
Università degli Studi della Basilicata 

Dottorato di Ricerca in 

Ingegneria dell’Innovazione e lo Sviluppo Sostenibile 

Collaborative and Cooperative Robotics 
Applications using Visual Perception

Settore Scientifico-Disciplinare 

ING-INF 04 

Ph.D. course coordinator Ph.D. student 

Prof.ssa Aurelia Sole Monica Sileo 

Advisors 

Prof. Francesco Pierri 

Prof. Donato Sorgente 

Ciclo XXXV 



Codes are a puzzle. A game, just like any other game.

Alan Turing



Abstract

The objective of this Thesis is to develop novel integrated strategies for collaborative and

cooperative robotic applications. Commonly, industrial robots operate in structured en-

vironments and in work-cell separated from human operators. Nowadays, collaborative

robots have the capacity of sharing the workspace and collaborate with humans or other

robots to perform complex tasks. These robots often operate in an unstructured environ-

ment, whereby they need sensors and algorithms to get information about environment

changes.

Advanced vision and control techniques have been analyzed to evaluate their perfor-

mance and their applicability to industrial tasks. Then, some selected techniques have

been applied for the first time to an industrial context. A Peg-in-Hole task has been cho-

sen as first case study, since it has been extensively studied but still remains challenging:

it requires accuracy both in the determination of the hole poses and in the robot posi-

tioning. Two solutions have been developed and tested. Experimental results have been

discussed to highlight the advantages and disadvantages of each technique.

Grasping partially known objects in unstructured environments is one of the most

challenging issues in robotics. It is a complex task and requires to address multiple sub-

problems, in order to be accomplished, including object localization and grasp pose de-

tection. Also for this class of issues some vision techniques have been analyzed. One of

these has been adapted to be used in industrial scenarios. Moreover, as a second case

study, a robot-to-robot object handover task in a partially structured environment and

in the absence of explicit communication between the robots has been developed and

validated.

Finally, the two case studies have been integrated in two real industrial setups to

demonstrate the applicability of the strategies to solving industrial problems.
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Introduction

I.1 State of the art

I.1.1 Collaborative robots

Industrial robotics is the discipline concerning robot design, control and applications in

industry. Industrial robots are usually large, heavy and are installed to perform jobs

that would be very difficult and dangerous for humans. They operate in a structured

environment whose geometrical or physical characteristics are mostly known a priori

and that is isolated from human operators.

The presence of such robots produced the continuous automation and remodeling

of the industrial processes with the aim of increasing the productivity of the production

processes. In 2011, the term Industry 4.0 is used for the first time with the intent of refer-

ring to the fourth industrial revolution, a series of activities to create Smart Factories [1]

with highly flexible and reconfigurable facilities.

In this context, collaborative solutions, where human workers and robots share the

workspace and collaborate in performing complex tasks, are becoming the new frontier

of the industrial robotics. Indeed, collaborative robots, also called cobots, have started to

spread in this new era [2]. They allow the direct interaction with the human operators,

thus overcoming the classical division of labour, which requires robots to be confined

in safety cages far away from human workers. Moreover, they are designed to work in

unstructured environments by leveraging on learning capabilities.

For a complete introduction of collaborative robots in industrial processes, it is neces-

sary to deal with some fundamental technological challenges:

• safe interaction: safety issues are the primary challenge that must be tackled by any

approach that requires collaboration between humans and robots;

• intuitive interfaces: it is important that user interfaces are designed so that human

operators can easily interact with the robot;
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SAFETY

COEXISTENCE

COLLABORATION

Figure I.1: Levels of Human-Robot Interaction.

• design methods: specific design methods integrating control laws, sensory data

and activity planning methods must be developed and applied.

In the Human-Robot Interaction (HRI) there are three levels of interaction [3], which

are shown in Fig. I.1. A higher level requires that the features of lower interaction levels

are guaranteed. In general, to achieve safety, collisions should be prevented, but if they

accidentally occur, e.g., due to the limits of sensors and robot motion capabilities, the

robot should be able to react. In this case, the robot could detect the physical collision and

immediately remove itself from the collision area [4]. Moreover, in some cases, robots can

use appropriate control laws to reduce forces at the impact [5].

The level of coexistence considers that a robot and a human operator safely share the

workspace and might also work on the same object, but without any mutual contact or

coordination of actions and intentions [3].

Beyond coexistence, collaboration approaches allow the robot and the human opera-

tor to perform a complex task together. There are two types of collaboration: the physical

collaboration, where there is an intentional contact with exchange of forces between hu-

man and robot [6], and the contactless collaboration, in which actions are coordinated from

an exchange of information, like gestures and voice commands [7], without physical in-

teraction.

As a consequence of the introduction of human-robot collaboration technologies, great

importance has been attributed to robot safety standards. Indeed, the regulation estab-

lishes four collaborative modes [8, 9], which are summarized in Fig. I.2 and described

below.
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LEVEL 3 – Speed and separation monitoring LEVEL 4 – Power and force limiting

LEVEL 1 – Safety-rated monitored stop LEVEL 2 – Hand guiding

Figure I.2: The four collaborative modes.

Safety-rated Monitored Stop is the simplest type of collaboration. Inside the collabo-

rative area, both the human and the robot can work, but not at the same time since the

latter is not allowed to move if the operator occupies the shared space. The robot detects

the human presence by using one or more sensors.

Hand Guiding, also known as ”direct teach”, in which the operator can teach the robot

task by moving it without the need of an intermediate interface. The robot executes the

program in automatic mode, if the operator approaches the collaborative area, the robot

program and movements are interrupted.

Speed and Separation Monitoring allows the human presence within the robot’s space

through safety-rated monitoring sensors. With reference to Fig. I.2, the robot operates at

full speed when the human is in the green zone, at reduced speed in the yellow zone, and

it stops when the human moves into the red zone.

Finally, the Power and Force Limiting mode prescribes the limitation of motor power

and force, so that a human operator can work side-by-side with the robot. This level
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requires dedicated equipment and control models for handling collisions between the

robot and the human with no harmful consequences for the latter.

Regarding the programming of robots, existing approaches can be traditionally clas-

sified into on-line programming and off-line programming. The most novel approaches

offer great intuitiveness and ease of use, but, unfortunately, they are still quite limited in

terms of possible operations to perform and working scenarios. The main goal of a nat-

ural user interface is to offer a reality-based interaction by using actions that correspond

to daily practices in the physical world [10].

To achieve this goal, natural user interfaces allow users to directly manipulate and

interact with robots rather than instruct them by typing commands. A classification of

some particularly important programming methods [11] are briefly reported below:

• Traditional lead-through programming. This approach to robot programming re-

lies on the use of a teach pendant for on-line moving the robot through the desired

path. Trajectories and endpoints are, then, recorded into the controller memory to

allow the execution of the learned task. Although the concept is simple and does

not require strong technical expertise, some programming skills are still required

and teaching trajectories to the robot in this way turns out to be a time consum-

ing task, requiring production interruptions. For this reason, in industry, this type

of robot programming is used only for large production batches. This approach is

not suitable for small and medium sized factories, where small production batches

require frequent reprogramming of the operations performed by the robot [12].

• Off-line programming. This approach uses the simulation of the task in a 3D model

of the complete robot workcell. After simulation and testing, the program is loaded

into the robot control unit. Programming can still take a long time, but production

does not need to be interrupted during this phase. An important step in the off-line

programming is the calibration of the robot and the workcell. This step is necessary

to compensate for any errors due to a mismatch between the real geometry of the

cell and the virtual model used for programming.

• Walk-through programming. The basic idea behind this method is that the user

can physically move the end-effector of the robot through the desired positions

(hand guiding). At the same time the robot’s controller records the desired tra-

jectory and the corresponding joints coordinates, and is then able to reproduce the

trajectory thereafter. Thus, the robot can be programmed in a very intuitive manner
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and no knowledge of the robot programming language is required. For industrial

robot this goal is achieved by using a force/torque sensor, typically mounted on

the robot wrist, to measure forces and torques during the interaction. Then, these

measurements are used to control the robot [13].

• Programming by demonstration. In this approach the robot does not repeat the

trajectory recorded in the system, but it learns the movements to perform under

varying conditions (demonstration phase) and generalizes them in different scenar-

ios. This approach allows an easy and natural interaction, without requiring any

experience in robot programming. Regarding the problem of generalizing across

demonstration, two approaches have been proposed to extract the relevant features

of a given task: the symbolic encoding, in which a task is expressed as a sequence

of symbolic primitives [14], and the trajectory encoding, where the demonstrated

trajectory is directly transformed into executable robot motion [15].

As mentioned, safety is a priority in HRI because the robots often perform difficult

and risky tasks, which present a potential danger to human operators. The robotic sys-

tems need to detect human behaviours, motions, environmental changes, and even hu-

man intentions, in real time in order to modify their behaviour.

Sensors can help to recognize the environment and the information of robots and

humans in real time, which are vital for the safety, but also for using interaction modes

that make robots assume a behaviour more similar to the humans’ one. The ultimate

goal is to help users to control and program a robot by means of behaviours described at

a high level of abstraction [16, 17].

In particular, vision systems can be used for safety or for objects and environment

recognition and to recognize human body gestures and facial expressions. For safety

reasons, the vision-based monitoring systems are mainly used to implement obstacle

avoidance. When this research field was born, the proposed approaches mostly used

2D images or videos. The main drawback of using 2D images is that they are sensitive to

changes in illumination [18]. With the spreading of sensors that provide also the depth

information, new methods have been developed.

Nevertheless, most of these approaches work in domestic scenarios and only a few

contributions have dealt with the industrial scenario. Among the latter, in [19] a skeletal

joint descriptor is used for action classification in industrial applications. In this scenario,

multiple actions can occur simultaneously and the proposed framework is able to detect
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multiple actions simultaneously in real-time.

In [20] the Microsoft Kinect sensor (depth camera) is used to implement a real-time

framework for collision avoidance. In particular, the human and the robot share the

workspace, the Kinect camera monitors the whole scene and provides the depth image.

The proposed approach computes distances between robot and workspace obstacles di-

rectly from depth data, considering also the human operator as an obstacle to avoid. The

distances between the robot and the obstacles are then used to generate repulsive com-

mands for the robot to avoid collisions.

An approach for collision avoidance in an augmented environment, where virtual

three-dimensional (3D) models of robots and real images of the human are used for mon-

itoring the working area and avoiding collisions, is proposed in [21]. The depth vision

systems proposed consists of Microsoft Kinect sensors, and it provides a point cloud of

the human that is put into the 3D model of the workcell so the human-robot distance can

be computed.

As mentioned, sensors can be used for recognizing the demonstrator’s actions and

transferring them to the robot for motion imitation. In [22], a hybrid approach combin-

ing visual and force servoing is presented, to automate the deburring process for cast

aluminum wheels. In particular, a desired path is marked manually on the object. A

camera mounted on the robot end-effector captures the images and identifies the center

of the line. The robot is controlled to move in a zig-zag pattern along the line to iden-

tify the normal of a local surface while the tool is kept in contact with the surface. To

accurately identify the center of the line, the robot is controlled such that the tool is per-

pendicular to the surface. While the robot moves along the marked path, the position and

orientation are recorded to later generate a trajectory to perform the deburring operation.

Regarding the collaborative robots, the Human-Robot Collaboration (HRC) is an in-

teraction, where humans and robots work together without barriers. In this context, also

the human needs to know some information about the robot, for example, its state. The

ways in which the human can interact with the collaborative robots are influenced by the

spread of new technological devices. In [23] the Leap motion and an electromyography

sensor (Myo armband) are used to control the movement of a mobile robot.

Also, Mixed Reality can give human operators without particular experience or knowl-

edge of robotics the possibility to easily interact with the robot. An application in which

the human operator interacts with a collaborative robot Franka Emika Panda [24] by us-

ing the Microsoft HoloLens 2 has been developed in [25]. In this work the state of the
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robot and the trajectory that it is going to follow are shown to the worker through the

mixed reality device.

In [26] a scalable multi-agent human-robot teaming system for indoor and outdoor

exploration is proposed. The system allows multiple users to simultaneously localize, su-

pervise, and receive labeled images from robotic clients by using the Microsoft HoloLens

2 device. In other words, robots are supported in sending text and image alerts about

discovered items of interest to human teammates.

Mixed Reality is not used only to visualize information about the state or messages

from the robots. It can also be used to interact with them: [27] proposes the use of mixed

reality devices to extend hand-guidance to robots lacking joint-torque sensors. In particu-

lar, the in-build hand tracking capabilities of the Microsoft Hololens are used to calculate

the position of the hands relative to the robot. By decomposing the hand movements, a

completely sensorless hand-guidance is achieved, without any need to build a dynamic

model of the robot.

In [28] these two aspects are combined to realize an interface that allows human op-

erators to interact with the robotic system by sending commands and receive instant

feedbacks through the Microsoft Hololens in collaborative tasks. The main goal is to help

workers to interact with the robot in the most user-friendly way possible: with visual

feedbacks, such as a light that indicates the current actions of the robot, or sound feed-

backs, to understand what is happening when the robot is out of the human’s field of

view or in case of interaction with multiple robots. The proposed interface provides dif-

ferent types of user inputs: the gaze, e.g, to give reference for the trajectory, and vocal

commands, which guarantee high easy handling. The latter cannot be used in noisy in-

dustrial environment, thus also the gesture commands are included in the interface, by

exploiting the gesture recognition capabilities of the Microsoft Hololens.

As in HRC humans and robots collaborate with physical interaction between them,

Human Factors and Ergonomics [29] can contribute to the success of the collaborative

task. The safety in the strict sense, to prevent collisions between robots and operators,

has already been mentioned, but the humans’ perceptual safety during the task must be

considered. Perceived safety is subjective to the individual human worker and is depen-

dent on several factors, like mental stress or anxiety, and this can increase the probability

of errors. Moreover, in the same situation each operator reacts differently. Therefore, sup-

porting human operators in collaborative tasks should be a priority in order to minimize

the probability of errors.
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Thus, it is needed to investigate the causes of stress and error to know how to support

correctly human operators, through developing supporting systems and assisting them

to increase their perceptual safety. In [30] a preliminary experiment on HRC with the

intention of investigating the factors that lead to errors is presented. The study found

that the stress of not knowing the position of the robot and the mental ability needed

to make the decision on how to proceed during the process are the two main reasons

influencing the operators’ performance.

I.1.2 Cooperative robots

In many applications, it is useful to consider both the interaction with the human opera-

tor (human-robot interaction) and the interaction between several robots (robot-robot in-

teraction). Indeed, many tasks that are difficult or impossible to be performed by a single

robot become feasible when two or more manipulators are used in a cooperative man-

ner [31]. Examples of cooperative applications can be the manipulation or transportation

of objects with considerable size and/or weight [32].

There are two types of cooperation between robots [33]:

• passive cooperation, in which the robots do not communicate with each other, and

the cooperation becomes evident when the whole system is observed. In this type

of cooperation, the robots consider the others as obstacles, their trajectories are

planned locally and are not shared;

• active cooperation, where the robots can actively coordinate their decisions and ac-

tions. It does not have to be a direct communication, they can communicate also via

the environment. A particular type of active cooperation is the tight cooperation, in

which the robots need to coordinate their action precisely, for example, cooperative

transportation [34] and surgery [35].

In the literature, the first contributions date back to the 1970s [36, 37] and are mainly

based on the attempt to confer a suitable mechanical compliance to the manipulators.

