112,568 research outputs found

    LANDSAT-D investigations in snow hydrology

    Get PDF
    Thematic mapper radiometric characteristics, snow/cloud reflectance, and atmospheric correction are discussed with application to determining the spectral albedo of snow. The geometric characterics of TM and digital elevation data are examined. The geometric transformations and resampling required to coregister these data are discussed

    LANDSAT-D investigations in snow hydrology

    Get PDF
    Snow reflectance in all 6 TM reflective bands, i.e., 1, 2, 3, 4, 5, and 7 was simulated using a delta-Eddington model. Snow reflectance in bands 4, 5, and 7 appear sensitive to grain size. It appears that the TM filters resemble a ""square-wave'' closely enough that a square-wave can be assumed in calculations. Integrated band reflectance over the actual response functions was calculated using sensor data supplied by Santa Barbara Research Center. Differences between integrating over the actual response functions and the equivalent square wave were negligible. Tables are given which show (1) sensor saturation radiance as a percentage of the solar constant, integrated through the band response function; (2) comparisons of integrations through the sensor response function with integrations over the equivalent square wave; and (3) calculations of integrated reflectance for snow over all reflective TM bands, and water and ice clouds with thickness of 1 mm water equivalent over TM bands 5 and 7. These calculations look encouraging for snow/cloud discrimination with TM bands 5 and 7

    An analysis of new techniqes for radiometric correction of LANDSAT-4 Thematic Mapper images

    Get PDF
    The utility of methods for generating TM RLUTS which can improve the quality of the resultant images was investigated. The TM-CCT-ADDS tape was changed to account for a different collection window for the calibration data. Several scenes of Terrebonne Bay, Louisiana and the Grand Bahamas were analyzed to evaluate the radiometric corrections operationally applied to the image data and to investigate several techniques for reducing striping in the images. Printer plots for the TM shutter data were produced and detector statistics were compiled and plotted. These statistics included various combinations of the average shutter counts for each scan before and after DC restore for forward and reverse scans. Results show that striping is caused by the detectors becoming saturated when they view a bright cloud and depress the DC restore level

    Data compression experiments with LANDSAT thematic mapper and Nimbus-7 coastal zone color scanner data

    Get PDF
    A case study is presented where an image segmentation based compression technique is applied to LANDSAT Thematic Mapper (TM) and Nimbus-7 Coastal Zone Color Scanner (CZCS) data. The compression technique, called Spatially Constrained Clustering (SCC), can be regarded as an adaptive vector quantization approach. The SCC can be applied to either single or multiple spectral bands of image data. The segmented image resulting from SCC is encoded in small rectangular blocks, with the codebook varying from block to block. Lossless compression potential (LDP) of sample TM and CZCS images are evaluated. For the TM test image, the LCP is 2.79. For the CZCS test image the LCP is 1.89, even though when only a cloud-free section of the image is considered the LCP increases to 3.48. Examples of compressed images are shown at several compression ratios ranging from 4 to 15. In the case of TM data, the compressed data are classified using the Bayes' classifier. The results show an improvement in the similarity between the classification results and ground truth when compressed data are used, thus showing that compression is, in fact, a useful first step in the analysis

    Comparison of satellite based cloud retrieval methods for cirrus and stratocumulus

    Get PDF
    One difficulty in using satellite remote sensing data is the spatial variability of cloud properties on scales smaller than most meteorological satellite fields of view (approx. 4 to 8 km). The variation is examined of satellite derived cloud cover as a function of the satellite sensor spatial resolution for seven cloud cover retrieval methods: (1) Reflectance threshold; (2) Temperature threshold; (3) ISCCP; (4) HBTM (Hybrid Bispectral Threshold Method); (5) NCLE; (6) Spatial coherence; and (7) Functional Box Counting. The first two methods are simple single spectral thresholds which specify a satellite pixel as cloud filled if the measured reflectance is greater than the threshold, or if the measured equivalent blackbody temperature is less than the threshold. The next three methods are bispectral, using one visible wavelength window channel and one thermal infrared wavelength window. The final two algorithms rely on the spatial variability within the cloud field to determine cloud cover. Spatial coherence assumes only that the cloud field occurs in a single layer and that the clouds are optically thick in the infrared window. LANDSAT Thematic Mapper (TM) data is used to test the spatial resolution dependence of the cloud algorithms. The ISCCP bispectral threshold applied to the full resolution data is used as the reference or truth cloud cover, after which the retrieval methods are applied to the spatial resolutions. Studies of the fraction of pixels in the scene at cloud edge, and of the profile of reflectance and temperature near cloud edges indicate an uncertainty in the reference cloud fraction of 1 to 5 percent

