1,875 research outputs found

    A critical analysis of research potential, challenges and future directives in industrial wireless sensor networks

    Get PDF
    In recent years, Industrial Wireless Sensor Networks (IWSNs) have emerged as an important research theme with applications spanning a wide range of industries including automation, monitoring, process control, feedback systems and automotive. Wide scope of IWSNs applications ranging from small production units, large oil and gas industries to nuclear fission control, enables a fast-paced research in this field. Though IWSNs offer advantages of low cost, flexibility, scalability, self-healing, easy deployment and reformation, yet they pose certain limitations on available potential and introduce challenges on multiple fronts due to their susceptibility to highly complex and uncertain industrial environments. In this paper a detailed discussion on design objectives, challenges and solutions, for IWSNs, are presented. A careful evaluation of industrial systems, deadlines and possible hazards in industrial atmosphere are discussed. The paper also presents a thorough review of the existing standards and industrial protocols and gives a critical evaluation of potential of these standards and protocols along with a detailed discussion on available hardware platforms, specific industrial energy harvesting techniques and their capabilities. The paper lists main service providers for IWSNs solutions and gives insight of future trends and research gaps in the field of IWSNs

    Thirty Years of Machine Learning: The Road to Pareto-Optimal Wireless Networks

    Full text link
    Future wireless networks have a substantial potential in terms of supporting a broad range of complex compelling applications both in military and civilian fields, where the users are able to enjoy high-rate, low-latency, low-cost and reliable information services. Achieving this ambitious goal requires new radio techniques for adaptive learning and intelligent decision making because of the complex heterogeneous nature of the network structures and wireless services. Machine learning (ML) algorithms have great success in supporting big data analytics, efficient parameter estimation and interactive decision making. Hence, in this article, we review the thirty-year history of ML by elaborating on supervised learning, unsupervised learning, reinforcement learning and deep learning. Furthermore, we investigate their employment in the compelling applications of wireless networks, including heterogeneous networks (HetNets), cognitive radios (CR), Internet of things (IoT), machine to machine networks (M2M), and so on. This article aims for assisting the readers in clarifying the motivation and methodology of the various ML algorithms, so as to invoke them for hitherto unexplored services as well as scenarios of future wireless networks.Comment: 46 pages, 22 fig

    Green cooperative spectrum sensing and scheduling in heterogeneous cognitive radio networks

    Get PDF
    The motivation behind the cognitive radio networks (CRNs) is rooted in scarcity of the radio spectrum and inefficiency of its management to meet the ever increasing high quality of service demands. Furthermore, information and communication technologies have limited and/or expensive energy resources and contribute significantly to the global carbon footprint. To alleviate these issues, energy efficient and energy harvesting (EEH) CRNs can harvest the required energy from ambient renewable sources while collecting the necessary bandwidth by discovering free spectrum for a minimized energy cost. Therefore, EEH-CRNs have potential to achieve green communications by enabling spectrum and energy self-sustaining networks. In this thesis, green cooperative spectrum sensing (CSS) policies are considered for large scale heterogeneous CRNs which consist of multiple primary channels (PCs) and a large number of secondary users (SUs) with heterogeneous sensing and reporting channel qualities. Firstly, a multi-objective clustering optimization (MOCO) problem is formulated from macro and micro perspectives; Macro perspective partitions SUs into clusters with the objectives: 1) Intra-cluster energy minimization of each cluster, 2) Intra-cluster throughput maximization of each cluster, and 3) Inter-cluster energy and throughput fairness. A multi-objective genetic algorithm, Non-dominated Sorting Genetic Algorithm-II (NSGA-II), is adopted and demonstrated how to solve the MOCO. The micro perspective, on the other hand, works as a sub-procedure on cluster formations given by macro perspective. For the micro perspective, a multihop reporting based CH selection procedure is proposed to find: 1) The best CH which gives the minimum total multi-hop error rate, and 2) the optimal routing paths from SUs to the CHs using Dijkstra\u27s algorithm. Using Poisson-Binomial distribution, a novel and generalized K-out-of-N voting rule is developed for heterogeneous CRNs to allow SUs to have different levels of local detection performance. Then, a convex optimization framework is established to minimize the intra-cluster energy cost subject to collision and spectrum utilization constraints.Likewise, instead of a common fixed sample size test, a weighted sample size test is considered for quantized soft decision fusion to obtain a more EE regime under heterogeneity. Secondly, an energy and spectrum efficient CSS scheduling (CSSS) problem is investigated to minimize the energy cost per achieved data rate subject to collision and spectrum utilization constraints. The total energy cost is calculated as the sum of energy expenditures resulting from sensing, reporting and channel switching operations. Then, a mixed integer non-linear programming problem is formulated to determine: 1) The optimal scheduling subset of a large number of PCs which cannot be sensed at the same time, 2) The SU assignment set for each scheduled PC, and 3) Optimal sensing parameters of SUs on each PC. Thereafter, an equivalent convex framework is developed for specific instances of above combinatorial problem. For the comparison, optimal detection and sensing thresholds are also derived analytically under the homogeneity assumption. Based on these, a prioritized ordering heuristic is developed to order channels under the spectrum, energy and spectrum-energy limited regimes. After that, a scheduling and assignment heuristic is proposed and shown to have a very close performance to the exhaustive optimal solution. Finally, the behavior of the CRN is numerically analyzed under these regimes with respect to different numbers of SUs, PCs and sensing qualities. Lastly, a single channel energy harvesting CSS scheme is considered with SUs experiencing different energy arrival rates, sensing, and reporting qualities. In order to alleviate the half- duplex EH constraint, which precludes from charging and discharging at the same time, and to harvest energy from both renewable sources and ambient radio signals, a full-duplex hybrid energy harvesting (EH) model is developed. After formulating the energy state evolution of half and full duplex systems under stochastic energy arrivals, a convex optimization framework is established to jointly obtain the optimal harvesting ratio, sensing duration and detection threshold of each SU to find an optimal myopic EH policy subject to collision and energy- causality constraints