Also, load distribution among the arms is an important issue, since load sharing may be

exploited both for optimal load distribution among arms and for robust holding of the

manipulated object. When a cooperative multi-arm system is employed for the manipu-

lation of a common object, it is important to control both the absolute motion of the held

object and the stresses applied to it.
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When a robot performs a cooperative task, it is necessary that it is able to handle

the physical contact with the environment to complete the operations. The term ”envi-

ronment” is generic, it can be referred to the objects in the workcell or to other robots.

The dynamic interaction between the robot and the environment that can be inertial (as

in pushing a block), dissipative (as in sliding on a surface with friction) or elastic (as

in pushing against an elastically compliant wall). In all these cases, a pure motion con-

trol strategy, e.g. controlling the position or the velocity of the end-effector, cannot be

used when an interaction is involved. Indeed, successful execution of an interaction task

with the environment by using pure motion control could be obtained only if an accurate

model of both the robot manipulator (kinematics and dynamics) and the environment

(geometry and mechanical features) is available. A manipulator model may be known

with sufficient accuracy, but a detailed description of the environment is difficult to ob-

tain.

The control that ensures a compliant behaviour during the interaction can be achieved

either in a passive or in an active mode [38]. In the passive control the trajectory of the

end-effector is modified by the interaction forces due to the intrinsic compliance of the

robot, e.g. soft robot arms with elastic joints or links are purposely designed for intrin-

sically safe interaction with humans [39]. In industrial applications, a Remote Center

of Compliance (RCC) [40] device is widely used. An RCC is a compliant end-effector

mounted on a rigid robot, designed and optimized for Peg-in-Hole assembly tasks.

The passive interaction control does not require force/torque sensors; also, the re-

sponse of a passive compliance mechanism is much faster than active repositioning by a

computer control algorithm. On the other hand, the passive compliance is not flexible,

and it can only deal with small deviations of the programmed trajectory. Moreover, since

forces are not measured, the passive control cannot guarantee that high contact forces

will never occur.

In active interaction control, the compliance of the robotic system is ensured by a pur-

posely designed control system, i.e, the measurement of the contact forces and moments

are fed back to the controller and used to modify or generate online the desired trajectory

of the end-effector. Active interaction overcomes the disadvantages of the passive ones,

but it is usually slower, more expensive and sophisticated.

Active interaction controls strategies can perform two types of force control:

• indirect, where the force control is achieved via motion control, i.e. without explicit

closure of a force feedback loop;
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• direct, where the contact force and moment are controlled through a force feedback

loop, in order to make them converge to a desired value.

The impedance (or admittance) control [41, 42] is a type of indirect force control, where

the deviation of the end-effector motion from the desired trajectory is related to the con-

tact force through a mechanical impedance/admittance. A robot manipulator under

impedance (or admittance) control is described by an equivalent mass-spring-damper

system with adjustable parameters.

This relationship is an impedance if the robot control reacts to the motion deviation

by generating forces, while it corresponds to an admittance if the robot control reacts to

interaction forces by imposing a deviation from the desired motion. In the literature, the

two terms are often used to refer to the same control scheme.

Admittance control is used to perform compliant motions, in tasks such as excava-

tion and peg-in-hole [43] and, more recently, it has been used in physical HRI [44]. In

this context, recent works propose variable admittance structures [45] or even nonlinear

admittance filters based on adaptive Dynamic Movement Primitives [46].

I.2 Contribution

In this Thesis, novel integrated strategies for collaborative and cooperative robotics ap-

plications are proposed, where the robots interact with the environment and/or with

human by using the information provided by its proprioceptive and exteroceptive sen-

sors.

The use of a camera, mounted on the robots, allowed to use different techniques to

make the robots more autonomous also in unstructured environment, where the workspace

can change and/or is shared with humans and other robots. The use of force/torque sen-

sors allowed to the robots to directly interact with other robots or humans.

The main contributions of the Thesis can be thus summarized as follows:

• various sophisticated visual processing techniques are analyzed to evaluate their

performance and their applicability to industrial contexts;

• the visual techniques with the best results are, for the first time, applied to solve a

class of manufacturing tasks by adopting low-cost sensors;

• control techniques are integrated with the visual ones to achieve an autonomous

execution of industrial tasks;
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• the integration of these techniques is used to allow the collaboration and the coop-

eration between the robots and/or the humans.

Some material and code produced during this Thesis’ work are available at

https://sites.google.com/unibas.it/phd-thesis-ms2022.

I.3 Outline

The Thesis is organized as follows:

Chapter 1 reports the description of advanced vision and control techniques exploited

in the execution of complex tasks in partially structured environments. In particular, a

Peg-in-Hole task is chosen as case study.

Chapter 2 reports a solution for the execution of a Peg-In-Hole assembly task by

means of a collaborative robotic arm, in the presence of large uncertainties on the relative

pose of the workpiece with respect to the robot’s base. The whole strategy to address this

problem is discussed in detail.

Chapter 3 concerns the problem of object grasping and includes some visual tech-

niques to handle it. Moreover, a complete solution for a robot-to-robot object handover

application is presented. In this application, the robots do not communicate directly,

but use their sensors to understand what is the next step to take. Also in this case, the

problem of uncertainties on the object positioning is addressed using advanced visual

techniques.

https://sites.google.com/unibas.it/phd-thesis-ms2022


Chapter 1

Advanced vision and control

techniques for robotic applications

In this Chapter, the focus is on the execution of complex tasks in partially structured

environments, by exploiting the availability of affordable and reliable sensing devices.

The goal is to achieve semi-autonomous task execution by resorting to visual sensing for

class of assembly tasks involving insertion of mechanical parts. In particular, a Peg-In-

Hole operation is chosen as case study.

1.1 The Peg-in-Hole task

The Peg-in-Hole tasks have been extensively studied but remain still challenging: they

require accuracy in the determination of the holes pose and also in the robot positioning.

The execution of the task can be split in two parts:

• the search phase, in which the localization of the hole and the alignment of the peg

to the hole axis are performed;

• the insertion phase, where the peg is inserted into the hole.

In case of perfect knowledge of the hole’s position with respect to the robot, the inser-

tion can be performed by using a pure positional control, but this can rarely happen and

this approach can be applied only in the presence of generous clearances. Among interac-

tion control schemes, the impedance control paradigm [41] has been extensively adopted,

e.g., in [47], [48], [49], for single-arm robots, or in [50], [51] for multi-arm systems.
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(a) (b)

Figure 1.1: Camera in eye-in-hand configuration (a). Camera in eye-to-hand configuration (b).

Regarding the search phase, the approaches in literature can be roughly classified

into approaches based on visual sensor feedback and those base on exploration of the

hole neighborhood. The first category can lead to satisfactory performance, for example,

in [52] a high-speed camera is adopted to align the peg to the hole, or in [53], where a

micro-peg-in-hole tasks is considered, while [54] and [55] propose the adoption of visual

coaxial systems.

It is important to notice the visual techniques have some drawbacks: in particular,

they are affected by the lighting conditions of the environment and the texture or re-

flection of the objects. Also calibration errors and field of view occlusions are problems,

especially when an eye-in-hand configuration is adopted.

In the eye-in-hand configuration the camera is rigidly mounted on the robot end-

effector. This configuration differs from the so-called eye-to-hand configuration, where

the camera observes the robot within its work space. A scheme of both configurations is

shown in Fig. 1.1. A camera in eye-in-hand configuration has a limited, but more precise,

view of the scene, whilst a camera in eye-to-hand configuration has a less detailed, but

global, sight of the scene.

In other methods, force/torque sensors are used to explore the neighborhood of the

hole, as in [48], where a shape recognition algorithm is adopted to extract the outline of

the peg from the force/torque sensor data collected during the contact with the object

surface. After the recognition of the peg’s outline, the hole detection algorithm finds the

direction of a hole for the insertion phase. In [56], [57] and [58] the common approach

used with force/torque sensors can be found: the mapping of the interaction moments
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onto the position and tilt of the hole, in order to guide the peg pose during the insertion.

Anyway, the presence of this type of sensors mounted at the end-effector of the robot

manipulator increases the overall cost and complexity of the system, and, for this reason,

the estimation of the contact forces by using information from joint position sensors has

started to be adopted [47], [59].

Search methods are often adopted, consisting in tilting and covering the hole neigh-

borhood by moving the peg along an assigned path. In [60], dealing with the problem of

inserting a charging plug into its socket, the search path is a Lissajous curve, while the

wrist-mounted force/torque sensor is replaced by joint torque sensors, often mounted

on collaborative robots. However, it is important to notice that blind search methods are

usually time-consuming and require an accurate initial estimate of the hole position.

In order to overcome these drawbacks, visual and force/torque data can be combined,

as in [61], where a variety of different sensors, including a monocular camera and a com-

pliant force/torque sensor, are exploited to perform a fine Peg-in-Hole assembly task for

four-cylinder engines, and in [62], where the peg is moved close to the hole and fine

alignment is achieved via spiral search. Deep learning has also been adopted in [62]: a

deep neural network trained on synthetic data is used to predict the quadrant of the hole

in the images, with the aim of moving the peg towards it and then perform the insertion.

In [63], a deep learning approach based on self supervised multi-modal representa-

tion of sensory output is proposed, and in [64] a multi-layer perceptron network is trained

on a data set, including object position and interaction forces, for polyhedral pegs in con-

tact with the holes. In [65] a deep neural network, trained via reinforcement learning, is

used to find holes with variable shape and surface finish in a concrete wall. The proposed

method consists of moving the peg toward the wall and try to insert it. If the hole is not

found, the peg is detached from the surface and moved to the next position provided by

the neural network. In addition to force and moment, displacement is also used as in-

put of the neural network. Instead of a supervised learning technique, the reinforcement

learning was used for training in order to avoid the heavy and difficult dataset labeling

process.

In this Chapter, some techniques for the autonomous execution of a Peg-in-Hole as-

sembly task by means of a collaborative robotic arm are investigated. In particular, in the

analyzed case study, the holes are placed on the surface of a target object that is roughly

positioned in the robot workspace by a human operator. Due to manual positioning,

large uncertainties on the relative pose of the holes with respect to the robot’s base are
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present. These uncertainties on both the holes’ position and their tilt are far larger than

the task tolerance.

Both vision and force/torque sensors are exploited to tackle the described problem

and a high-level strategy including four main steps is proposed:

• the data are acquired from the vision sensors mounted on the end-effector of the

robot;

• a reconstruction of the object’s surface is performed in order to estimate the relative

position of the holes with respect to the robot’s base;

• the robot moves the end-effector in the neighborhood of the hole;

• the robot inserts the peg into the hole.

In the following, the techniques used to implement the above strategy are detailed,

and their advantages and disadvantages are analyzed. In particular, two strategies have

been considered: the first is very accurate, but it has the main disadvantage of being time-

consuming, while the second one is faster but less accurate. A description of the adopted

methods and how they are combined to address the Peg-in-Hole task are presented in the

remainder of the Chapter.

1.2 Digital Image Correlation

In Peg-in-Hole applications in partially structured environment, one of the main prob-

lems is the detection of the surface position, as well as the holes position, with respect to

the robot. In some cases, a CAD model, which can only give information about the shape

of the object, is available; in some other cases the object can be completely unknown.

Therefore, in both circumstances, the application of techniques to get more information

about the surface is necessary. In this Section, a method for a very high accurate object

measurement is detailed. This technique, named Digital Image Correlation (DIC) [66], is

a non-contact full-field technique for object shape, displacement and deformation mea-

surement.

1.2.1 2D digital image correlation

The 2D digital image correlation (2D-DIC) [66] was the first version of the algorithm and it

used images from one camera placed with its optical axis perpendicular to the flat surface
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Figure 1.2: Example of transformation (translation and scale) that produces the same projection

onto the image plane.

of the object to obtain full-field in-plane displacement measurement.

A monocular vision is not sufficient to determine the out-of-plane information and

therefore cannot be applied to 3D objects. Indeed, as shown in Fig. 1.2, points placed at

different distances from the camera can produce the same projection on the image plane.

Thus, in 2D applications, it is assumed that objects are planar, parallel to the vision sensor

and at a constant distance from it during the entire process.

The DIC technique is based on the recognition, identification and tracking of cor-

responding points (or features) into the reference image and in a series of images ac-

quired afterwards, in order to compute the value of the relative displacements of the

single points through motion or deformation. The use of the subdivision of the image

into pixels is not enough to ensure a unique correspondence between the points in dif-

ferent images. For example, in a gray-scale image each pixel can take a value from 0 to

255, based on the level of diffused light intensity. The same gray value can be found sev-

eral times within the series of acquired images. Furthermore, this gray level may have

variations in the other images, e.g. as a result of the acquisition process.

Other two cases in which a unique correspondence between points in two images

cannot be established are the case of a repeating structure, e.g., a grid of small dots and

the case of textureless deformable object (Fig. 1.3). In the first case, only when the whole

grid is considered, the correspondence becomes unique and a result can be obtained. For

a textureless structure undergoing deformation, any motion information can be obtained
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(a) (b)

Figure 1.3: Correspondence problem for a grid structure, where the unique correspondence can

only be found if the whole grid is considered (a) and a textureless deformable object, where no

correspondence can be found without considering the boundary. The Figure is taken from [66].

by considering a region inside the boundaries, since no features are present.

To overcome this problem, first, a grid of control points on the image, that corre-

sponds to control points on the objects surface, is set. For each control point, the gray

scale distribution over a collection of neighboring pixel values, named subset (Fig. 1.4), is

used to perform the image correlation.

In each subset, the distribution of the gray level of the pixels that compose it is inter-

polated, in order to have a continuous trend of the gray levels. Thus, it will be charac-

Subset 1 Subset 2

Control points

Step size

Figure 1.4: Examples of control points, subset and indication of the step size.
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Figure 1.5: Examples of patterns with different speckle size.

terized by a light intensity I and its distribution, thus, the subset will contain more in-

formation and can be identified more precisely. The distance between the control points

(step size) and subset size are two of the main process parameters, and they have to be

set properly.

Unfortunately, the subsets can also generate indeterminacy in the correspondence, if

they are repeated in the image (Fig. 1.3). The solution to this problem is represented by

using of a stochastic pattern, called speckle pattern, that provides subsets a characteristic

of uniqueness. Examples of speckle patterns are shown in Fig. 1.5.

The speckle size affects the accuracy of the measurement because a small speckle

allows to choose a subset with smaller size and this increases the spatial resolution of the

algorithm. A speckle size larger than the subset size could cause the possibility that a

subset does not contain enough speckle to make the measurement and thus it could yield

to erroneous results.

In order to provide unique information and reduce noise and uncertainty in the mea-

surement, a pattern should be non-repetitive, to make each area of the sample surface

uniquely identifiable, isotropic, so as not to favor one direction over another, and in high

contrast, to allow the image correlation algorithm to work effectively. White on black or

black on white speckle patterns respect the specification and in fact, they are the mostly

used speckle patterns. The two colors have to be uniformly distributed in the image, in

order to avoid regions that cannot be recognized correctly.

After the image acquisition phase, the DIC algorithm compares the initial reference

frame and the frames acquired afterwards, to determine the range of displacements and/or

deformations. The algorithm considers a reference marker in the initial frame and traces

its position in the other images, by searching a subset in the subsequent image that has

the same gray distribution of the reference image.
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Figure 1.6: Initial gray-scale image (a) and shifted gray-scale image (b) with corresponding pixels

values.

To better understand how a subset is tracked, consider the following simple example.

A 9 × 9 pixel gray-scale image and the grid with the relative pixels values in range

from 0 to 255 are shown in Fig. 1.6(a). The same image, shifted one pixel up and one

to the right and the corresponding pixels values, are displayed in Fig. 1.6(b). A 5 × 5

pixel subset is assigned on the reference image in order to track where it moved to in the

deformed image.

