• over a wide range of the algorithm parameters,

• for different data sets with different sizes and number of features,

• in different validation measures,

• for some data sets, the improvement are asymmetric, with one domain contributing more to

guide the other,

• for some data sets, validation in terms of an external (NMI) and internal (DB) validity measures

gives opposite results.
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This reflects some disagreement between the internal structure and external labels. Of course, the

external validity option is generally impossible without external “true” class labels, which is the case

with most real-life data.

Next, we presented experimental results comparing the proposed seed-based and constraint-based

IDS clustering approaches with the splitting, conversion, ensemble clustering (with voting and post-

clustering as consensus functions), and multiview clustering algorithms. The results are different

for the different data sets in the different domains, but overall, we observed that the proposed IDS

clustering approaches obtain significantly better clustering results than the other techniques. We

observe, how one domain guides the clustering process in another domain, helping it to reach a

better clustering. We also noted extremely low minimum values of the DB and high values of the

Silhouette indices of the seed-based IDS in both domains in several data sets, indicating the superior

potential capabilities of the IDS approach in reaching highly favorable optima.

We also presented experimental results for the proposed compatibility analysis. The experiments

on the MIRFlickr data set showed the importance of the compatibility analysis and confirmed the

role of mutual supervision in inter-domain clustering for data with mixed domains. Our results for

the image auto-annotation experiments show that the proposed IDS clustering approaches outper-

form other clustering techniques, taking advantage of the inter-domain mutual supervision, domain

compatibility, and algorithm stability over a wide range of the different number of clusters.

In the following chapter, we conclude our work and present potential future research.
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CHAPTER 5

CONCLUSIONS AND FUTURE WORK

5.1 Summary

We proposed an inter-domain supervision (IDS) clustering framework to handle diverse data formats,

mixed-type attributes and different sources of data. This approach can be used for combining diverse

representations of the data, in particular where data comes from different sources, some of which

may be unreliable or uncertain. Our contributions can be summarized as follows:

• We proposed a seed-based inter-domain supervision clustering approach to transfer knowledge

discovered from the clustering in one domain to help guide the clustering in the other domains

(Section 3.1).

• We proposed different seed exchange mechanisms for the seed-based IDS, in order to control

the selectivity of the exchanged knowledge, based on linear-complexity unsupervised internal

cluster validity indices (Section 3.1.2).

• We proposed a constraint-based inter-domain supervision clustering approach to handle in-

consistent partitions between different domains, which can now be combined into a consistent

clustering result (Section 3.2).

• We proposed a domain compatibility analysis approach for a more effective clustering of het-

erogeneous data, that exploits the synergy between the different domains, even when parts of

the data descriptions are incompatible in the different domains (Section 3.4).

The results of our experiments show that the proposed IDS-based heterogeneous data clustering

framework tends to yield better clustering results in both domains, over a wide range of parameters.

Thus the seeds or constraints obtained from clustering one domain tend to provide additional helpful

knowledge to another domain. This information may in turn be used to avoid local minima and

obtain a better clustering in the target domain. Moreover, by first distinguishing between the data

depending on whether the different domains describe the data in a compatible manner, the IDS
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approach was able to compute an even better clustering compared to the conventional methods.

Finally, we presented a real life application of our IDS clustering approach to the automated image

annotation problem and presented evaluation results on a benchmark data set, consisting of images

described with their visual content along with noisy text descriptions, generated by users on the

social media sharing website, Flickr.

5.2 Current Status and Future Prospects

Future work can expand this work to address some current limitations, by further:

• exploring the effect of parametrized distortion measures that can be incorporated within the

proposed constraint-based IDS clustering framework for heterogeneous data.

• devising a better method to estimate the confidence levels of the points contributing to the

created constraints, and then using them to obtain better informed constraint violation cost

weights W and W̄ in the HMRF K-means penalty terms.

• better handling of the complexity of the HMRF-initialization, currently based on transitive

closure. This could be handled by sampling, thus avoiding full transitive closure. Other

approaches could be investigated.
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k-means clustering with background knowledge. In Proceedings of the Eighteenth International

Conference on Machine Learning, ICML ’01, pages 577–584. Morgan Kaufmann Publishers Inc.

