41,024 research outputs found

    Expert Object Recognition in video

    Get PDF
    A recent computer vision technique for object classification in still images is the biologically-inspired Expert Object Recognition (EOR). This thesis adapts and extends the EOR approach for use with segmented video data. Properties of this data, such as segmentation masks and the visibility of an object over multiple frames, are exploited to decrease human supervision and increase accuracy. Several types of runtime learning are facilitated: class-level learning in which object types that are not included in the training set are given artificial classes; viewpoint-level learning in which novel views of training objects are associated with existing classes; and instance-level learning of images that are somewhat similar to training images. The architecture of EOR, consisting of feature extraction, clustering, and cluster-specific principal component analysis, is retained. However, the K-means clustering algorithm used in EOR is replaced in this system by an augmented version of Fuzzy K-means. This algorithm is incrementally run over the lifetime of the system, and automatically determines an appropriate number of partitions based on the data in memory and on a system parameter. In addition, the edge and line-based feature extraction of EOR is replaced with a global application of the principal component analysis, which increases accuracy when used with segmented video data. Classification output for the system consists of a multi-class hypothesis for each tracked object, from which a single-class hard hypothesis may be determined. The system, named VEOR (video expert object recognition), is designed for and tested with noisy, automatically segmented real-world data, consisting of both videos and still images of vehicle (car, pickup truck, and van) profiles

    Color image segmentation using a spatial k-means clustering algorithm

    Get PDF
    This paper details the implementation of a new adaptive technique for color-texture segmentation that is a generalization of the standard K-Means algorithm. The standard K-Means algorithm produces accurate segmentation results only when applied to images defined by homogenous regions with respect to texture and color since no local constraints are applied to impose spatial continuity. In addition, the initialization of the K-Means algorithm is problematic and usually the initial cluster centers are randomly picked. In this paper we detail the implementation of a novel technique to select the dominant colors from the input image using the information from the color histograms. The main contribution of this work is the generalization of the K-Means algorithm that includes the primary features that describe the color smoothness and texture complexity in the process of pixel assignment. The resulting color segmentation scheme has been applied to a large number of natural images and the experimental data indicates the robustness of the new developed segmentation algorithm

    Automatic Segmentation of Fluorescence Lifetime Microscopy Images of Cells Using Multi-Resolution Community Detection

    Full text link
    We have developed an automatic method for segmenting fluorescence lifetime (FLT) imaging microscopy (FLIM) images of cells inspired by a multi-resolution community detection (MCD) based network segmentation method. The image processing problem is framed as identifying segments with respective average FLTs against a background in FLIM images. The proposed method segments a FLIM image for a given resolution of the network composed using image pixels as the nodes and similarity between the pixels as the edges. In the resulting segmentation, low network resolution leads to larger segments and high network resolution leads to smaller segments. Further, the mean-square error (MSE) in estimating the FLT segments in a FLIM image using the proposed method was found to be consistently decreasing with increasing resolution of the corresponding network. The proposed MCD method outperformed a popular spectral clustering based method in performing FLIM image segmentation. The spectral segmentation method introduced noisy segments in its output at high resolution. It was unable to offer a consistent decrease in MSE with increasing resolution.Comment: 21 pages, 6 figure
    corecore