The possible matches are checked by using a classic correlation function, i.e., the sum

of squared differences (SSD, eq. (1.1)) of the pixel values, representing the similarity be-

tween the two subset. In particular, to smaller values of the function correspond a better

similarity. The correlation function is the following:

C(x, y, u, v) =

n
2∑

i,j = −n
2

(I(x+ i, y + j)− I∗(x+ u+ i, y + v + j))2 (1.1)

where x and y are the pixel coordinates in the reference image, u and v represent the

displacements, n is the subset size, I and I∗ are the images before and after the shift,

respectively.

It is assumed that the subset shifts 5 pixels to the left and 5 pixels down, like in

Fig. 1.7(a). The correlation function gives as result a very high error (around 1 million)

and this indicates that the match is not found. Then, the algorithm in charge of finding

the correlation moves the subset, and shifts it, e.g., 1 pixels up and 1 pixels to the right,

as it is shown in Fig. 1.7(b). In this case the error is equal to 0, and the match is found.

In examples closer to reality, images are corrupted by some noise, so a minimization

of the correlation function is performed to find the corresponding subsets.
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Figure 1.7: First attempt to find the match: the subset (light blue window) is shifted of 5 pixels to

the left and 5 pixels down (a). Second attempt to find the match: the subset is shifted of 1 pixels

up and 1 pixels to the right. In this case the match is found (b).

1.2.2 3D digital image correlation

The 3D Digital Image Correlation (3D-DIC) [66] was introduced to overcome the limit

of 2D-DIC. In fact, the 3D technique can also be applied to non-flat objects that undergo

displacements even outside the plane.

This technique gives information regarding both the shape of the object’s surface, ob-

tained by comparing the images taken at the same instant from two angled views and

the range of displacements and deformations, obtained by comparing the reference im-

age with the images acquired afterwards.

To get 3D information with two sensors, the stereo triangulation technique is used.

This method uses known information, like the locations of the sensors, to compute the

intersections of optical rays, in order to locate features in the three-dimensional space. To

this aim, the optical rays needs to be expressed in a common coordinate system and, to

do this, it is necessary to build the vision system calibration model.

The calibration model includes both extrinsic geometric parameters, such as the an-

gles and distances between the camera sensors, and intrinsic parameters specific to each

camera lens setup, like the focal length, pixel dimensions, distortions, the principal point

(where the optical axis intersects with the image plane) and the skew between the axes

of the image plane. The calibration model is built by acquiring a series of images of a

calibration target, in arbitrary positions. A calibration target is a panel, with a predefined

pattern, of which the calibration software knows exactly the dimensions, the color tone

and the surface roughness. Different types of calibration targets are shown in Fig. 1.8. A
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(a) (b)

Figure 1.8: Examples of calibration targets.

good calibration allows to partially correct the distortion introduced by the lenses and

this is a proof of the importance and delicacy of this phase of the measurement process.

At the end of the calibration process, it is possible to know the position of the point P in

3D space, from its pair of image points in the two stereoscopic images acquired.

After the calibration process, it is possible to express the optical rays in a common

coordinate frame and, then, the stereo triangulation can be applied to recover the 3D

structure of the object using two image sensors.

To summarize, in 3D-DIC, the subsets in the right and left image are matched through

correlation, next, they are tracked throughout time to see their deformations and then a

3D reconstruction is built by using the stereo triangulation after camera calibration.

The 3D-DIC technique is affected by two main types of measurement errors:

• Correlation errors, that express the uncertainties that occur in the recognition and

tracking of the subsets between the various frames. They are related to the accuracy

of the instrumentation and software.

• Calibration errors, that lead to errors in the 3D reconstruction. They occur system-

atically according to the position of the subsets in the frames and are mainly due to

the inaccurate correction of the distortion introduced by the lenses.

Since in one of the presented Peg-in-Hole strategies a blind insertion is performed,

it is necessary to get a very accurate reconstruction, hence the 3D-DIC has been used to

generate the reconstruction of the whole surface with a very low error.
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1.3 Iterative Closest Point

In the other Peg-in-Hole strategy presented in this Thesis, the insertion does not happen

to be blind and, for this reason, another technique to generate the object reconstruction is

exploited. This technique is faster than 3D-DIC, even if it is less accurate. The Iterative

Closest Point (ICP) [67] is an algorithm for geometric registration. In this Section, the

point-to-point ICP algorithm [68] is described, and the approach in [69] is detailed.

The inputs of the algorithm are two point clouds S and Q, obtained by the same

surface in two different views. They are in registration if, for any pair of corresponding

points (si ∈ S, qj ∈ Q) in the two clouds representing the same point on the surface, there

exists a unique homogeneous transformation matrix T ∈ IR4×4 such that

∀si ∈ S, ∃qj ∈ Q | ‖T s̃i − q̃j‖ = 0, (1.2)

where the symbol ˜ denotes the homogeneous representation of the coordinate vectors

[70].

For reconstructing a surface, a set of n point cloud needs to be acquired in n different

measurement point. Every point cloud is composed by Ni points, Pi =
{
πii,l

}
l=1,...,Ni

,

expressed in the camera coordinate frame, F ic. The superscript i corresponds to the mea-

surement point in which the point cloud is acquired. A set of homogeneous transforma-

tion matrices, T i (i = 1, . . . , n), needs to be determined in order to align the point clouds

in a global coordinate frame.

Let assume that the global coordinate frame is the camera coordinate frame, F1
c , in

which the first point cloud P1 is acquired. Thus, the transformation matrix T 1 is the

identity matrix I4×4, while each T i (i = 2, . . . , n) is in charge of aligning the point cloud

Pi to P1.

In order to compute the matrices T i (i = 2, . . . , n), the procedure described in [69]

can be adopted. In particular, for each Pi, the transformation matrix T ij (j = i+ 1, . . . , n)

that aligns Pj to Pi is computed. To this aim, first, the point clouds are down-sampled

by using a volume element (voxel) grid filter [71], and then the ICP algorithm is adopted,

where the following cost function has to be minimized with respect to T ij .

C(T ij) =
∑

πj,l ∈Pj , πi,l ∈Pi

‖T ijπ̃j,l − π̃i,l‖2. (1.3)

Since each T ij has 12 unknown components, by considering at least 4 pair of corre-

sponding points it is possible to find the matrix T ij that minimizes the cost function (1.3)

by resorting to a least-squares estimation.
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In the point-to-plane ICP, the surface, represented by the point cloud Pi, is locally ap-

proximated with its tangent plane and the cost function (1.3) becomes

C(T ij) =
∑

πj,l ∈Pj , πi,l ∈Pi

(
(T ijπ̃j,l − π̃i,l)T ñij,l

)2
, (1.4)

where ñij,l = T ijñj,l is the homogeneous representation of the unit vector normal to the

surface represented by the point cloud Pj in the point πj,l, expressed in the reference

frame of Pi.
The ICP algorithm, for estimating the matrix T ij , consists of the following steps:

1. A set of m ≥ 4 control points, with corresponding normals nj,u (u = 1, . . . ,m), is

selected in the point cloud Pj . Such points can be chosen on a regular grid.

2. T ij is initialized to the identity matrix, i.e., T ij(0) = I4×4.

At k-th iteration, the following steps are executed:

3. For each control point, πj,u, the corresponding point in Pi is determined as follows:

• the homogeneous transformation matrix T ij(k − 1) is applied to the control

point πj,u and its normal, nj,u, to obtain π̃ij,u(k − 1) = T ij(k − 1)π̃j,u and

ñij,u(k − 1) = T ij(k − 1)ñj,u.

• the intersection πi,u of the surface defined by the point cloud Pi with the line

defined by πij,u(k − 1) and nij,u(k − 1) is computed.

4. The transformation matrix, T̄ , that minimizes the cost function

Cm(T̄ ,T ij(k − 1)) =

m∑
u=1

(
(T̄ π̃ij,u(k − 1)− π̃i,u)T ñij,u(k − 1)

)2
, (1.5)

is computed.

5. The transformation matrix is then updated as T ij(k) = T̄ T ij(k − 1).

The iterative procedure is stopped when the convergence error is below a tolerance

threshold ē, i.e.,

e =

∣∣∣∣∣Cm(I4×4,T
i
j(k))− Cm(I4×4,T

i
j(k − 1))

m∗

∣∣∣∣∣ ≤ ē, (1.6)

where m∗ ≤ m is the number of control points for which a correspondence is found.
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Figure 1.9: Perceptron structure.

In [69], it has been shown that most of the identified transformation matrices T ij are

false positives that lead to misalignments. Thus, a further global optimization must be

carried out. To the aim, a new cost function is defined

E(T 1, . . . ,T n) =
n∑

i,j=1
i 6=j

m∑
u=1

(T iπ̃i,u − T jπ̃j,u) , (1.7)

where T i = T 1T
1
2 · · ·T i−1i that needs to be minimized with respect to T 1, . . . ,T n.

Once the n point clouds are aligned, it is possible to merge them in a single point

cloud to have the reconstructed surface, i.e.

Pr =
n⋃
i=1

Ni⋃
j=1

T iπ̃i,j . (1.8)

1.4 Neural Networks

Neural Networks (NNs) are computing systems which are heavily inspired by the biolog-

ical nervous systems and the way they operate. NNs are composed of a set of algorithms

that permit learning information from available data and predict new information in light

of the learned information.

The simplest neural network has only one output to which all inputs are connected

and is called single layer perceptron. Fig. 1.9 shows the perceptron structure and its four

main parts: input values, weights and a bias, a weighted sum and the activation function.
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(a) (b) (c)

Figure 1.10: Graphics of activation functions: sigmoid (a), tanh (b), ReLU(c).

The idea is simple: given the numerical value of the inputs and the associated weights,

there is a function inside the neuron that produces the output

y =

N−1∑
n=0

xnwn, (1.9)

i.e., the weighted sum of theN inputs. Then, the activation function is used to map y into

desired ranges, usually nonlinear, in order to introduce non-linearity into the mapping.

There are different kinds of activation functions, according to the needed range for

the output. The most used are:

• logistic function (sigmoid), used to have an output from 0 to 1;

• hyperbolic tangent (tanh), when the output needs to be a number from −1 to 1;

• rectified linear unit (ReLU), used to take the positive numbers as they are and re-

place the negative ones by 0.

The equations and the graphics for this three types of activation function are shown

in Fig. 1.10.

Another important activation function mostly used is the Softmax, which takes the

inputs and outputs a vector of values between 0 and 1, whose sum is 1. The output of a

Softmax layer depends on the outputs of all other perceptrons in its layer.

Finally, the bias is a value that allows to translate the activation function, so that the

output of the perceptron is in the desired range. Thus, (1.9) becomes

y = b+

N−1∑
n=0

xnwn (1.10)

where, b is the bias.

A set of perceptrons connected to each other and operating in parallel is a neural

network. This set of perceptrons can be divided in layers, where the inputs of one layer
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Figure 1.11: Neural Network structure.

consists of the output of the previous one, as shown in Fig. 1.11. The input layer is the

layer where the values that will be used for the prediction are brought in; the hidden

layer is where the activation values of the inputs are computed and the output layer is

where the activation function is used to produce the prediction.

To produce predictions, the hidden layer evaluates whether a certain change in its

weights makes the final output improve or worsen and this assessment constitutes the

learning process. The two key learning paradigms in neural networks are supervised

and unsupervised learning.

In supervised learning methods, for each training example, a set of input values and

one or more associated designated output values (or labels) are provided to the algo-

rithm, that tries to learn the rule from the data and generalize it correctly. In this type of

learning, it is possible to distinguish two categories of problems:

• regression problems, when the algorithm needs to learn a continuous mapping

function.

• classification problems, when the algorithms learns how to assign a class label to

the input data.

In unsupervised learning models, the data are provided without an associated label.

The success of the learning process is usually determined by whether the network is able

to reduce or increase an associated cost function. Unsupervised learning models are used

for clustering problems, where unlabeled data are grouped based on their similarities or
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Figure 1.12: Examples of learning rate. When it is chosen too low, the convergence is slow (a).

When it is chosen too high, the minimum may be lost (b). When it is variable, the steps are larger

at the beginning and they are reduced when the minimum is nearby (c).

differences, for association problems, when different rules to find relationships between

variables in the dataset are used, and for dimensionality reduction, to reduce the number

of features (or dimensions) of the data inputs to a manageable size while preserving data

integrity.

In a neural network, the training phase consists of determining the weights in order

to minimize a cost function that represents the error between the expected output values

and the values predicted by the network. Weights can be computed with mathematical

optimization techniques. The technique typically used is the gradient descent through

backpropagation.

Gradient descent is a way to minimize a cost function by updating weights in the

opposite direction of the gradient of the cost function with respect to the weights [72].

In the gradient descent algorithm, an important parameter is the learning rate, that

determines the size of the steps to reach the minimum. If the learning rate is chosen too

low the algorithm convergence could be very slow (Fig. 1.12(a)), whilst if it is chosen

too high the convergence would be fast but there is the possibility that the minimum

will be lost (Fig. 1.12(b)). The learning rate is usually chosen variable and generally has

a decreasing trend so that the algorithm can make larger steps at the beginning of the

training and reduce them when it begins to approach to the minimum (Fig. 1.12(c)). The

biggest problem with this technique is the presence of local minima, since they prevent

from reaching the global minimum if the step is not large enough.

There are four variants of gradient descent. They differ in the amount of data that is

used to compute the gradient of the cost function:
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1. Batch gradient descent (BGD). In this variant, the gradient of the cost function is

computed with respect to all the data. Then, the average of the gradients is used

to update the weights. This computation is repeated for each step of the training

phase (epoch). Since the gradients need to be calculated for the whole dataset, batch

gradient descent can be very slow and it is not exploitable for datasets that do not fit

in memory. On the other hand, it is guaranteed to converge to the global minimum

for convex error surfaces and to a local minimum for non-convex surfaces;

2. Stochastic gradient descent (SGD). In this case, the weights are updated after the

computation of the gradient with respect to a single example. The term stochastic

refers to the fact that the single example is randomly taken. Since only one sample

from the dataset is chosen for each iteration, the SGD is faster than the BGD, but

the path taken by the algorithm to reach the minimum is usually noisier. How-

ever, when the epoch number is high, the cost function decreases with fluctuations,

whereby this algorithm is used for large datasets;

3. Stochastic gradient descent with Momentum (SGDM). This variant was created to

address the optimization problems of the SGD and it is faster than the previous one.

A new hyperparameter is introduced, named momentum which determines the con-

tribution to the current iteration of the gradient of the previous step. SGDM is able

to reach global minima whereas SGD is stuck in local minima. A disadvantage of

this variant is that the momentum could still fluctuate after reaching global min-

ima and take some time to get stable. For this reason, SGDM is slower than other

optimization but still faster than SGD.

4. Mini-batch gradient descent. It is a mixture of batch gradient descent and SGD. In

particular, a batch of a fixed number of examples, smaller than the actual dataset, is

used to compute the gradient of the cost function.

Learning algorithms aim to identify a general model, by considering a finite set of

data. In some cases the resulting model is unable to learn due to the use of little amount

of data, or it is unable to generalize. The first problem is usually called underfitting, while

the second one is called overfitting. To detect underfitting or overfitting phenomena, the

initial dataset is usually splitted into three subsets:

• The training set, a dataset of examples used during the learning process.
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Table 1.1: An example of confusion matrix.

Predicted as Positive Predicted as Negative

Labeled as Positive A B

Labeled as Negative C D

• The test set, a dataset that is independent of the training dataset, used only to assess

the performance at the end of the learning phase.

• The validation set, used to evaluate how well the model makes predictions based

on new data and prevent from overfitting on the test set. This happens because

the tests on the validation set are made many times during the learning process.