[Wang et al., 1999] Wang, K., Xu, C., and Liu, B. (1999). Clustering transactions using large items.

In Proceedings of the eighth international conference on Information and knowledge management,

CIKM ’99, pages 483–490, New York, NY, USA. ACM.

[Xie and Beni, 1991] Xie, X. L. and Beni, G. (1991). A validity measure for fuzzy clustering. Pattern

Analysis and Machine Intelligence, IEEE Transactions on, 13(8):841–847.

[Xing et al., 2002] Xing, E. P., Ng, A. Y., Jordan, M. I., and Russell, S. (2002). Distance metric

learning, with application to clustering with side-information. In Advances in Neural Information

Processing Systems 15, pages 505–512. MIT Press.

105



[Yang et al., 2002] Yang, Y., Guan, X., and You, J. (2002). Clope: a fast and effective clustering

algorithm for transactional data. In Proceedings of the eighth ACM SIGKDD international con-

ference on Knowledge discovery and data mining, KDD ’02, pages 682–687, New York, NY, USA.

ACM.

[Zhang and Chen, ] Zhang, D. and Chen, S. Fuzzy clustering using kernel method. In in The 2002

International Conference on Control and Automation, 2002. ICCA, 2002, pages 162–163.

[Zhong and Ghosh, 2003] Zhong, S. and Ghosh, J. (2003). A unified framework for model-based

clustering. Journal of Machine Learning Research, 4:1001–1037.

[Zhou and Burges, 2007] Zhou, D. and Burges, C. J. C. (2007). Spectral clustering and transductive

learning with multiple views. In Proceedings of the 24th international conference on Machine

learning, ICML ’07, pages 1159–1166. ACM.

106



CURRICULUM VITAE

Name Artur Abdullin

E-mail ar.abdullin@gmail.com

Education MS, Computer Engineering and Computer Science
University of Louisville, USA
1/2008 - 5/2009
BS and MS, Physics
Perm State University, Russia
9/2002 - 6/2007

Work
Experience

Data Scientist
Resonate Networks, Inc
5/2013 - Present
Research Assistant
University of Louisville, Knowledge Discovery and Web Mining Lab
1/2010 - 5/2013
Research Assistant
University of Louisville, Computational Intelligence Laboratory
1/2008 - 12/2009

Awards,
Memberships
and Service

Winner of the Graduate Dean‘s Citation Award at UofL, 2013
Winner of the Computer Science and Engineering Doctoral Award at UofL,
2013
Winner of the Third Annual Graduate Research Symposium at UofL, 2011
Winner of the 2011 Engineering Expo Student Research Competition at UofL.
Winner of the Research Tuition Award 2010.
Winner of the Hearst Analytics Challenge 2010, out of 700 teams from nearly
60 countries. Cash prize $25,000.

Selected
Publications
and Research
Projects

1. Jacek M. Zurada, Maciej A. Mazurowski, Artur Abdullin, Rammohan
Ragade, Janusz Wojtusiak, James E. Gentle, Building Virtual Community in
Computational Intelligence and Machine Learning, Computational Intelligence
Magazine, 4, 1, 43-54.
2. Abdullin, A., Nasraoui, O.: “Clustering heterogeneous data with mutual
semi-supervision,” in Proceedings of SPIRE 2012 - International Symposium on
String Processing and Information Retrieval, October 2012.
3. Abdullin, A., Nasraoui, O.: “A semi-supervised learning framework to
cluster mixed data types”. In: Proceedings of KDIR 2012 - International
Conference on Knowledge Discovery and Information Retrieval, October 2012
4. A. Abdullin and O. Nasraoui, “Clustering Heterogeneous Data Sets”, Web
Congress (LA-WEB), 2012 Eighth Latin American, 2012

107


	An inter-domain supervision framework for collaborative clustering of data with mixed types.
	Recommended Citation

	tmp.1423685735.pdf.kxRNg

