533,108 research outputs found

    Enhanced Cluster Based Routing Protocol for MANETS

    Full text link
    Mobile ad-hoc networks (MANETs) are a set of self organized wireless mobile nodes that works without any predefined infrastructure. For routing data in MANETs, the routing protocols relay on mobile wireless nodes. In general, any routing protocol performance suffers i) with resource constraints and ii) due to the mobility of the nodes. Due to existing routing challenges in MANETs clustering based protocols suffers frequently with cluster head failure problem, which degrades the cluster stability. This paper proposes, Enhanced CBRP, a schema to improve the cluster stability and in-turn improves the performance of traditional cluster based routing protocol (CBRP), by electing better cluster head using weighted clustering algorithm and considering some crucial routing challenges. Moreover, proposed protocol suggests a secondary cluster head for each cluster, to increase the stability of the cluster and implicitly the network infrastructure in case of sudden failure of cluster head.Comment: 6 page

    Cluster synchronization in an ensemble of neurons interacting through chemical synapses

    Full text link
    In networks of periodically firing spiking neurons that are interconnected with chemical synapses, we analyze cluster state, where an ensemble of neurons are subdivided into a few clusters, in each of which neurons exhibit perfect synchronization. To clarify stability of cluster state, we decompose linear stability of the solution into two types of stabilities: stability of mean state and stabilities of clusters. Computing Floquet matrices for these stabilities, we clarify the total stability of cluster state for any types of neurons and any strength of interactions even if the size of networks is infinitely large. First, we apply this stability analysis to investigating synchronization in the large ensemble of integrate-and-fire (IF) neurons. In one-cluster state we find the change of stability of a cluster, which elucidates that in-phase synchronization of IF neurons occurs with only inhibitory synapses. Then, we investigate entrainment of two clusters of IF neurons with different excitability. IF neurons with fast decaying synapses show the low entrainment capability, which is explained by a pitchfork bifurcation appearing in two-cluster state with change of synapse decay time constant. Second, we analyze one-cluster state of Hodgkin-Huxley (HH) neurons and discuss the difference in synchronization properties between IF neurons and HH neurons.Comment: Notation for Jacobi matrix is changed. Accepted for publication in Phys. Rev.

    Theoretical Studies of the Structure and Stability of Metal Chalcogenide CrnTem (1≤n≤6, 1≤m≤8) clusters

    Get PDF
    In the presented work, first principle studies on electronic structure, stability, and magnetic properties of metal chalcogenide, CrnTem clusters have been carried out within a density functional framework using generalized gradient functions to incorporate the exchange and correlation effects. The energetic and electronic stability was investigated, and it was found that they are not always correlated as seen in the cluster Cr6Te8 which has smaller gap between its HOMO (Highest Occupied Molecular Orbital) and LUMO (Lowest Unoccupied Molecular Orbital) and a high electron affinity of 3.39 eV indicating lower electronic stability whereas higher fragmentation energy indicating energetic stability. The high electron affinity shows that the stability of Cr6Te8 cluster can be enhanced by adding charge donating ligands including PEt3 to form stable Cr6Te8(PEt3)6 clusters as seen in experiments. The other cluster of interest was Cr4Te6 in which energetic stability was accompanied with electronic inertness marked by its large HOMO-LUMO gap, non-magnetic ground state and high fragmentation energy

    Stability of heterogeneous parallel-bond adhesion clusters under static load

    Full text link
    Adhesion interactions mediated by multiple bond types are relevant for many biological and soft matter systems, including the adhesion of biological cells and functionalized colloidal particles to various substrates. To elucidate advantages and disadvantages of multiple bond populations for the stability of heterogeneous adhesion clusters of receptor-ligand pairs, a theoretical model for a homogeneous parallel adhesion bond cluster under constant loading is extended to several bond types. The stability of the entire cluster can be tuned by changing densities of different bond populations as well as their extensional rigidity and binding properties. In particular, bond extensional rigidities determine the distribution of total load to be shared between different sub-populations. Under a gradual increase of the total load, the rupture of a heterogeneous adhesion cluster can be thought of as a multistep discrete process, in which one of the bond sub-populations ruptures first, followed by similar rupture steps of other sub-populations or by immediate detachment of the remaining cluster. This rupture behavior is qualitatively independent of involved bond types, such as slip and catch bonds. Interestingly, an optimal stability is generally achieved when the total cluster load is shared such that loads on distinct bond populations are equal to their individual critical rupture forces. We also show that cluster heterogeneity can drastically affect cluster lifetime.Comment: 11 pages, 8 figure

    Cluster and group synchronization in delay-coupled networks

    Full text link
    We investigate the stability of synchronized states in delay-coupled networks where synchronization takes place in groups of different local dynamics or in cluster states in networks with identical local dynamics. Using a master stability approach, we find that the master stability function shows a discrete rotational symmetry depending on the number of groups. The coupling matrices that permit solutions on group or cluster synchronization manifolds show a very similar symmetry in their eigenvalue spectrum, which helps to simplify the evaluation of the master stability function. Our theory allows for the characterization of stability of different patterns of synchronized dynamics in networks with multiple delay times, multiple coupling functions, but also with multiple kinds of local dynamics in the networks' nodes. We illustrate our results by calculating stability in the example of delay-coupled semiconductor lasers and in a model for neuronal spiking dynamics.Comment: 11 pages, 7 figure
    • …
    corecore