In this way, it is possible to realize that the model does not generalize enough and

intervene to avoid the overfitting.

Another method to evidence the presence of underfitting or overfitting phenomena

consists of using metrics for the analysis of the errors. Most of this metrics can be defined

using the confusion matrix [73], which shows the ways in which a classification model is

”confused” when making predictions. Table 1.1 contains a confusion matrix, where the

rows represent the ground-truth labels and the columns represent the labels predicted by

the neural network.

Typically, there are as many matrices as there are classes. In the simple case of two

classes, in the confusion matrix, e.g., for class 1, the term ”positive” indicates that the

object belongs to class 1 and the term ”negative” that the object does not belong to that

class. In case of multi-class problem, ”positive” has the same meaning than before, while

”negative” indicates that the object does not belong to any other classes.

Referring to Table 1.1 there are A + B objects labeled as positive, i.e., belonging to a

class, but only A of them are correctly recognized as positive by the model, while B of

them are incorrectly recognized as negative. At the same time, there are C + D objects

labeled as negative: the model correctly recognizes only D as negative, while C objects

are incorrectly recognized as positive. The set A of objects represents the true positive

predictions of the network, B are the false negative predictions, C are the false positive

predictions and D represents the true negative predictions.

The most popular metrics for the analysis of the errors are:

• Precision, is the ratio between the true positive and all the positive predictions of

the model, i.e. P = A
A+C ;
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Figure 1.13: Intersection over Union.

• Recall, is the ratio between the true positive and all the actual positive classifica-

tions, i.e. R = A
A+B ;

• F-measure, is a measure of the test’s accuracy computed as Fmeasure = 2P×RP+R ;

• Intersection over Union (IoU), that measures the overlap between the predicted

bounding box and the labeled one, as shown in Fig. 1.13.

1.5 Deep Neural Networks

The term Deep Learning or Deep Neural Network (DNN) refers to Neural Networks

with a very large number of hidden layers. Over the last decades, it has become very

popular in the literature as it is able to handle a huge amount of data. The principle of

operation is the same as classical neural networks. Indeed, it is still possible to use the

classic algorithm of backpropagation for training.

Among DNNs, in the field of computer vision and of speech recognition, the Con-

volutional Neural Networks (CNN) have found great success. CNNs are composed by

stacking four types of layers, shown in Fig. 1.14, and the perceptrons in any layer are only

connected to a small region of the previous layer [74].

The input layer holds the pixel values of the input image. Unlike other classical neural

networks (where the input is in a vector format), in CNNs the input is a multi-channeled
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Figure 1.14: Convolutional Neural Network structure.

image, e.g., for RGB image it has 3 channels and for a gray-scale image it has a single

channel.

The convolutional layer is the most important component of the architecture and con-

tains a set of multiple convolution kernels (also called filters), which get convoluted with

the input image in order to generate the output feature maps and extract different types

of features. A kernel is a grid of numbers, where each value is known as the weight of

this kernel. The initial steps of a convolution operation between a gray-scale image of di-

mension 4×4 ad a kernel of size 2×2 are shown in Fig. 1.15. The kernel is slid over all the

complete input image (horizontally and vertically), and one scalar value is computed by

multiplying the corresponding values of the kernel and the image and sum up all values.

The final output of the convolution operation is shown in Fig. 1.16. In general, the

output size shrinks every time a convolutional operation is completed. This represents

a problem, since once the convolutional neural network goes deeper, the output of each

layer becomes smaller and smaller. In addition, the corner pixels of the image are convo-

luted much less times than the others and this can lead to a loss of information. Usually,

the problem is solved by adding one pixel with intensity value of zero in each border of

the input, called padding. It is also possible to choose the step size along the horizontal or

vertical direction during the convolution. This step size is called stride.

In the example of Fig. 1.15, the convolution operation was performed with padding

equal to 0 and stride equal to 1. The output feature map size after convolution can be
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Figure 1.15: First 5 steps of a convolution operation. The kernel (in light blue color) is multiplied

with the same sized region of the input image (in yellow color) and values are summed to obtain

a corresponding value in the output feature map at each convolution step (in light green).

computed as:

h′ =

⌊
h− f + p

s
+ 1

⌋
,

w′ =

⌊
w − f + p

s
+ 1

⌋
,

where h′ and w′ are the height and the width of the output feature map, h and w are the

height and the width of the input image, f is the kernel size, p and s denote the padding

and the stride, respectively, of the convolution operation. The operator b·c is the floor

function, that takes as input a real number and gives as output the greatest integer less

than or equal to that number.

The pooling layers are used to perform a downsampling of the feature maps produced



Chapter 1. Advanced vision and control techniques for robotic applications 22

1 0 4

4 1 1

1 1 2

Figure 1.16: The feature map after the complete convolution operation shown in Fig. 1.15.

by convolution operations. In other words, the pooling layer takes a large feature map

and reduces it to a smaller one, while preserving the most dominant features in each pool

step. The pooling operation is performed by specifying the pooled region size and the

stride of the operation, similar to convolution operation.

There are different types of pooling techniques such as max pooling (the most used),

min pooling, average pooling etc. [75]. The initial steps of a max pooling operation and

the relative final result are shown in Fig. 1.17. The main drawback of the pooling is that it

sometimes decreases the overall performance of the CNN. A simple example of informa-

tion loss using max pooling [76] is shown in Fig. 1.18. In particular, an example of input

feature map, in which most of the elements in the pooling region are of high magnitudes,

and the output after max pooling is shown in Fig. 1.18(a), while in Fig. 1.18(b), the digits

before and after the max pooling operation are shown. As it can be seen, the information

present in the input feature map, corresponding to the black line (or the zero pixels in the

matrix) is completely lost.

The formulas to find the output feature map size after pooling operation are reported

below:

h′ =

⌊
h− f
s

⌋
,

w′ =

⌊
w − f
s

⌋
,

where h and w are the height and the width of the input feature map, f and s denote the

pooling region size and the stride of the pooling operation, respectively.

The fully-connected layer performs the same operations of a standard neural network

in order to make a classification. These layers take input from the last convolutional or

pooling layer, which is in the form of a set of feature maps. First, these maps are flattened

to create a vector and, then, this vector is fed into the fully-connected layer to generate

the final output of the CNN.

In a CNN, the performance is proportional to the amount of data used to train it.

Usually, a technique of data augmentation is used to artificially increase or expand the size
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Figure 1.17: First 5 steps of a max pooling operation. The size of the pooling region is 2 × 2 (in

light orange in the input feature map) and the stride is equal to 1. In light blue, the corresponding

computed values in the output feature map are shown (a). The input feature map on the left and

the result of the complete max pooling operation on the right (b).
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Figure 1.18: On the left, the input feature map, on the right, the result after the max pooling

operation (a). The digit example of the max pooling operation. It can be seen that the information

about the zeros on the diagonal are loss (b).

of the training dataset. There are several data augmentation operations, such as cropping,

rotations, flipping, translations, contrast adjustment, scaling, etc. These operation can be

used separately or in combination to make several new versions of a single image. The

use of this technique can help to avoid the overfitting problem.

1.5.1 Object detection

In object detection problems it is assumed that the input image contains more than one

object. The aim consists of detecting the objects with their correct location inside that

image by using CNN models. For Peg-in-Hole applications a supervised approach has

been chosen because the surface of industrial object is often textured and this can lead

to false positives when using unsupervised computer vision techniques (e.g., the Hough

circle transform).

The first CNN model designed for object detection is the Region-based CNN (R-CNN)

[77], which has the structure depicted in Fig. 1.19.

A R-CNN is a two-stage detector: in the first stage a set of region proposals is ex-

tracted, i.e., a region that may likely contain some object. Then, in the second stage, each
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Figure 1.19: R-CNN structure.

proposal is fed to a CNN model to extract features and a classifier is used to detect the

object and identify its class. The major drawback of R-CNNs is the slow detection speed,

due to the redundant feature computations on the overlapped region proposals.

To overcome such a problem of R-CNN, the Fast R-CNN [78] architecture, shown

in Fig. 1.20, uses a convolution layer before extraction of region proposals, in order to

achieve better performance. The methods used to find the regions of interest are still

slow and time-consuming, although better than those used in basic R-CNN. In fact, when

large real-life datasets are considered, this architecture does not appear so fast anymore.

In [79] the first near-realtime deep learning detector has been proposed, obtained by

the Region Proposal Network (RPN), which enables nearly cost-free region proposals.

This architecture is named Faster R-CNN and its structure is shown in Fig. 1.21. The

RPN is a fully convolutional network used to produce high-quality region proposals.

In detail, Faster R-CNN is composed of two modules:

1. The Regional Proposal Network (RPN), which is a CNN that outputs the region

Figure 1.20: Fast R-CNN structure.
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Figure 1.21: Faster R-CNN structure.

proposals with the highest probability of object presence.

2. The Fast R-CNN detector. The regions generated by the RPN are fed to the Fast

R-CNN detector in order to refine them and to determine the class membership of

the object.

A further improvement has been achieved with the first one-stage detector, named

You Only Look Once (YOLO) [80]. Unlike Faster R-CNN, YOLO partitions the image

into regions and predicts bounding boxes and probabilities for each region at the same

time. The main feature of YOLO is its capability of making predictions considering object

detection as a single regression problem. The YOLO architecture consists of three main

parts: the backbone, that performs the feature extraction, the neck, that executes a fusion of

the features gathered from the different layers of the backbone model, and the head, that

predicts the final output, which is composed by a vector containing the bounding box

coordinates: width, height, class label and class probability.

The first version of YOLO was characterized by a lower localization accuracy com-

pared with two-stage detectors. However, the new versions of YOLO present an im-

proved detection accuracy still keeping a high detection speed. YOLOv1 [80] divides the

input image into S × S grid cells of equal dimensions. Each grid cell is responsible for

object detection if the center of the objects falls inside the cell and can predict a fixed

number B of bounding box coordinates. After the prediction, YOLO uses IoU to choose

the right bounding box of an object in the grid cell. If IOU exceeds a chosen value, the
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bounding boxes with low confidence score are suppressed. To calculate loss, YOLO uses

the sum of squared error.

In YOLOv2 [81] batch normalization was added together with convolution layers to

improve the accuracy and reduce overfitting problems. Batch normalization is a layer

used to normalize the output of the previous layers. Learning becomes efficient by us-

ing batch normalization, indeed it can be used to avoid overfitting of the model [82].

Darknet-19 [83] is the CNN used as backbone of YOLOv2.

Since Darknet-19 is not able to detect small objects, in YOLOv3, the feature extraction

backbone was changed to Darknet-53, which is a more extensive network, but is much

more accurate and faster [84].

In YOLOv4 [85] again the feature extractors backbone was changed with one based on

the Cross-stage Partial (CSP) Connection. The CSP Connection is a technique that divides

the feature map of the current layer into two parts, one to pass through convolution layers

and the other that would not pass through convolutions. After the convolutions, the parts

are aggregated again. This technique significantly improves the speed and accuracy of

the algorithm [86].

YOLOv5 [87] is a lightweight version of previous ones and uses PyTorch frame-

work instead of Darknet framework. The head in YOLOv5 is the same as YOLOv4 and

YOLOv3, which generates three different output of feature maps to achieve multi scale

prediction [88]. YOLOv5 has not been designed by the authors of the other versions, in

fact, one of the original authors provided benchmarks comparing YOLOv4 vs. YOLOv5,

showing that YOLOv4 is equal or better.

Among the different supervised object detection architectures described above, the

YOLO has been chosen, since it is faster than other classifier-based systems but with

similar accuracy.

1.5.2 Image segmentation

Image segmentation consists of subdividing an image into multiple segments and objects

[89]. There are three types of techniques:

• semantic segmentation, which assigns a corresponding and unique class label to

each pixel in an image,

• instance segmentation, that identifies every item or instance of a class visible in an

image and gives it a distinct bounding box with a special identification,
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Figure 1.22: SegNet structure. The Figure is taken from [101].

• panoptic segmentation, offers a unified method in which each pixel in an image is

given a semantic label (semantic segmentation) and a special instance identification

(instance segmentation).

The semantic segmentation is particularly suitable to be addressed with automatic

feature extraction-based algorithms such as DNNs [90].

The main advantage of DNN-based approaches is removing the issues related to hu-

man engineering and providing an off-the-shelf model usable in real-time applications.

Indeed, in the last years, DNN-based approaches for semantic segmentation have been

used in several contexts such as medical image analysis [91, 92], virtual and augmented

reality [93,94], autonomous driving [95,96], cleaning of point cloud in industrial applica-

tions [97, 98] and robotic applications [99, 100].

One of the first innovative approaches based on DNNs for pixel-wise semantic seg-

mentation is SegNet [101]. SegNet has an encoder network and a corresponding decoder

network, followed by a final pixelwise classification layer (Fig. 1.22). The encoder com-

ponent corresponds to the first 13 layers of another network structure designed for object

classification. This structure is the VGG16 (Visual Geometry Group) [102], that is a deep

convolutional neural network consisting of 16 convolutional layers.

In SegNet, for each encoder layer there is a corresponding decoder layer. The fi-

nal decoder output is fed to a multi-class SoftMax classifier to produce class probabili-

ties for each pixel independently. Although SegNet performed about the 90% as pixel-

classification accuracy in outdoor scenes, it does not achieve the same accuracy in indoor

scenes, due to the increased cluttering.

An important approach for semantic segmentation was provided in [103], which pro-

posed DeepLab, an innovative DNN architecture designed to tackle the classic DNN

problems in image segmentation tasks such as reduced feature resolution and objects
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at multiple scales. The first challenge was faced by removing downsampling operation

from the last few DNN max pooling layers obtaining feature maps computed with a high

sampling rate [104]. To address multiple scales objects, the authors proposed a scheme for

resampling a feature layer at multiple rates prior to convolution, calling such a method

atrous spatial pyramid pooling (ASPP).

A novel architecture, called DeepLabv3+, has been proposed in [105] and represents

a turning point in the research area. It reached the state-of-the-art DNNs for semantic

segmentation and it achieved impressive results on many benchmark datasets and in

various research fields [93, 94, 106–109]. For this reason this architecture has been used

for image segmentation in one of the two Peg-in-Hole strategies.

1.6 Admittance control for Peg-In-Hole tasks

Since in the Peg-in-Hole application physical interaction between the robot and work-

piece arises, in order to keep bounded the interaction wrench, the manipulator has been

controlled in a compliant mode by implementing the admittance control scheme de-

scribed below.

Consider a coordinate frame attached to the robot end-effector, Σe(Oe,xe,ye, ze),

such that the ze axis is coincident with the approach direction of the gripper, as shown in

Fig. 1.23, the position ofOe with respect to the robot base frame is expressed by the (3×1)

vector pe, while the orientation of Σe can be expressed either by the (3 × 3) orientation

matrix,Re, or by a (3×1) vector of Euler angles, φe (e.g., roll-pitch-yaw angles), extracted

fromRe [70]. Let xe =
[
pTe φ

T
e

]T
the (6× 1) operational space vector.

Let q (q̇) be the (ν × 1) vector of joint positions (velocities). The direct kinematics of

the manipulator can be expressed either via the functions pe = p(q) and Re = R(q), or

by the (6× 1) vector function xe = k(q).

The (6× ν) matrix

J(q) =
[
JT
P (q) JT

O(q)
]T

(1.11)

is the robot geometric Jacobian, which relates the joint velocities to the linear and angular

velocity of the end-effector, where JP (q) is the (3 × ν) positional part and JO(q) is the

(3× ν) orientation part of J(q).

It is assumed that the robot manipulator is not equipped with a wrist-mounted force/

torque sensor, but only with torque sensors at the joints, as usual in collaborative robots.
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Figure 1.23: Reference frame attached to the robot end-effector.

