9,570 research outputs found

    Multi-Scale Link Prediction

    Full text link
    The automated analysis of social networks has become an important problem due to the proliferation of social networks, such as LiveJournal, Flickr and Facebook. The scale of these social networks is massive and continues to grow rapidly. An important problem in social network analysis is proximity estimation that infers the closeness of different users. Link prediction, in turn, is an important application of proximity estimation. However, many methods for computing proximity measures have high computational complexity and are thus prohibitive for large-scale link prediction problems. One way to address this problem is to estimate proximity measures via low-rank approximation. However, a single low-rank approximation may not be sufficient to represent the behavior of the entire network. In this paper, we propose Multi-Scale Link Prediction (MSLP), a framework for link prediction, which can handle massive networks. The basis idea of MSLP is to construct low rank approximations of the network at multiple scales in an efficient manner. Based on this approach, MSLP combines predictions at multiple scales to make robust and accurate predictions. Experimental results on real-life datasets with more than a million nodes show the superior performance and scalability of our method.Comment: 20 pages, 10 figure

    Comparing Fifty Natural Languages and Twelve Genetic Languages Using Word Embedding Language Divergence (WELD) as a Quantitative Measure of Language Distance

    Full text link
    We introduce a new measure of distance between languages based on word embedding, called word embedding language divergence (WELD). WELD is defined as divergence between unified similarity distribution of words between languages. Using such a measure, we perform language comparison for fifty natural languages and twelve genetic languages. Our natural language dataset is a collection of sentence-aligned parallel corpora from bible translations for fifty languages spanning a variety of language families. Although we use parallel corpora, which guarantees having the same content in all languages, interestingly in many cases languages within the same family cluster together. In addition to natural languages, we perform language comparison for the coding regions in the genomes of 12 different organisms (4 plants, 6 animals, and two human subjects). Our result confirms a significant high-level difference in the genetic language model of humans/animals versus plants. The proposed method is a step toward defining a quantitative measure of similarity between languages, with applications in languages classification, genre identification, dialect identification, and evaluation of translations
    • …
    corecore