11,058 research outputs found

    Multi-Dialect Speech Recognition With A Single Sequence-To-Sequence Model

    Full text link
    Sequence-to-sequence models provide a simple and elegant solution for building speech recognition systems by folding separate components of a typical system, namely acoustic (AM), pronunciation (PM) and language (LM) models into a single neural network. In this work, we look at one such sequence-to-sequence model, namely listen, attend and spell (LAS), and explore the possibility of training a single model to serve different English dialects, which simplifies the process of training multi-dialect systems without the need for separate AM, PM and LMs for each dialect. We show that simply pooling the data from all dialects into one LAS model falls behind the performance of a model fine-tuned on each dialect. We then look at incorporating dialect-specific information into the model, both by modifying the training targets by inserting the dialect symbol at the end of the original grapheme sequence and also feeding a 1-hot representation of the dialect information into all layers of the model. Experimental results on seven English dialects show that our proposed system is effective in modeling dialect variations within a single LAS model, outperforming a LAS model trained individually on each of the seven dialects by 3.1 ~ 16.5% relative.Comment: submitted to ICASSP 201

    Embedding-Based Speaker Adaptive Training of Deep Neural Networks

    Full text link
    An embedding-based speaker adaptive training (SAT) approach is proposed and investigated in this paper for deep neural network acoustic modeling. In this approach, speaker embedding vectors, which are a constant given a particular speaker, are mapped through a control network to layer-dependent element-wise affine transformations to canonicalize the internal feature representations at the output of hidden layers of a main network. The control network for generating the speaker-dependent mappings is jointly estimated with the main network for the overall speaker adaptive acoustic modeling. Experiments on large vocabulary continuous speech recognition (LVCSR) tasks show that the proposed SAT scheme can yield superior performance over the widely-used speaker-aware training using i-vectors with speaker-adapted input features

    Multilingual Training and Cross-lingual Adaptation on CTC-based Acoustic Model

    Full text link
    Multilingual models for Automatic Speech Recognition (ASR) are attractive as they have been shown to benefit from more training data, and better lend themselves to adaptation to under-resourced languages. However, initialisation from monolingual context-dependent models leads to an explosion of context-dependent states. Connectionist Temporal Classification (CTC) is a potential solution to this as it performs well with monophone labels. We investigate multilingual CTC in the context of adaptation and regularisation techniques that have been shown to be beneficial in more conventional contexts. The multilingual model is trained to model a universal International Phonetic Alphabet (IPA)-based phone set using the CTC loss function. Learning Hidden Unit Contribution (LHUC) is investigated to perform language adaptive training. In addition, dropout during cross-lingual adaptation is also studied and tested in order to mitigate the overfitting problem. Experiments show that the performance of the universal phoneme-based CTC system can be improved by applying LHUC and it is extensible to new phonemes during cross-lingual adaptation. Updating all the parameters shows consistent improvement on limited data. Applying dropout during adaptation can further improve the system and achieve competitive performance with Deep Neural Network / Hidden Markov Model (DNN/HMM) systems on limited data
    corecore