Using a Lagrangian approach [70], the dynamics of a ν degrees of freedom manipu-

lator is given by

M(q)q̈ +C(q, q̇)q̇ + F q̇ + g(q) = τ + τ e (1.12)

where q ∈ IRν (q̇ and q̈) is the vector of joint positions (velocities and accelerations),

τ ∈ IRν is the vector of joint torques,M(q) ∈ IRν×ν is the symmetric and positive definite

inertia matrix, C(q, q̇) ∈ IRν×ν is the centripetal and Coriolis terms matrix, g(q) ∈ IRν is

the vector of gravity terms, F ∈ IRν×ν is the matrix of viscous friction terms and the term

τ e ∈ IRν represents the torques induced at the joints by the contact wrench at the robot

end-effector.

The wrench acting on the end-effector can be estimated via an observer based on the

generalized momentum

υ = M(q)q̇ . (1.13)

By considering the dynamic model (1.12), an estimate of τ e can be computed as follows

[110]

τ̂ e = Ko

[
(υ(t)− υ(t0))−

∫ t

t0

(CT(q, q̇)q̇ − F q̇ − g(q) + τ + τ̂ e)dς

]
, (1.14)

where t and t0 are the current and initial time instant, respectively, and Ko ∈ IRν is a

positive definite gain matrix.

By reasonably assuming that q̇(t0) is null, then υ(t0) is null as well, and by consider-

ing that the derivative of the inertia matrix is Ṁ(q) = C(q, q̇) +CT(q, q̇), the following
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dynamics for the estimation is obtained

˙̂τ e +Koτ̂ e = Koτ e. (1.15)

Equation (1.15) is a first-order low-pass dynamic system; therefore, τ̂ e → τ e as t → ∞
for any positive definite gain matrixKo. The torques τ e can be expressed as

τ e = JT(q)he, (1.16)

where he = [fT
e µ

T
e ]T ∈ IR6 is the contact wrench acting on the end-effector, f e ∈ IR3

is the force and µe ∈ IR3 is the moment. Therefore, an estimate of the external wrench

is [111]

ĥe = J†T(q)τ̂ e. (1.17)

where J† is a right pseudo-inverse of J .

By following the admittance control scheme proposed in [112], to confer proper com-

pliance to the end-effector, its reference pose xe,r = [pTe,r φ
T
e,r]

T is computed as

Mpẍ
e
dr +Dpẋ

e
dr +Kpx

e
dr = TT

A (φedr)ĥ
e
, (1.18)

whereMp,Dp andKp are, respectively, the virtual inertia, damping and stiffness matri-

ces imposed to the end-effector. The vector xedr is the relative displacement between the

desired and the reference pose, expressed in the frame Σe

xedr =

 pedr
φee,dr

 =

RT
e (pe,d − pe,r)

φedr

 , (1.19)

where pe,d and pe,r are the desired and reference position, respectively, while φedr is

the vector of Euler angles expressing the relative orientation between the desired frame

(whose orientation is expressed by the rotation matrix Re,d) and the reference frame

(whose orientation is expressed by the rotation matrix Re,r), i.e., is the vector of Euler

angles extracted from the matrixRT
e,dRe,r. The matrix TA(·) in (1.18) is given by

TA(·) =

I3×3 O3×3

O3×3 T (·)

 ,
where T (·) is the matrix that maps the time derivative of the Euler angles to the angu-

lar velocity [70], I3×3 and O3×3 are the (3 × 3) identity and null matrices, respectively.

The output of the admittance filter (1.18) is the reference trajectory, xe,r, that can be com-

manded to the robot.
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Figure 1.24: Admittance filter scheme.

A scheme of the described admittance filter is shown in Fig. 1.24.

In the Peg-in-Hole application, in order to overcome the drawback of representation

singularities, as illustrated in [112], the admittance filter has been implemented at the peg

tip level and the variables involved in the filter have been written with respect to Σp.



Chapter 2

Application of collaborative robotics

for assembly tasks in partially

structured environments

The methods presented in the previous Chapter are combined to address the Peg-in-

Hole task. In particular, two strategies have been developed. The first [113] is more

accurate and exploits the 3D-DIC technique to reconstruct the surface, a CNN to detect

the holes on the surface and an admittance control scheme to insert the peg. The sec-

ond strategy [114] is faster than the first one, and uses the ICP method to reconstruct the

surface through a set of point clouds filtered by using a neural network for image seg-

mentation, a CNN to detect the holes and an admittance control strategy to perform the

insertion.

In the following Sections, the strategies are detailed and the conducted experiments

are presented. For both the strategies, the setup consisted of a robot manipulator equipped

with a camera in eye-in-hand configuration. In particular, the Franka Emika Panda [24]

robot has been used, characterized by 7 revolute joints, each mounting a torque sensor.

The robot is controlled by using the Franka Control Interface (FCI) with the libfranka

C++ open source library, that enables direct robot control with an external workstation

connected via Ethernet. The interface provides joint positions, velocities and torques. The

robot has been controlled in velocity-mode by sending the desired joint velocities com-

puted via (2.7) for the approach and (2.12) for the insertion, respectively. The workstation

is equipped with the Ubuntu 18.04 LTS operating system running on an Intel Xeon 3.7

GHz CPU with 32 GB RAM. The vision system is composed of an Intel Realsense D435
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Figure 2.1: First strategy application scenario: a) the Franka Emika Panda robot used in the ex-

periments; b) visual sensor and the peg; c) workpiece.

camera, mounted on the end-effector via a 3D printed support. The vision software is

executed on the above described workstation and the librealsense2 library has been

used in order to acquire the camera data.

2.1 First strategy

For this strategy, the setup is shown in Fig. 2.1. The camera holds two stereo infrared

imagers, an RGB module and an infrared projector. The robot carries a steel peg that has

a diameter of 12.2 mm, as shown in Fig. 2.1(b), while the workpiece is a surface obtained

by bending and forming a steel sheet into a geometry with both flat and curved regions

(Fig. 2.1(c)). The surface holds four unchamfered holes, characterized by a diameter of

12.4 mm and their tilt is unknown (Fig. 2.2). The workpiece is positioned in the robot

workspace with positional uncertainty much larger than the size of the holes, the peg is

symmetric and firmly grasped by the robot gripper.

The coordinated frames of interest are the inertial frame, Σ, coincident with the robot

base frame, the frame attached to the robot end-effector, Σe, the frame attached to the tip

of the peg, Σp = {Op,np, sp,ap} (Fig.2.3) and β reference frames Σhi = {Ohi ,nhi , shi ,ahi}
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Figure 2.2: Workpiece with a Σh frame (left) and hole dimensioning (right).

(i = 1, . . . , β), each attached to the center of the β holes (Fig. 2.2).

Due to the assumption of rigid grasp for the peg, the position, pp, of Op can be de-

scribed as

pp = pe +Rep
e
p, (2.1)

where pe and Re are, respectively, the position and orientation of the robot end-effector,

given by the standard direct kinematics, pep is the constant relative position of Op in Σe.

The orientation of Σp is represented by the rotation matrix

Rp = ReR
e
p, (2.2)

where Re
p is the constant relative rotation matrix of the peg frame with respect to end-

effector frame.

In Fig. 2.4, the pipeline of this strategy is shown and it is detailed in the following:

• The robot moves its eye-in-hand camera over a semi-sphere spanning its workspace,

in such a way to scan the workpiece surface. In each position, a pair of images is ac-

quired with the previously calibrated stereo-cameras system. In the current setup,

the two Realsense IR sensors are used.

𝑎𝑝

𝑠𝑝
𝑂𝑝

𝑛𝑝

𝛿 =

Figure 2.3: Peg with the attached frame (left) and its dimensioning (right).
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Figure 2.4: The Peg-in-Hole pipeline designed in the first strategy.

• The acquired images are the input for the CNN that detects the holes on the work-

piece surface.

• Each pair of stereo-images from the acquired series is processed with the 3D-DIC

algorithm to retrieve the 3D position of a highly dense set of points on a portion of

the workpiece surface; a subsequent merging operation allows the transformation

of each reconstructed point cloud from the local coordinate system to a common

global reference system. Stereo-triangulation is used to determine the 3D position

of the centers of the holes. Finally, the distribution of the local normal vector is

computed over the tessellated surface reconstructed with 3D-DIC.

• The robot, moves the peg close to the hole, aligning the approach unit vector with

the hole axis (approach phase).

• The peg is inserted in the hole by moving the robot under an admittance control

strategy, so as to confer suitable compliance to the peg (insertion phase).

2.1.1 3D surface reconstruction

The workpiece surface is provided with a stochastic black speckle pattern on a white

background, thus allowing the implementation of an area-based image registration with
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Figure 2.5: Examples of infrared image pairs acquired by the sensor in the first position of the

robot trajectory (a), in a middle position (b), and in the last position of the spanning trajectory (c).

The images brightness has been increased in this figure to better see the surface.

a subset-based DIC approach (see Section 1.2). Examples of image pairs acquired, at

the beginning of the process, by the stereo IR Realsense sensors at the maximum spatial

resolution (1280× 720 pixels), are shown in Fig. 2.5.

For each captured image pairs, a regular dense grid of points (5 pixels of step size)

is defined over the region of interest (ROI) of the reference image, i.e, the image taken

in the master camera position. The master camera position refers to the first position

of the spanning trajectory used to scan the surface. The DIC algorithm then seeks for

the best correspondence in the target image on the basis of the local distribution of the

greyscale intensity over a subset of 21 × 21 pixels around each data point. The sensor

coordinates of the pairs of corresponding image points are hence used to reconstruct

the position of the 3D workpiece point via triangulation. To this aim, the stereo-camera

system was previously calibrated by using 30 images of a 2D checkerboard flat pattern

according to the camera calibration method proposed in [115]. An average reprojection

error of 0.036 and 0.042 pixels was found for the right and left camera, respectively. The

target was reconstructed in the 30 positions over the measurement volume with an error

of 0.24± 0.17 mm.
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Figure 2.6: 3D reconstruction and merging of the point clouds from four different contiguous

positions of the eye-in-hand camera. The z axis is the optical axis of the master camera in the first

position of the sequence.

For each position of the scanning sequence, a point cloud of a portion of the workpiece

surface is reconstructed in the reference system of the master camera (Fig. 2.6).

DIC is then used to match overlapping portions of the ROIs in image pairs from con-

tiguous positions. Finally, the rigid transformation that overlaps with the minimum dis-

tance the corresponding points data in two contiguous point clouds is found through

non-linear optimization. These transformations are used to move and merge the point

clouds into a unique reference system, corresponding to the master camera reference

frame. The merging error, defined as the average Euclidean distance between corre-

sponding points from four contiguous views, is 0.26±0.18 mm, that is only slightly larger

than the reconstruction error. From the highly dense and regular set of points measured

via DIC, a triangular mesh was automatically built via the Delaunay tessellation algo-

rithm [116]. A plane was calculated for each triplet of points of the mesh, thus allowing

to retrieve the distribution of the local normal vector over the whole reconstructed sur-

face with the same spatial resolution of the DIC points grid reconstruction (about 2 mm

spacing). Fig. 2.6 shows four different contiguous point clouds in their own reference

frame, the 3D-reconstruction, in which the four point clouds are merged in the master

camera reference frame, and the obtained tessellated mesh with superimposed the posi-

tion of the hole centers computed via triangulation.

2.1.2 Hole detection

To create the detector, 175 images of size 640 × 480 and captured at different distances

from the holes, have been annotated using the LabelImg tool. In Fig. 2.7 are shown

some images used to build the detector. The training set was composed of 108 images
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Figure 2.7: Samples of images used to build the hole detector.

and the remaining 67 were considered as test set. An Intel Xeon 3.7 GHz CPU 32 GB

RAM with an Nvidia Quadro P4000 8GB GPU has been used to carry out the training

phase, which required about 10 hours to complete with batch and subdivision sizes of 64

and 16, respectively, and with the YOLOv3 implementation. The batch size indicates the

number of images processed before updating the network weights, while the subdivision

size represents how many images can fit in the GPU at once. The processing time for

detecting the holes on a single frame is about 27 ms, with an average IoU of 84.30%, with

a threshold of 0.5.

Holes are detected into each image pair acquired by the camera, and then a binary

mask is created to facilitate the greyscale thresholding and centroids computation. To

compute the binary mask, the bounding box coordinates provided by the network are

used to extract the pixels corresponding to holes in the images. In Fig. 2.8 an image with

the detected holes and the relative binary mask is shown. Hole detection is performed

with a neural network instead of an algorithm based on grayscale thresholding to make

the technique more general and robust. Indeed, the use of CNN makes the detection

applicable also to cases where there is not a lot of contrast between the holes and the rest

of the surface.

2.1.3 Approach to the hole

The above procedure allows to compute the positions, pc
?

hi
(i = 1, . . . , β), of the hole

centers, Ohi , and their normal unit vector, ac
?

hi
, in the reference frame Σc? of the master
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(a) (b)

Figure 2.8: Image with the detected holes (a) and relative binary mask (b).

camera. In order to perform the Peg-in-Hole task, such vectors needs to be transformed

in the inertial frame by using the (4× 4) homogeneous transformation matricesAp? , per-

forming the transformation between the peg frame in the first position of the sequence,

Σp? , and the inertial frame, and Ap
c , performing the transformation between the camera

frame, Σc, and the peg frame, Σp, obtained via the calibration method. Hence, the generic

hole center position in the inertial frame can be computed asph
1

 = Ap?A
p
c

pc?h
1

 , (2.3)

where the subscript i is omitted for readability. Similarly, the vector normal to the work-

piece surface in Oh can be transformed in the inertial frame as

ah = Rp?R
p
c a

c?

h , (2.4)

where Rp
c (Rp?) is the rotation matrix extracted from the homogeneous transformation

matrixAp
c (Ap?).

In order to approach the hole, the robot motion is planned to move the origin of Σp

in the neighborhood of the workpiece surface and, at the same time, to align the axis ap

to ah. To this aim, a closed-loop inverse kinematics algorithm [70] with two tasks has

been implemented, where the two tasks are the peg alignment and the position tracking of

Op. The goal of the peg alignment task is to align the unit vector ap to ah, thus the task

function is

σ1 = (ah − ap)T(ah − ap), (2.5)

with corresponding Jacobian matrix

J1 = 2(ah − ap)TS(ap)JO(q) ∈ IR1×ν , (2.6)
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where S(·) is the skew symmetric operator ( [70], pp. 106-107) and JO(q) is the orien-

tation part of the Jacobian J(q) defined in (1.11). The position tracking task is aimed at

tracking a desired trajectory, ppd , for the peg tip Op, from its current position to a target

point P1, whose coordinate in the reference frame Σh are {0, 0,∆1}, i.e, a point belonging

to the axis ah at a distance ∆1 from Oh. The task function is the position of Op, pp, and

the task Jacobian, J2, is the positional part of the Jacobian, J(q). The joint references are

computed as

q̇ = J†1(−kσ1) + J†2(ṗpd +K(ppd − pp)), (2.7)

where ṗpd is the desired linear velocity of Op, while k and K ∈ IR3×3 are, respectively, a

positive scalar and a positive definite matrix gain. Since

J2J
†
1 = 03, J1J

†
2 = 0T3 , (2.8)

where 03 is the (3 × 1) null vector, the two tasks are not conflicting and thus they do not

need to be arranged in a priority order [117].

2.1.4 Peg insertion

Once the approach phase has been completed, the desired pose xp,d = [pTp,d φ
T
p,d]

T for

Op can be computed. In particular, the orientation is kept constant while the desired

position trajectory is a fifth degree polynomial from the approach position to a target

point P2, whose coordinate in the Σh are {0, 0,−∆2}, where ∆2 includes the height of the

cylindrical part of the peg (δ in Fig. 2.3), and a further translation along −ah that favors

the insertion.

