2,515 research outputs found

    Lifelong Federated Reinforcement Learning: A Learning Architecture for Navigation in Cloud Robotic Systems

    Full text link
    This paper was motivated by the problem of how to make robots fuse and transfer their experience so that they can effectively use prior knowledge and quickly adapt to new environments. To address the problem, we present a learning architecture for navigation in cloud robotic systems: Lifelong Federated Reinforcement Learning (LFRL). In the work, We propose a knowledge fusion algorithm for upgrading a shared model deployed on the cloud. Then, effective transfer learning methods in LFRL are introduced. LFRL is consistent with human cognitive science and fits well in cloud robotic systems. Experiments show that LFRL greatly improves the efficiency of reinforcement learning for robot navigation. The cloud robotic system deployment also shows that LFRL is capable of fusing prior knowledge. In addition, we release a cloud robotic navigation-learning website based on LFRL

    Collaborative and Cooperative Robotics Applications using Visual Perception

    Get PDF
    The objective of this Thesis is to develop novel integrated strategies for collaborative and cooperative robotic applications. Commonly, industrial robots operate in structured environments and in work-cell separated from human operators. Nowadays, collaborative robots have the capacity of sharing the workspace and collaborate with humans or other robots to perform complex tasks. These robots often operate in an unstructured environment, whereby they need sensors and algorithms to get information about environment changes. Advanced vision and control techniques have been analyzed to evaluate their performance and their applicability to industrial tasks. Then, some selected techniques have been applied for the first time to an industrial context. A Peg-in-Hole task has been chosen as first case study, since it has been extensively studied but still remains challenging: it requires accuracy both in the determination of the hole poses and in the robot positioning. Two solutions have been developed and tested. Experimental results have been discussed to highlight the advantages and disadvantages of each technique. Grasping partially known objects in unstructured environments is one of the most challenging issues in robotics. It is a complex task and requires to address multiple subproblems, in order to be accomplished, including object localization and grasp pose detection. Also for this class of issues some vision techniques have been analyzed. One of these has been adapted to be used in industrial scenarios. Moreover, as a second case study, a robot-to-robot object handover task in a partially structured environment and in the absence of explicit communication between the robots has been developed and validated. Finally, the two case studies have been integrated in two real industrial setups to demonstrate the applicability of the strategies to solving industrial problems

    Collaborative Perception in Autonomous Driving: Methods, Datasets and Challenges

    Full text link
    Collaborative perception is essential to address occlusion and sensor failure issues in autonomous driving. In recent years, theoretical and experimental investigations of novel works for collaborative perception have increased tremendously. So far, however, few reviews have focused on systematical collaboration modules and large-scale collaborative perception datasets. This work reviews recent achievements in this field to bridge this gap and motivate future research. We start with a brief overview of collaboration schemes. After that, we systematically summarize the collaborative perception methods for ideal scenarios and real-world issues. The former focuses on collaboration modules and efficiency, and the latter is devoted to addressing the problems in actual application. Furthermore, we present large-scale public datasets and summarize quantitative results on these benchmarks. Finally, we highlight gaps and overlook challenges between current academic research and real-world applications. The project page is https://github.com/CatOneTwo/Collaborative-Perception-in-Autonomous-DrivingComment: 18 pages, 6 figures. Accepted by IEEE Intelligent Transportation Systems Magazine. URL: https://github.com/CatOneTwo/Collaborative-Perception-in-Autonomous-Drivin

    Artificial Intelligence Advancements for Digitising Industry

    Get PDF
    In the digital transformation era, when flexibility and know-how in manufacturing complex products become a critical competitive advantage, artificial intelligence (AI) is one of the technologies driving the digital transformation of industry and industrial products. These products with high complexity based on multi-dimensional requirements need flexible and adaptive manufacturing lines and novel components, e.g., dedicated CPUs, GPUs, FPGAs, TPUs and neuromorphic architectures that support AI operations at the edge with reliable sensors and specialised AI capabilities. The change towards AI-driven applications in industrial sectors enables new innovative industrial and manufacturing models. New process management approaches appear and become part of the core competence in the organizations and the network of manufacturing sites. In this context, bringing AI from the cloud to the edge and promoting the silicon-born AI components by advancing Moore’s law and accelerating edge processing adoption in different industries through reference implementations becomes a priority for digitising industry. This article gives an overview of the ECSEL AI4DI project that aims to apply at the edge AI-based technologies, methods, algorithms, and integration with Industrial Internet of Things (IIoT) and robotics to enhance industrial processes based on repetitive tasks, focusing on replacing process identification and validation methods with intelligent technologies across automotive, semiconductor, machinery, food and beverage, and transportation industries.publishedVersio
    • …
    corecore