    Applications of Repeated Games in Wireless Networks: A Survey

    Full text link
    A repeated game is an effective tool to model interactions and conflicts for players aiming to achieve their objectives in a long-term basis. Contrary to static noncooperative games that model an interaction among players in only one period, in repeated games, interactions of players repeat for multiple periods; and thus the players become aware of other players' past behaviors and their future benefits, and will adapt their behavior accordingly. In wireless networks, conflicts among wireless nodes can lead to selfish behaviors, resulting in poor network performances and detrimental individual payoffs. In this paper, we survey the applications of repeated games in different wireless networks. The main goal is to demonstrate the use of repeated games to encourage wireless nodes to cooperate, thereby improving network performances and avoiding network disruption due to selfish behaviors. Furthermore, various problems in wireless networks and variations of repeated game models together with the corresponding solutions are discussed in this survey. Finally, we outline some open issues and future research directions.Comment: 32 pages, 15 figures, 5 tables, 168 reference

    Optimization and Learning in Energy Efficient Cognitive Radio System

    Get PDF
    Energy efficiency and spectrum efficiency are two biggest concerns for wireless communication. The constrained power supply is always a bottleneck to the modern mobility communication system. Meanwhile, spectrum resource is extremely limited but seriously underutilized. Cognitive radio (CR) as a promising approach could alleviate the spectrum underutilization and increase the quality of service. In contrast to traditional wireless communication systems, a distinguishing feature of cognitive radio systems is that the cognitive radios, which are typically equipped with powerful computation machinery, are capable of sensing the spectrum environment and making intelligent decisions. Moreover, the cognitive radio systems differ from traditional wireless systems that they can adapt their operating parameters, i.e. transmission power, channel, modulation according to the surrounding radio environment to explore the opportunity. In this dissertation, the study is focused on the optimization and learning of energy efficiency in the cognitive radio system, which can be considered to better utilize both the energy and spectrum resources. Firstly, drowsy transmission, which produces optimized idle period patterns and selects the best sleep mode for each idle period between two packet transmissions through joint power management and transmission power control/rate selection, is introduced to cognitive radio transmitter. Both the optimal solution by dynamic programming and flexible solution by reinforcement learning are provided. Secondly, when cognitive radio system is benefited from the theoretically infinite but unsteady harvested energy, an innovative and flexible control framework mainly based on model predictive control is designed. The solution to combat the problems, such as the inaccurate model and myopic control policy introduced by MPC, is given. Last, after study the optimization problem for point-to-point communication, multi-objective reinforcement learning is applied to the cognitive radio network, an adaptable routing algorithm is proposed and implemented. Epidemic propagation is studied to further understand the learning process in the cognitive radio network
    corecore