In order to limit the mechanical stresses and ensure compliance to the peg, an admit-

tance control has been implemented at the peg tip level.

As described in Section 1.6, the reference pose for Σp, xp,r = [pTp,r φ
T
p,r]

T, and the

corresponding velocity, ẋp,r, are computed via the admittance filter

Mp∆ẍp +Dp∆ẋp +Kp∆xp = TT
A (φp)ĥp, (2.9)

whereMp,Dp andKp are, respectively, the virtual inertia, damping and stiffness matri-

ces imposed to the peg. The vector ∆xp is the relative displacement between the desired

and the reference pose, expressed in the frame Fp

∆xp =

∆pp
∆φp

 =

RT
p (pp,d − pp,r)

∆φp

 , (2.10)
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Table 2.1: Controller and observer gains.

Gain Value

k eq. (2.7) 1

K eq. (2.7) diag[150, 150, 150]

Ko eq. (1.14) diag[10, 10, 10, 10, 15, 15, 15]

Kp eq. (2.9) diag[45, 45, 150, 0.15, 0.15, 0.15]

Dp eq. (2.9) diag[500, 500, 1000, 25, 25, 25]

Mp eq. (2.9) diag[10, 10, 10, 0.5, 0.5, 0.5]

Λ eq. (2.12) diag[150, 150, 150, 20, 20, 20]

where pp,d and pp,r are the desired and reference position, respectively, while ∆φp is

the vector of Euler angles expressing the relative orientation between the desired frame

(whose orientation is expressed by the rotation matrix Rp,d) and the reference frame

(whose orientation is expressed by the rotation matrix Rp,r), i.e., is the vector of Euler

angles extracted from the matrix RT
p,dRp,r. The vector ĥp is the estimate of the external

wrench acting on the end-effector, and

TA(φp) =

I3×3 O3×3

O3×3 T (φp)

 , (2.11)

with T (φp) the matrix that maps the time derivative of the Euler angles φp, representing

the peg orientation, to the angular velocity ( [70], pp. 130-131). The external wrench ĥp

is estimated by using the wrench observer (1.14) and the dynamic parameters identified

in [118]. Such parameters have been suitably modified in order to take into consideration

the contribution to the inertia and gravity terms of the gripper and the peg. Finally, the

joint velocities are computed as

q̇ =
[
TA(φp)J

]†
(ẋp,r + Λ(xp,r − xp)), (2.12)

where Λ ∈ IR6×6 is a positive definite gain matrix.

2.1.5 Experimental results

In order to perform the 3D surface reconstruction, 4 pairs of images have been taken by

the stereo infrared imagers of the Intel Realsense camera and, then, holes detection is

performed on each image.
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(a)

(b) (d)

(e)(c)

Figure 2.9: Snapshots of the Peg-in-Hole assembly task: (a) robot initial pose; (b) approach phase;

(c) beginning of the insertion phase; (d) insertion phase at the maximum contact wrench; (e) end

of the insertion.

Table 2.1 reports the inverse kinematics gains as well as the observer and admittance

filter parameters. It is worth noticing that the virtual stiffness, Kp, has been tuned in

such a way the peg is more stiff along the z axis and more compliant along the other axes

in order to simplify the insertion in the hole. For practical implementation of the control

scheme, the following adjustments have been made:

• The estimated contact wrench ĥe output by the wrench observer (1.17) is filtered

with a digital low-pass filter before sending it to the admittance filter.

• To suppress non-existent small force and torque estimations owing to unmodeled

dynamics and sensor noise, a dead zone on the admittance filter input has been im-

plemented: any value of force component below 3 N and any value of moment

below 1 Nm estimated by the observer were neglected. Moreover, to achieve a con-

tinuous wrench signal, the same thresholds have been subtracted from higher esti-

mations. This implies that the admittance filter receives as input a wrench slightly

lower than the estimated one.

Fig. 2.9 reports some snapshots taken during the experiment. Fig. 2.9(a) shows the

random selected robot initial pose; in Fig. 2.9(b), the robot reaches the target point P1
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(a) Estimated external forces.

(b) Estimated external moments.

Figure 2.10: Estimated external wrench (forces (a) and moments (b)) exerted by the environment

on the robot.

at the end of the approach phase; in Figs. 2.9(c) and 2.9(d), the poses corresponding, re-

spectively, to the beginning of the insertion phase (at about 7 seconds) and the maximum

contact wrench are reported; finally, Fig. 2.9(e) shows the end of the insertion phase (at

about 15 seconds).

Fig. 2.10 reports the filtered external forces (Fig. 2.10(a)) and moments (Fig. 2.10(b))

estimated by the observer during the insertion. The maximum force is experienced along

the z axis, coherently with the assigned virtual stiffness and the tilt of the considered

hole, and thus, non-negligible moments around the x and y axis arise. Such forces and

moments cause a deviation of the trajectories output by the admittance filter with respect

to the desired ones (Fig. 2.11).

Finally, Fig. 2.12 shows the peg alignment task error: it can be noticed that the error

converges to zero during the approach phase, then, during the insertion, when the task is

not active, due to uncertainties on workpiece reconstruction and on camera calibration,

the peg slightly modifies its tilt and the error grows up. The value of 1.4 · 10−4 m at the

end of the insertion represents the squared norm error between the actual hole tilt and

the estimated one.

As mentioned in Section 1.2.2, the 3D-DIC algorithm strongly depends on the spatial

resolution of the captured images, the quality of the pattern on the surface and the illumi-



Chapter 2. Application of collaborative robotics for assembly tasks in partially structured environments 45

(a) Admittance control position error.

(b) Admittance control orientation error.

Figure 2.11: Error between the desired and reference pose: position (a) and orientation (b).

nation. For the application described in this Section, a quite low resolution sensor and an

high quality pattern on the surface are used. Of course, in practice, it is not always pos-

sible to ensure the presence of a suitable pattern on the surface. For this reason, another

strategy has been designed.

Er
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r  
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]

Time  [s]

Figure 2.12: Alignment peg task error.
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1
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456

Figure 2.13: Proposed strategy. (1) workpiece surface scanning; (2) surface reconstruction; (3)

alignment of the reconstructed surface with a known CAD model, in order to estimate the holes

position; (4) search phase; (5) insertion phase; (6) release of the peg.

2.2 Second strategy

In the second strategy, the whole pipeline is quite similar to the previous one. More

than steps, the changes concern the methods used to perform the steps. In particular,

the method used to reconstruct the surface of the object, the method used to find the

hole positions and their normal unit vectors and the method to perform the insertion are

different.

This strategy is shown in Fig. 2.13 and it can be summarized as follows:

• The robot moves the eye-in-hand depth camera along a planned path spanning its

workspace, in order to scan the surface of the target object. Along the trajectory, in

a predefined set of positions, the depth measures are acquired and a point cloud of

the surface is stored.

• The whole surface is reconstructed by aligning the acquired point clouds via an ICP

registration algorithm.

• The reconstructed surface is aligned to a known CAD model of the workpiece, in

such a way to detect the hole positions and their normal unit vectors on the recon-

structed surface.
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Robot Controller Vision
system

move to scan point  i

acquire point cloud  i

ICP registration algorithm 

return: holes' positions and axes 

Alignment to a know CAD model 

insert peg 

search phase

start camera 

loop [for each point]

return: reconstructed surface 

loop [for each hole]

Figure 2.14: Sequence diagram of the execution process.

• Since the accuracy of the hole position estimates, in the presence of small peg-hole

clearances, might not guarantee successful peg insertion, a search phase is per-

formed, where the peg tip explores the neighborhood of the hole by sliding on

the surface along a trajectory described by Lissajous functions. During the search

phase and the subsequent insertion phase, the robot is commanded to be compliant

at the peg tip level by means of an admittance control.

For each execution cycle, including the insertion of N pegs, the specific process se-

quence is detailed in the sequence diagram shown in Fig. 2.14.

In this case, the camera is used to provide the depth information, while the robot

scans the workpiece surface. The robot control unit roughly knows the geometry of the

workpiece (from the CAD model) and its pose with respect to the robot base frame. On

the basis of the available information on the surface geometry and pose, as well as on the

camera features (range, field of view), n measurement points, each corresponding to an
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Figure 2.15: Example of reconstructed 3D surface.

end-effector pose, are determined such that the whole surface is spanned. The choice of

n is determined in such a way to ensure an overlapping of each two consecutive views:

the more wide is the camera field of view, the less are the measurement points needed.

Then, the robot visits the n measurement poses and, in each pose, a point cloud is built

on the basis of the acquired depth measures.

2.2.1 3D surface reconstruction

In order to reconstruct the workpiece surface, the acquired point clouds are aligned by

using the ICP registration algorithm described in Section 1.3, and the result is down-

sampled by using a volume elements (voxel) grid filter [71]. The output of this process

is a point cloud, Pr, representing a reconstruction of the surface of the whole workpiece

in the coordinate frame F1
c (see Section 1.3). An example of reconstructed 3D surface is

reported in Fig. 2.15.

2.2.2 Holes localization

The next step is the comparison of the obtained point cloud with a known one, P , ob-

tained, via the CAD model. To this aim, for each point of Pr, a vector of local features,

called Fast Point Feature Histograms (FPFH), are computed [119]. The process to com-

pute the FPFH can be divided into two steps. In the first step, for each point πs ∈ Pr,
the Simplified Point Feature Histogram (SPFH) is computed. This histogram contains

informative pose-invariant local features which represent the surface model properties at

the point πs. For every pair of points, πs and πt (s 6= t), in the k-neighborhood of πs and
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their estimated normal vectors, ns and nt, a uvw coordinate frame at one of the point is

defined as:

u = ns,

v = u× (πt − πs)
‖πt − πs‖2

,

w = u× v,

A set of triples α, ψ, θ, representing the angular variations of ns and nt, are computed

as follows:

α = v · nt,

ψ = u · (πt − πs)
‖πt − πs‖2

,

θ = arctan(w · nt,u · nt),

In [120], besides the three features mentioned above, a fourth one was included in

SPFH. This feature represents the Euclidean distance from πs and πt, but some experi-

ments showed that its exclusion from the SPFH does not decrease robustness [119].

In the second step to compute the FPFH, for each point πs, its k neighbors are deter-

mined and the neighboring SPFH values are used to compute the final histogram (FPFH)

of πs ad follows:

FPFH(πs) = SPFH(πs) +
1

k

k∑
i=1

1

ωi
· SPFH(πt)

where the weight ωi represents the distance between the point πs and a neighbor point

πt. For each point πs, the result is a vector that describes the local geometric properties

of πs.

Then a RANSAC (RANdom SAmple Consensus) algorithm [121] is adopted to find

the corresponding points of the two point clouds. At each iteration, µ points are ran-

domly extracted from Pr; then, the corresponding points of P are determined by looking

for the nearest points on the basis of the extracted features. False matchings, i.e., con-

nections between two points that do not actually correspond in the point clouds, can be

deleted by resorting to pruning algorithms [122].

In particular, two types of pruning algorithms are used. The first one checks that the

point clouds are close in terms of distance, i.e., if the distance between the point cloud,

after overlapping them, is greater than a certain threshold, the matching is discarded.



Chapter 2. Application of collaborative robotics for assembly tasks in partially structured environments 50

(b)(a)

Figure 2.16: Holes localization. (a) The point cloud extracted from the CAD model. (b) Alignment

of the reconstructed surface and the CAD model.

The second type of pruning technique used in the algorithm checks that the length of

the line connecting two arbitrary points in the first point cloud is similar to the length of

the line connecting the corresponding points in the second one. Only matches that pass

the pruning step are used to compute a transformation, which is validated on the entire

point cloud.

The transformation matrix between Pr and P obtained via the RANSAC algorithm

could be not very accurate, thus it is adopted as initial guess of the ICP algorithm that is

in charge of refining the alignment. An example of surface-CAD alignment is shown in

Fig. 2.16.

The position of each hole center phi and its corresponding axis, i.e. the unit vec-

tor normal to the surface, nhi , are known on the point cloud P . Thus, thanks to the

above described alignment procedure, it is possible to estimate them in the reconstructed

point cloud Pr and localize them in the coordinate frame F1
c . The previous steps are

summarized in Algorithm 1. Finally, it is possible to localize the holes in the robot base

coordinate frame by using the camera-end-effector transformation obtained via a camera

calibration process [123].

2.2.3 Approach to the hole

Once the estimates of the hole positions, p̂hi , and the corresponding axes, n̂hi , are deter-

mined, the Peg-in-Hole task is performed in three phases:

1. Approach: in this phase the robot moves the peg close to the hole and aligns the peg

axis to the estimated hole axis, n̂hi .
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Algorithm 1: Holes localization
Input : Pr, P , phi , nhi
Output: Estimated position of the holes center p̂hi and their axis n̂hi

1 for each π1
r,i ∈ Pr do

2 Extract FPFH vector

3 end for

4 while i < max iterations do

5 Randomly extract µ points from Pr and find the µ corresponding points in P
via RANSAC algorithm, as the nearest point on the bases of the FPFH

features

6 Compute the transformation matrix T iR between Pr and P
7 if EvaluationError(T iR) < EvaluationError(T 0) then

8 T 0 ← T iR

9 end if

10 i+ +

11 end while

12 T ← ICP algorithm(P,Pr,T 0)

13 for i← 0 to holes number − 1 do

14 ˆ̃phi ← T p̃hi

15 ˆ̃nhi ← T ñhi

16 end for

17 return p̂hi , n̂hi

2. Search: in this phase the neighborhoods of the estimated hole position, p̂hi , are

explored in such a way to compensate errors in the position estimate.

3. Insertion: in this phase the peg is inserted in the hole.

In all phases the robot has been controlled with the admittance scheme described in Sec-

tion 1.6.

Also in this case, the robot motion to approach the hole is commanded via a closed-

loop inverse kinematics algorithm with two tasks: the first one is aimed at aligning the

peg to the hole axis, while the second task is aimed at moving the peg close to the surface.

The alignment task and the corresponding Jacobian matrix are the same expressed in

(2.5) and in (2.6), and the joint references are computed using (2.7).
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Table 2.2: Trajectory parameters values.

Parameter Value Parameter Value

ax 0.0175 ωx 2.5

ay 0.0245 ωy 3.5

2.2.4 Search phase

The search phase starts when a contact along the direction normal to the reconstructed

surface is detected. Such a contact is detected when the projection of the estimated con-

tact force defined in (1.17) on n̂hi exceeds a certain threshold.

The search is performed by sliding the peg tip on the workpiece surface, by following

a path in the xy-plane of Fe described by Lissajous functions

xe = ax sin(ωx(t− tc)),
ye = ay sin(ωy(t− tc)),

(2.13)

where ax, ay, ωx and ωy are the sine wave amplitudes and frequencies, respectively, and

tc is the time instant when the peg tip comes in contact with the surface. The superscript

e denotes that the trajectory is expressed in the frame Fe. The values for the trajectory

parameters have been selected via experiments and they are reported in Table 2.2.

A compliant behaviour at the peg tip level is imposed to the robot, through the ad-

mittance control described in Section 1.6, in order to reduce mechanical stresses both on

the workpiece and on the robot’s joints and to allow the sliding of the peg. Table 2.3 re-

ports the gain matrices used in this case. In order to compute the joint references for the

robot from the operational-space references output by the admittance filter, the inverse

kinematics algorithm (2.12) is used.

Table 2.3: Controller and observer gains.

