249 research outputs found

    On Security and Reliability using Cooperative Transmissions in Sensor Networks

    Get PDF
    Recent work on cooperative communications has demonstrated benefits in terms of improving the reliability of links through diversity and/or increasing the reach of a link compared to a single transmitter transmitting to a single receiver (single-input single-output or SISO). In one form of cooperative transmissions, multiple nodes can act as virtual antenna elements and provide such benefits using space-time coding. In a multi-hop sensor network, a source node can make use of its neighbors as relays with itself to reach an intermediate node, which will use its neighbors and so on to reach the destination. For the same reliability of a link as SISO, the number of hops between a source and destination may be reduced using cooperative transmissions. However, the presence of malicious or compromised nodes in the network impacts the use of cooperative transmissions. Using more relays can increase the reach of a link, but if one or more relays are malicious, the transmission may fail. In this paper, we analyze this problem to understand the conditions under which cooperative transmissions may fare better or worse than SISO transmissions

    On Security and reliability using cooperative transmissions in sensor networks

    Get PDF
    Cooperative transmissions have received recent attention and research papers have demonstrated their benefits for wireless networks. Such benefits include improving the reliability of links through diversity and/or increasing the reach of a link compared to a single transmitter transmitting to a single receiver (single-input single-output or SISO). In one form of cooperative transmissions, multiple nodes can act as virtual antenna elements and provide diversity gain or range improvement using space-time coding. In a multi-hop ad hoc or sensor network, a source node can make use of its neighbors as relays with itself to reach an intermediate node with greater reliability or at a larger distance than otherwise possible. The intermediate node will use its neighbors in a similar manner and this process continues till the destination is reached. Thus, for the same reliability of a link as SISO, the number of hops between a source and destination may be reduced using cooperative transmissions as each hop spans a larger distance. However, the presence of ma-licious or compromised nodes in the network impacts the benefits obtained with cooperative transmissions. Using more relays can increase the reach of a link, but if one or more relays are malicious, the transmission may fail. However, the relationships between the number of relays, the number of hops, and success probabilities are not trivial to determine. In this paper, we analyze this problem to understand the conditions under which cooperative transmissions fare better or worse than SISO transmissions. We take into consideration additional parameters such as the path-loss exponent and provide a framework that allows us to evaluate the conditions when cooperative transmissions are better than SISO transmissions. This analysis provides insights that can be employed before resorting to simulations or experimentation. © Springer Science+Business Media, LLC 2012

    A Key Management Protocol for Multiphase Hierarchical Wireless Sensor Networks

    Get PDF
    The security of Wireless Sensor Networks (WSNs) has a direct reliance on secure and efficient key management. This leaves key management as a fundamental research topic in the field of WSNs security. Among the proposed key management schemes for WSNs security, LEAP (Localized Encryption and Authentication Protocol) has been regarded as an efficient protocol over the last years. LEAP supports the establishment of four types of keys. The security of these keys is under the assumption that the initial deployment phase is secure and the initial key is erased from sensor nodes after the initialization phase. However, the initial key is used again for node addition after the initialization phase whereas the new node can be compromised before erasing the key. A time-based key management scheme rethought the security of LEAP. We show the deficiency of the time-based key management scheme and proposed a key management scheme for multi-phase WSNs in this paper. The proposed scheme disperses the damage resulting from the disclosure of the initial key. We show it has better resilience and higher key connectivity probability through the analysis

    Key management for wireless sensor network security

    Get PDF
    Wireless Sensor Networks (WSNs) have attracted great attention not only in industry but also in academia due to their enormous application potential and unique security challenges. A typical sensor network can be seen as a combination of a number of low-cost sensor nodes which have very limited computation and communication capability, memory space, and energy supply. The nodes are self-organized into a network to sense or monitor surrounding information in an unattended environment, while the self-organization property makes the networks vulnerable to various attacks.Many cryptographic mechanisms that solve network security problems rely directly on secure and efficient key management making key management a fundamental research topic in the field of WSNs security. Although key management for WSNs has been studied over the last years, the majority of the literature has focused on some assumed vulnerabilities along with corresponding countermeasures. Specific application, which is an important factor in determining the feasibility of the scheme, has been overlooked to a large extent in the existing literature.This thesis is an effort to develop a key management framework and specific schemes for WSNs by which different types of keys can be established and also can be distributed in a self-healing manner; explicit/ implicit authentication can be integrated according to the security requirements of expected applications. The proposed solutions would provide reliable and robust security infrastructure for facilitating secure communications in WSNs.There are five main parts in the thesis. In Part I, we begin with an introduction to the research background, problems definition and overview of existing solutions. From Part II to Part IV, we propose specific solutions, including purely Symmetric Key Cryptography based solutions, purely Public Key Cryptography based solutions, and a hybrid solution. While there is always a trade-off between security and performance, analysis and experimental results prove that each proposed solution can achieve the expected security aims with acceptable overheads for some specific applications. Finally, we recapitulate the main contribution of our work and identify future research directions in Part V

    A hierarchical key pre-distribution scheme for fog networks

    Get PDF
    Security in fog computing is multi-faceted, and one particular challenge is establishing a secure communication channel between fog nodes and end devices. This emphasizes the importance of designing efficient and secret key distribution scheme to facilitate fog nodes and end devices to establish secure communication channels. Existing secure key distribution schemes designed for hierarchical networks may be deployable in fog computing, but they incur high computational and communication overheads and thus consume significant memory. In this paper, we propose a novel hierarchical key pre-distribution scheme based on “Residual Design” for fog networks. The proposed key distribution scheme is designed to minimize storage overhead and memory consumption, while increasing network scalability. The scheme is also designed to be secure against node capture attacks. We demonstrate that in an equal-size network, our scheme achieves around 84% improvement in terms of node storage overhead, and around 96% improvement in terms of network scalability. Our research paves the way for building an efficient key management framework for secure communication within the hierarchical network of fog nodes and end devices. KEYWORDS: Fog Computing, Key distribution, Hierarchical Networks

    MPKMS: a Matrix-based Pairwise Key Management Scheme for Wireless Sensor Networks

    Full text link
    Due to the sensitivity of the Wireless Sensor Networks (WSN) applications and resource constraints, authentication and key management emerge as a challenging issue for WSN. In general, various approaches have been developed for the key management in WSN. This paper has come up with a new robust key pre-distribution scheme using random polynomial functions and matrix. This new proposed scheme significantly increases the storage efficiency and provides resilience to network against node capture by using random prime numbers, polynomial functions and matrix properties. The effectiveness of the scheme is demonstrated through a security analysis and comparison with the existing schemes

    A hierarchical key pre-distribution scheme for fog networks

    Get PDF
    Security in fog computing is multi-faceted, and one particular challenge is establishing a secure communication channel between fog nodes and end devices. This emphasizes the importance of designing efficient and secret key distribution scheme to facilitate fog nodes and end devices to establish secure communication channels. Existing secure key distribution schemes designed for hierarchical networks may be deployable in fog computing, but they incur high computational and communication overheads and thus consume significant memory. In this paper, we propose a novel hierarchical key pre-distribution scheme based on “Residual Design” for fog networks. The proposed key distribution scheme is designed to minimize storage overhead and memory consumption, while increasing network scalability. The scheme is also designed to be secure against node capture attacks. We demonstrate that in an equal-size network, our scheme achieves around 84% improvement in terms of node storage overhead, and around 96% improvement in terms of network scalability. Our research paves the way for building an efficient key management framework for secure communication within the hierarchical network of fog nodes and end devices. KEYWORDS: Fog Computing, Key distribution, Hierarchical Networks
    • 

    corecore