    Snow reflectance from thematic mapper

    Get PDF
    Calculations of snow reflectance in all 6 TM reflective bands (i.e., 1,2,3,4,5, and 7) using a delta Eddington model show that snow reflectance in bands 4,5, and 7 is sensitive to grain size. Efforts to interpret the surface optical grain size for the spectral extension of albedo are described. Results show the TM data include spectral channels suitable for snow/cloud discrimination and for snow albedo measurements that can be extended throughout the solar spectrum. Except for band 1, the dynamic range is large enough that saturation occurs only occasionally. The finer resolution gives much better detail on the snowcovered area and might make it possible to use textural information instead of the snowline as an index to the amount of snow melt runoff

    Cloud spatial structure during the FIRE MS IFO

    Get PDF
    The fractal properties of clouds observed during the FIRE Marine Stratocumulus Intensive Field Observations (MS IFO) and their effects on the large scale radiative properties of the atmosphere are examined. This involves three states: (1) analysis of LANDSAT Thematic Mapper (TM) cloud data to determine the scaling properties associated with various cloud types; (2) simulation of fractal clouds with realistic scaling properties; and (3) computation of mean radiative properties of fractal clouds as a function of their scaling properties. Thirty-three LANDSAT scenes were acquired as part of the FIRE Marine Stratocumulus IFO in July 1987. They exhibit a wide variety of stratocumulus structures. Analysis has so far focused upon the July 7 scene, in which the NASA ER-2, the BMO C130 and the NCAR Electra repeatedly gathered data across a stratocumulus-fair weather cumulus transition

    Creating User-Friendly Tools for Data Analysis and Visualization in K-12 Classrooms: A Fortran Dinosaur Meets Generation Y

    Get PDF
    During the summer of 2007, as part of the second year of a NASA-funded project in partnership with Christopher Newport University called SPHERE (Students as Professionals Helping Educators Research the Earth), a group of undergraduate students spent 8 weeks in a research internship at or near NASA Langley Research Center. Three students from this group formed the Clouds group along with a NASA mentor (Chambers), and the brief addition of a local high school student fulfilling a mentorship requirement. The Clouds group was given the task of exploring and analyzing ground-based cloud observations obtained by K-12 students as part of the Students' Cloud Observations On-Line (S'COOL) Project, and the corresponding satellite data. This project began in 1997. The primary analysis tools developed for it were in FORTRAN, a computer language none of the students were familiar with. While they persevered through computer challenges and picky syntax, it eventually became obvious that this was not the most fruitful approach for a project aimed at motivating K-12 students to do their own data analysis. Thus, about halfway through the summer the group shifted its focus to more modern data analysis and visualization tools, namely spreadsheets and Google(tm) Earth. The result of their efforts, so far, is two different Excel spreadsheets and a Google(tm) Earth file. The spreadsheets are set up to allow participating classrooms to paste in a particular dataset of interest, using the standard S'COOL format, and easily perform a variety of analyses and comparisons of the ground cloud observation reports and their correspondence with the satellite data. This includes summarizing cloud occurrence and cloud cover statistics, and comparing cloud cover measurements from the two points of view. A visual classification tool is also provided to compare the cloud levels reported from the two viewpoints. This provides a statistical counterpart to the existing S'COOL data visualization tool, which is used for individual ground-to-satellite correspondences. The Google(tm) Earth file contains a set of placemarks and ground overlays to show participating students the area around their school that the satellite is measuring. This approach will be automated and made interactive by the S'COOL database expert and will also be used to help refine the latitude/longitude location of the participating schools. Once complete, these new data analysis tools will be posted on the S'COOL website for use by the project participants in schools around the US and the world

    The effects of cloud inhomogeneities upon radiative fluxes, and the supply of a cloud truth validation dataset

    Get PDF
    The ASTER polar cloud mask algorithm is currently under development. Several classification techniques have been developed and implemented. The merits and accuracy of each are being examined. The classification techniques under investigation include fuzzy logic, hierarchical neural network, and a pairwise histogram comparison scheme based on sample histograms called the Paired Histogram Method. Scene adaptive methods also are being investigated as a means to improve classifier performance. The feature, arctan of Band 4 and Band 5, and the Band 2 vs. Band 4 feature space are key to separating frozen water (e.g., ice/snow, slush/wet ice, etc.) from cloud over frozen water, and land from cloud over land, respectively. A total of 82 Landsat TM circumpolar scenes are being used as a basis for algorithm development and testing. Numerous spectral features are being tested and include the 7 basic Landsat TM bands, in addition to ratios, differences, arctans, and normalized differences of each combination of bands. A technique for deriving cloud base and top height is developed. It uses 2-D cross correlation between a cloud edge and its corresponding shadow to determine the displacement of the cloud from its shadow. The height is then determined from this displacement, the solar zenith angle, and the sensor viewing angle
    corecore