Gain Value

k eq. (2.7) 5

K eq. (2.7) diag[150, 150, 150]

Kp eq. (2.9) diag[45, 45, 150, 1.5, 1.5, 1.5]

Dp eq. (2.9) diag[30, 30, 30, 1, 1, 1]

Mp eq. (2.9) diag[15, 15, 15, 0.5, 0.5, 0.5]

Λ eq. (2.12) diag[150, 150, 150, 30, 30, 30]
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2.2.5 Peg insertion

During the search phase, the planned trajectory has been chosen some millimeters under

the hole surface, in order to allow a coupling force along the z axis of Σe. When the peg

tip detects the hole, the peg goes downward and the search phase is stopped. From this

peg’s position a new trajectory along the estimated hole’s axis is planned, in order to

perform the insertion. When this trajectory is concluded the robot manipulator releases

the peg. During the insertion the admittance control scheme in Section 1.6 has been used

with the gain matrices reported in Table 2.3.

It is worth noticing that the compliance conferred by the admittance scheme is in

charge of compensating small orientation errors between the peg and the normal of the

hole. Such errors can cause resistant torques that, through (2.9), provide a new orienta-

tion for the peg tip.

The joint references for the robot are computed from the operational-space references

output by the admittance filter via the inverse kinematics algorithm (2.12).

2.2.6 Experimental results

The surface reconstruction has been performed, according to the procedure described in

Section 1.3, by using the multiway registration algorithm provided by the Open3D

library [122]. The reconstructed surface is overlapped and compared with the point cloud

extracted by the CAD model, according to the procedure described in Section 2.2.2, by

using the global registration algorithm provided by the Open3D library [122]. The

camera system has been calibrated by using 16 images of a 2D checkerboard flat pattern

according to the eye-in-hand camera calibration method proposed in [123], implemented

in the ViSP library [124]. A carbon fiber 3D workpiece has been used, representing a

portion of a supercar’s safety cell, while steel bolts, named Big Heads, have to be inserted

in 3 holes (Fig. 2.17). A very small clearance, below 1 mm, is present between the hole

and the Big Heads; moreover, the task is made more challenging by the fact that the peg

is threaded while the holes are very rough.

In order to have statistically significant results, 35 tests have been carried out in dif-

ferent light conditions and by randomly positioning the object in the robot workspace,

so as to mimic the actual work cycle, where the workpiece is manually positioned and

errors up to about 10-15 cm and 15-20 deg can be experienced with respect to the planned

nominal pose.
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(a) (b)

Figure 2.17: Workpiece and holes (a). Big Heads (b).

In the first phase, the robot scans the 3D surface moving along a fixed path, planned

by means of a linear interpolation between the first and last camera poses. Such poses,

in terms of position and orientation of the camera, have been computed in such a way

to have the nominal position of the workpiece in the camera field of view, with a certain

tolerance to take into account the errors due to the manual workpiece positioning.

During the scanning phase, for each test, n = 8 different point clouds have been

acquired via the depth sensor to reconstruct the workpiece surface. The number of point

clouds is chosen in order to have a wide overlap between two consecutive ones. An

example of reconstructed surface is shown in Fig. 2.15.

In order to evaluate the quality of the reconstruction, the re-projection error between

the 3D reconstructed surface and the CAD model of the workpiece has been computed.

More in detail, the acquired points have been projected onto the CAD surface using

Rhinoceros 3D software [125] and then the distance between the acquired and projected

points has been computed. In Fig. 2.18, the root mean square error for a single test is

reported, the average error is around 5 mm and it is quite homogeneous along the whole

surface. The mean square error computed by considering all the 35 tests is about 6 mm. It

is worth noticing that different reconstruction errors have been experienced due to both

the different positioning and the different light conditions of the experiments.

Regarding the performance of the task execution, the following indices have been

considered: the duration of the search phase and the error between the estimated and

actual hole position. In order to compute the duration of the search phase, the initial time

is the instant, tc, when the first contact between the peg tip and the surface arises, while

the search ends when the peg tip is inserted of about 1 mm in the hole. The duration

of the search phase evaluated for each hole in the 35 tests is reported in Fig. 2.19, from
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Figure 2.18: Root mean square error of the reconstructed point cloud with respect to the CAD

model.

which it can be seen that the average search time is around 5 seconds.

In test 27, for hole 3, the search phase has not been executed, since the bolt has been

directly inserted in the hole.

Some snapshots of the search phase are reported in Fig. 2.20: Fig. 2.20(a) shows the

bolt approaching the surface with a certain error, Fig. 2.20(b) shows the bolt sliding on

the surface, Fig. 2.20(c) shows the phase in which the hole is detected and the insertion

is performed. The insertion is considered completed when the robot pushes the peg into

the hole for additional 7 mm.
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Figure 2.19: Search phase duration.
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Figura 2.4 - Curve di Lissajous

Alcuni fotogrammi della fase di ricerca e inserimento del BigHead sono riportati in Figura
2.5. Come si può notare dalla prima immagine, il BigHead si avvicina alla superficie in un
punto non coincidente con il foro, nella seconda immagine si vede che il BigHead si muove
sulla superficie alla ricerca del foro. Quando il foro viene rilevato il controllo di ammettenza
fa sì che, non sentendo più forze nella direzione ortogonale alla superficie, il robot si muova
in quella direzione inserendo correttamente il BigHead.

Figura 2.5 - Fotogrammi dell’inserimento di un BigHead in un foro

[1] Choi, Sungjoon, Qian-Yi Zhou, and Vladlen Koltun. "Robust reconstruction of indoor scenes." Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. 2015.

[2] Chen,Y. and Medioni, G. “Object Modeling by Registration of Multiple Range Images”, Proc. IEEE Conf. on Robotics and
Automation, 1991

(a) (b) (c)

Figure 2.20: Snapshots of the search phase.

In Fig. 2.21 the holes position errors computed in the 35 tests are reported. More

in detail, the bottom side of the grey box is the minimum error obtained for the three

holes in each test, while the upper side is the average one. The upper side of the orange

box represents the maximum error obtained for the three holes in each test. For each

hole, the position error is evaluated by considering the distance, in the plane of the hole

neighborhood, between the reconstructed and the actual hole position. The average error

is about 4 mm, the minimum error has been registered for test 27, equal to zero. The worst

performance is experienced at test 29, and depends on an imperfect reconstruction that

leads to an error of 16.5 mm for the third hole.
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Figure 2.21: Error between the reconstructed and the actual holes’ position.
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Hole 2

Figure 2.22: Artificially generated protrusion by using a drone propeller.

Table 2.4 reports the numerical data registered in the experiments, the first three

columns report the search phase duration and the last three contain the position error

measured for each hole. On the total of 105 insertions only 6 failed, obtaining an overall

insertion success rate of 94.2%.

A set of additional experiments has been carried out to assess the performance of the

approach in the presence of non-negligible surface irregularities, by adding artificial pro-

trusions in the neighborhood of the second hole, as shown in Fig. 2.22. Also in this case,

the task has been correctly executed, since the admittance control confers a suitable com-

pliant behaviour to the robot, which is able to adapt to the surface profile if the protrusion

is not characterized by too sharp edges.

The whole cycle from scanning to release of the first peg has an average duration,

computed over the 35 tests, of about 2 minutes and 17 seconds. More in detail, about 2

minutes are needed for the scanning phase, executed once at the process start, including

the storage of the point clouds and the reconstruction computation. This duration is

mainly due to the need to starting the communications with the camera and save the

point clouds, that include a total of 921600 points. The average time needed for point

cloud registrations, surface reconstruction and comparison with the point cloud extracted

from the CAD model is about 14 seconds.

In the remaining 17 seconds the peg is moved in contact with the surface and the

search phase (which has an average duration of 5 seconds) is performed.
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Table 2.4: Test results. The empty cell represents the failed insertions.

Test
Search duration [s] Position error [mm]

Hole 1 Hole 2 Hole3 Hole 1 Hole 2 Hole3

1 4.772 5.028 4.85 3.3526 3.4395 4.6157

2 5.016 5.307 5.056 4.2496 3.4747 2.6349

3 4.841 5.086 4.861 4.3832 0.37241 2.5932

4 4.97 – 4.905 3.6456 – 1.7596

5 4.755 4.973 – 5.3298 5.5974 –

6 4.642 4.863 – 4.2966 4.5197 –

7 4.746 4.946 5.103 3.5001 4.411 4.6674

8 4.927 5.15 6.171 5.377 4.8082 5.1504

9 5.044 5.309 5.038 3.8065 5.2065 1.2463

10 4.797 5.023 5.903 3.1594 2.4921 3.4863

11 4.973 5.227 4.955 2.5786 3.3899 2.599

12 5.082 5.29 5.06 3.1414 4.0013 1.3339

13 5.082 5.404 5.141 2.3173 2.6899 1.3026

14 4.93 5.154 5.796 1.8998 2.058 1.6834

15 4.655 4.906 – 4.1183 5.5196 –

16 4.653 4.937 – 5.2602 5.7614 –

17 4.77 5.03 5.066 4.7524 4.7199 4.2072

18 4.776 5.051 – 6.0915 6.2506 –

19 4.843 5.139 4.885 3.4184 3.1839 3.9258

20 4.805 5.04 4.982 4.8406 4.9056 5.8433

21 4.936 5.208 4.942 3.6834 3.624 2.8966

22 4.682 4.962 5.94 1.7234 2.9898 3.284

23 4.939 5.227 5.545 4.398 4.7071 1.8894

24 5.067 5.401 5.096 6.0223 6.0605 4.0043

25 5.125 5.415 5.098 3.7016 2.0056 3.617

26 5.037 5.308 5.048 3.4188 3.623 1.892

27 5.294 5.558 0 4.608 5.1097 0

28 4.979 5.246 4.967 3.8716 3.8885 2.5253

29 4.981 5.22 5.285 3.9818 4.2679 16.544

30 5.031 5.233 5.372 3.4597 4.0809 1.499

31 5.201 5.469 5.248 5.5154 5.953 1.5262

32 5.268 5.503 5.3 5.377 5.3839 3.1954

33 5.403 5.705 5.469 5.6531 5.8107 2.7984

34 5.472 5.833 4.671 6.0433 6.4256 5.17683

35 5.163 5.372 5.19 5.3041 5.399 3.2412
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Figure 2.23: Strategy summary: (1) workpiece surface scanning; (2) the segmentation neural net-

work detects the workpiece and deletes the background; (3) surface reconstruction and alignment

of the reconstructed surface with the point cloud extracted from the CAD to have the initial guess

estimation of the holes’ position; (4) hole detection via the CNN; (5) search and insertion phase.

2.3 Second strategy: improvement

As described in the previous Section, the total error is determined by calibration errors,

surface reconstruction errors, errors in the overlapping process with the CAD and robot

positioning errors. These errors are not very large if they are considered separately, but

their combination in a complex process can reach values that do not guarantee the peg

insertion, especially in the presence of small clearance.

In this Section, an improvement for the method in Section 2.2 is presented. The whole

pipeline is depicted in Fig. 2.23. It is quite similar to the previous one except for two

steps:

• the point clouds acquired in the surface scanning phase are segmented by using a

neural network that detects the workpiece and deletes its background (Fig. 2.23(2)).

After that, they are merged to reconstruct the surface with the same process de-

scribed in Section 2.2;

• the estimates of the hole position provided by the overlapping process are used

as initial guess for positioning the robot and, then, a CNN is adopted to detect

the presence of the hole and identify its actual position in the robot base frame to

perform the insertion (Fig. 2.23(4)).

In the rest of the Section, these two steps are discussed in detail.
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Figure 2.24: Network model based on the DeepLabv3+ encoder-decoder architecture. The input

is an RGB image showing the carbon fiber workpiece, while the output is the segmentation binary

mask.

2.3.1 Workpiece segmentation

A DNN, based on the DeepLabv3+ [126] architecture, has been designed for the carbon

fiber workpiece segmentation. As can be seen in Fig. 2.24, DeepLabv3+ consists of two

main components. The first one is the encoder block, which extracts semantic information

and low-level features from the RGB input image, gradually reducing the feature maps

size. The second component is the decoder block, which is used to retrieve spatial and

detailed object boundary information.

The encoder includes a backbone network, followed by an ASPP module [103] and

a 1 × 1 convolutional layer. The ASPP module captures multi-scale context information

and consists of three atrous convolutions [127], a 1 × 1 convolution and an image pool-

ing layer in parallel with each other. Atrous (or dilated) convolutions extend standard

convolutions introducing a atrous (or dilation) rate parameter to enlarge the field of view

of the convolutional filters without increasing the computational cost and the network

parameters [128]. The atrous rate of the atrous convolutions in the ASPP module have

been set to 6, 12 and 18, respectively. The the Xception network with 65 layers adapted to

the segmentation task in [126] has been chosen as the backbone network, which allows

extracting low-level features that are passed to the decoder.

The decoder block is built using convolutional and bilinear upsampling operations.

In particular, the features extracted by the backbone network are given as input to a 1× 1

convolution and then concatenated with the upsampled encoder output. Finally, a 3 × 3

convolution and a further bilinear upsampling are applied and a binary segmentation

mask is obtained.
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2.3.2 Segmentation network: dataset description

The main drawback of using deep learning is the need for a huge training dataset with

ground-truth data (or labels). Since obtaining accurate labels from real images is time-

consuming and sometimes impractical, synthetic and semi-synthetic data have been widely

collected in recent years [129, 130].

Synthetic data are completely artificial samples produced using simulation software

and computer graphics techniques, obtaining perfect labels quickly and with little effort.

However, a pre-processing step is usually required to bring realism to synthetic data.

Semi-synthetic data combines real and computer-generated information, better ap-

proximating the real data. Therefore, a large and varied semi-synthetic dataset has been

collected to train the DNN. The resulting dataset consists of composite images built in-

tegrating real foreground images, showing the carbon fiber workpiece in multiple posi-

tions, and different background images.

In particular, the first step in the dataset creation concerned the acquisition of the

foreground information. Several videos using a green-screen setup has been captured.

This setup consisted of an opaque green drape and two lights, one illuminating the ob-

ject and the other the green background to remove as many shadows as possible. The

videos were recorded at 60 frames per seconds (FPS) using a common RGB camera with

1920 × 1080 resolution. The chosen frame rate, instead of the most common 30 value,

allows to reduce the blur effect on the object caused by camera movement. Then the

green background has been removed and the foreground images have been extracted.

In addition, for each frame, an alpha channel (or alpha matte) mask is generated. Such

a mask presents values in the range [0, 255], where 0 is pure background, 255 indicates

pure foreground pixels, and the values in between represent the transition region. To

obtain accurate ground truth binary masks with 0 values in the case of background and

1 for foreground pixels, each alpha matte has been binarized by using the Otsu’s global

image thresholding method [131].

The second step in the dataset creation was the collection of background scenes and

image compositing. In detail, several indoor videos have been recording at 30 FPS using

two RGB cameras with 1920×1080 and 3140×2160 resolutions, respectively. To generate

the composite images, the following equation has been used:

Ci = αiFi + (1− αi)Bi, (2.14)

where Ci, Fi andBi represent the pixels of the obtained composite image, the foreground
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Figure 2.25: Some input images (first row) and labels (second row) from the semi-synthetic

dataset.

image and the new background, respectively and αi ∈ [0, 1] is the alpha channel, that

represents the degree of transparency (or opacity) of a color. An automatic procedure

that takes four foreground images per second and two background frames per second

from each video has been designed. The definition of a sampling step equal to 15 avoids

considering too similar frames. Then, each selected foreground was composited with all

background scenes.

To further increase the variety of data and allow a better network generalization level,

before compositing, each F was randomly transformed by:

1. rotating it with a random angle between [−30, 30] degrees and using bicubic inter-

polation and cropping to fit its original dimensions;

2. horizontal flipping;

3. vertical flipping.

