3 research outputs found

    Design a Cloud Security Model in VANET Communication: Design and Architecture

    Get PDF
    During the last few years, Intelligent Transportation System (ITS) has been progressed at a rapid rate, which aimed to improve the transportation activities in the terms of the safety and efficiency. According to many issues with the traditional Vehicular Ad-Hoc Networks (VANET), some efforts are made to merge the VANET with the cloud technology. This work proposes the VANET based on the cloud (V2Cloud), and designs a security model framework that is hosted on the cloud to manage the security services, and provide a secure VANET communication between the different entities eg vehicles, authorities and etc. This security model framework is called VANET Security as a Service (VSaaS). Our works will presented in a set of two papers. In this first one, it presents VSaaS design and architecture in order to show that the VSaaS fulfills the VANET's security requirements, and protects the VANET against the different types of attacks. The second paper will present the progress towards the implementation and the security analysis of the proposed architecture, along with the results of the performance of the security overhead for the secure Vehicle Information Messages (VIMs), which are sent by vehicles to the cloud as a coarse-grained information

    Cloud Computing in VANETs: Architecture, Taxonomy, and Challenges

    Get PDF
    Cloud Computing in VANETs (CC-V) has been investigated into two major themes of research including Vehicular Cloud Computing (VCC) and Vehicle using Cloud (VuC). VCC is the realization of autonomous cloud among vehicles to share their abundant resources. VuC is the efficient usage of conventional cloud by on-road vehicles via a reliable Internet connection. Recently, number of advancements have been made to address the issues and challenges in VCC and VuC. This paper qualitatively reviews CC-V with the emphasis on layered architecture, network component, taxonomy, and future challenges. Specifically, a four-layered architecture for CC-V is proposed including perception, co-ordination, artificial intelligence and smart application layers. Three network component of CC-V namely, vehicle, connection and computation are explored with their cooperative roles. A taxonomy for CC-V is presented considering major themes of research in the area including design of architecture, data dissemination, security, and applications. Related literature on each theme are critically investigated with comparative assessment of recent advances. Finally, some open research challenges are identified as future issues. The challenges are the outcome of the critical and qualitative assessment of literature on CC-V
    corecore