The same transformations were simultaneously applied to the respective labels and alpha

channels. Moreover, a bilateral filter was randomly applied to C. This is a nonlinear filter

often used for noise reduction and composite image smoothing, while preserving edges

of foreground objects [130, 132]. Each transformation was applied with a probability of

0.5. Finally, all images and labels were resized to 360×640 pixels to speed up the network

training and data augmentation was used by randomly left/right mirroring training data

on the fly during training. Some examples of training images and the corresponding

labels are shown in Fig. 2.25.
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2.3.3 Segmentation network: training details

The DNN was trained using the above described segmentation dataset. Similar to [133]

and [94], the SGDM (Stochastic Gradient Descent with Momentum) optimization algo-

rithm with polynomial learning rate policy has been used. This algorithm has been

proven to be more effective and with faster convergence than other learning rate up-

date policies [103, 134]. In particular, the value of the learning rate is modified according

to the following formula:

αt = α0 ×
(

1− t

T

)p
, (2.15)

where αt is the learning rate at the current iteration step t, α0 is the base learning rate set

to 0.0001 for the training phase, T is the total number of iterations set to 5 · 104, and p is

the power value set to 0.9. Moreover, the momentum γ of the SGDM algorithm has been

set to 0.9 and the batch size to 4.

Since training a DNN from scratch requires a copious amount of data and resources

in terms of memory, computation and time, starting from a pre-trained models on a large

dataset is usually recommended. Therefore, weights pre-trained on the ImageNet [135]

and MS-COCO [136] datasets have been used. The pre-trained weights are publicly avail-

able on the DeepLab project page [137]. ImageNet is a huge and generic dataset em-

ployed for classifying and detecting 1, 000 different object categories, while MS-COCO

is smaller and used for classification, detection and segmentation of 80 classes. For this

reason, a segmentation network pre-trained on both datasets may benefit more from the

learned features than using only a general ImageNet pre-training [126]. The DNN train-

ing was performed on a desktop computer equipped with an Intel Core i7-3rd generation

CPU, 16 GB RAM and an Nvidia Titan Xp GPU with 12 GB memory.

2.3.4 Surface reconstruction, hole’s detection and peg insertion

To reconstruct the workpiece surface, the same procedure reported in the Section 2.2.1

has been used. However, in this case, the input of the ICP registration algorithm are the

n segmented point clouds obtained after the workpiece scanning and the segmentation

phases. The output of this process is a point cloud, Pr, representing the whole workpiece

surface in the coordinate frame F1
c (see Section 1.3).

After that, a first estimate of the hole positions and tilts is computed by comparing,

Pr, with a point cloud, P , extracted from the CAD model. The steps used to compute

the hole positions, phi , and their normal unit vector to the surface, nhi , in the robot base
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(a) (b)

Figure 2.26: Workpiece used to validate the first strategy (a) and the one used for the second

strategy (b).

frame, are the same described in Section 2.2.2.

Such initial estimate is likely to be affected by errors, due to reconstruction and cali-

bration process. Therefore, before the insertion, a CNN is exploited to detect with better

accuracy the holes on the workpiece surface. The detection is performed by using the

model built for the first strategy and described in Section 2.1.2. It is worth noticing that

the workpiece used to train the network was different from the one used to validate this

strategy. The two workpieces are shown in Fig. 2.26: the first one has a white surface

with stochastic black speckle pattern, in which the holes appear as black ellipses, while

the one considered for this strategy is a dark carbon fiber workpiece, and the surface is

characterized by high reflectivity. Despite this, the detection performance on the carbon

fiber object are satisfactory. The hole detector runs with a processing time of about 1.05

seconds per image on CPU.

A pixel corresponding to the hole in the image is extracted using the detection in-

formation provided by the network. In particular, the center of the bounding box coor-

dinates is computed in the image reference frame and, then, is transformed in the robot

base frame by using the homogeneous matrices provided by the calibration process [123].

Once the hole position and its normal unit vector have been estimated in the robot

base frame, the peg insertion is performed with the same process described in Section 2.2.5.

The search phase is still present to overcome detection errors due to the fact that the CNN

does not have an accuracy of 100%.

2.3.5 Experimental results

The experiments have been executed with the same hardware and software of the previ-

ous strategy. To have statistically significant results, 26 insertion tests have been carried

out by randomly positioning the workpiece in the robot workspace. The effect of the seg-
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(a) (b)

Figure 2.27: Workpiece surface reconstruction without (a) and with (b) the application of the

segmentation network.

mentation network and the CNN have been evaluated by considering an ablation test.

In particular, for each insertion, two experiments have been carried on. In the first one,

the surface reconstruction is performed without using the DeepLabv3+ network, i.e. the

ICP algorithm is fed by the point cloud directly acquired by the camera and the hole lo-

calization does not exploit the CNN. In the second set of experiments, the new improved

strategy described in this Section is used.

In each test, the robot initially scans the workpiece and acquires N = 8 different

point clouds via the depth sensor. As can be noted in Fig. 2.27, the use of DeepLabv3+

allows to remove the background from the acquired point clouds and to have a better

reconstruction of the surface. Moreover, the use of the network reduces the time required

by the multiway registration algorithm of about 32%, as shown in Fig. 2.28.
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Figure 2.28: Registration time by using the multyway algorithm without (left) and with (right)

the application of the segmentation network.
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(a)                                                            (b)  

Figure 2.29: The red cross indicates the hole’s position estimation without the use of the CNN.

Left: the red line represents the search trajectory to explore the hole neighborhood. Right: the

green square is the bounding box of the CNN and the green cross is its center, that corresponds

to the final hole’s position estimation.

Regarding the performance of the task execution, two indices have been considered:

1) the error between the estimated and actual hole’s position and 2) the duration of the

search phase before the insertion. Fig. 2.29 shows the estimation obtained by simply

comparing the reconstructed surface with the point cloud extracted by the CAD model

and that obtained by using the CNN approach.

The adoption of the CNN allows to strongly reduce the error as demonstrated by the

results shown in Fig. 2.30, where the mean errors for the 26 tests are compared with and

without the CNN. The error is computed as the distance between the estimated position

and the actual one computed on the hole’s plane. The adoption of the CNN for estimating

the hole position allows to halve the mean error on the three holes (from 5.1 mm to 2.3
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Figure 2.30: Mean hole’s estimation error without (left) and with (right) the use of the CNN.
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Figure 2.31: Search phase duration without (left) and with (right) the use of the CNN.

mm).

Once the hole position has been estimated, a search phase, in which the peg explores

the neighborhood of the estimated position by following a path on the surface planned

via Lissajous functions, is necessary, since the clearance between the hole and peg is very

small (below 1 mm). The duration of the search phase is strictly related to the estimation

error, thus it is not surprising that the adoption of the CNN allows to reduce the search

time of about 72.4%. In Fig. 2.31 the mean duration of the search time is shown in both

cases.

Finally, Fig. 2.32 reports the success rate computed on the 26 tests. More in detail, it

can be viewed that, the segmentation network as well as the adoption of the CNN, allows

to obtain a success rate of 98.7%, i.e. only in one attempt on 78 (26 tests for three holes)
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Figure 2.32: Success rate both in the absence (left) and in the presence (right) of the neural net-

works.
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Figure 2.33: Industrial setup at the Tecno Tessile Adler S.r.l. company.

the insertion failed. In the absence of the neural networks, i.e. by using only registration

methods, the success rate decreases to 91%.

2.4 Collaboration with human

The workpiece described in the precious sections, represents a portion of a supercar’s

safety cell and the Big Heads insertion in this workpiece is a task actually implemented in

the automotive industry. It is currently performed manually through the use of insertion

masks, which the operator places on the object’s surface in order to highlight where the

Big Heads has to be inserted, after applying some glue on them.

The strategy described in Section 2.2 has been integrated with other modules for tak-

ing the Big Heads from the kit, for depositing the glue on them and for monitoring the

operation. This integration led to the development of a real setup (Fig. 2.33) at the Tecno

Tessile Adler S.r.l. company [138], part of the Adler − Almas Partecipazioni Industriali

SPA. group, based in Airola (BN), Italy, where a robot and an human operator collaborate

to perform the task.

In detail, the robot has to glue the Big Heads, with two different diameters, in 11 holes

spread over the whole surface of the workpiece. Some Big Heads have to be inserted in

the holes and others have to be laid on their flat side. The execution can be divided into
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Figure 2.34: Insertion task representation.

smaller tasks that are repeated for each inserted/laid Big Head. To facilitate the definition

of these tasks, they are represented through an annotated rooted directed graph [139],

where the nodes represent tasks to be accomplished, while the edges represent parental

relations among tasks and subtasks. This graph represents the roadmaps of possible

paths that the robot end-effector can follow for the execution of the whole task and can

also be used to represent logic constraints for the subtasks. The graph is exploited by a

supervisory system to monitor the whole process, i.e., to keep track of the ”processed”

Big Heads, of those that need to be inserted or laid and to check that all constraints are

satisfied before proceeding.

A single insertion task is identified in the graph via the parametric instance ”applyBH

dim or id”, where the parameter ”applyBH” is the high level task name, ”dim” and ”or”

represent, respectively, the diameter of the Big Head to be inserted and the gripping

orientation, i.e., if the Big Head needs to be grasped from the pin or from the flat part

and ”id” represents the identifier of the position (or hole) in which to insert/lay the Big

Head. The graph representing a single insertion task for a generic Big Head is shown in

Fig. 2.34.

However, it is possible that the insertion or the laying are not successful. In this case,

the robot detects the error and communicates it to the supervisory system with an error

message. The error indication also appears on the screen near the operator, who will have

to solve the problem. After putting the robot in a safe condition by using the appropriate

button, the operator can intervene in two ways:
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1. manual insertion/laying in the relative hole: the human approaches the robot, takes

the Big Head from the end-effector and places it manually (handover). After that,

she/he communicates to the supervisory system that the insertion/laying has been

carried out;

2. automatic insertion/laying in another hole: the human approaches the robot and,

in hand-guidance mode, moves it in the direction of another hole. The system de-

tects which hole the robot is moving towards and visualizes it on the screen. The

operator, looking at the screen, notices that the system has recognized her/his in-

tention and confirms the prediction. Then, the robot inserts/lays the Big Head in

automatic mode.

After receiving confirmation from the operator, the system resumes the task execution

for the next Big Head. The human intention is detected with the method described in

[140], where attention regulation mechanisms and intention recognition processes are

fully integrated and the sequence of past interactions are exploited to assess the human

intent during the task.

An insertion task can be split in three subtasks:

1. the task identified through the instance ”pickBH mY dn bh00X”, that requires the

robot to pick up a Big Head with a diameter of Y mm from the pin. This operation

can be performed if the robot has no objects in the gripper (logic constraint) and is

considered completed when a Big Head with the specified characteristics has been

correctly taken by the robot;

2. the task identified through the instance ”glueBH mY dn bh00X”, that provides for the

addition of glue on the Big Head and can be performed if a Big Head compatible

with the required characteristics has been grasped by the robot and is considered

completed when the glue is successfully applied;

3. the task identified through the instance ”placeBH m5 dn bh00X”, that involves in-

serting/laying the Big Head in position bh00X and can be performed if a Big Head

compatible with the required characteristics has been grasped by the robot and if

the hand-guidance mode is disable. This operation ends when the Big Head is cor-

rectly applied in place.

As mentioned, in case of error, the operator can decide to act in two different ways,

and the relative subtasks are the following:
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(a) (b)

Figure 2.35: Big Head picking form the kit (a) and application of glue by using the dispenser (b).

1. the operator ”panda(handover)” is relative to the manual insertion/laying. It detects

the human intention to manually insert/lay the Big Head and commands the robot

to release it. This process starts only if the forces exerted on the end-effector exceed

a certain threshold and if the hand-guidance mode is not active;

2. the operator ”pandaTarget(bh00X)” monitors the human intention to insert the Big

Head in the bh00X hole by moving the robot end-effector to indicate the new loca-

tion to perform the automatic insertion/laying. This process starts only if a com-

patible Big Head is held by the robot and if the hand-guidance mode is active.

Some snapshots of the whole task execution are shown in Figs. 2.35-2.37. The robot

knows the Big Head positions in the kit and, based on the command received by the su-

pervisory system, it takes the ones from the pin or the ones from the flat part (Fig. 2.35(a)),

then, the robot reaches the dispenser to apply glue on the Big Head (Fig. 2.35(b)).

The handover is shown in Fig. 2.36(a): the operator expresses the intention of per-

forming the manual insertion/laying by taking the Big Head from the end-effector. Then,

she/he manually places it, while the system is waiting for the command to continue

(Fig. 2.36(b)).

(a) (b)

Figure 2.36: The operator takes the Big Head from the end-effector (a) and manually places it (b).
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(a) (b)

Figure 2.37: The operator guides the robot towards the new target (a), the robot automatically

inserts the Big Head (b).

Fig. 2.37(a) shows the operator that manually moves the robot to lead it towards a

new target between those compatibles that are shown on the monitor screen. Once the

supervisory system recognizes the human intentions (the new target candidate is high-

lighted on the screen), the operator commands the robot to continue the execution and it

will perform the insertion/laying (Fig. 2.37(b)).

2.5 Conclusion

In this Chapter, two approaches to autonomous execution of robotic assembly tasks in

partially structured environments is developed and experimentally demonstrated through

a classical Peg-in-Hole task. The first approach is a preliminary study of an accurate blind

method. In particular, the 3D-DIC is used the reconstruct the object surface roughly posi-

tioned in the robot workspace and an admittance control scheme is used to perform the

peg insertion after the estimation of their position.

Despite the high accuracy, the method is difficult to automate and the performance

of the 3D-DIC strongly depends on the quality of the pattern on the surface and the

illumination. Moreover, it is not always possible to ensure the presence of a suitable

pattern on the surface of industrial objects.

In the second approach a completely autonomous pipeline has been designed for the

insertion of mechanical parts on a carbon fiber workpiece in a cooperative industrial

scenario. Also in this case, the workpiece is positioned near the robot manually by a

human operator, thus creating uncertainty on the relative position between the robot and

the workpiece.

At the beginning of the process, a 3D reconstruction of the workpiece is computed
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by using a registration algorithm and it is matched with a corresponding point cloud

extracted from the CAD model to have an estimate of the holes’ locations. Then, the

robot approaches the hole and explores the hole neighborhood by sliding on the surface

to complete the insertion.

Experimental results confirm the effectiveness of the approach even with wide object

initial positioning errors. Moreover, the search phase strengthen the procedure by adding

robustness to reconstruction errors: even if large estimation errors are experienced, the

insertion can be successfully completed.

An improvement to this approach is made by adding deep neural network in the

pipeline. In particular, a network for the image segmentation has been used to better

discriminate the workpiece from the background and improve the overlapping with the

CAD model, and a network for object classification is exploited to refine the hole’s local-

ization and reduce failures.

As future work, a more extensive experimental campaign could be conducted in real

industrial scenarios and with different workpieces to test the capabilities of the image

segmentation in the presence of different backgrounds and of the CNN with different

light conditions.



Chapter 3

Object grasping and cooperative

robotics

Grasping partially known objects in unstructured environments is one of the most chal-

lenging issues in robotics. It is a complex task and requires to address multiple sub-

problems in order to be accomplished, including object localization and grasp pose de-

tection. In particular, deciding where the end-effector of the robot should come in contact

with the object and the type and amount of forces that should be applied are challenging

tasks.

In the literature, the approaches to the object grasping problem can be roughly clas-

sified into analytic and empirical [141]. Analytic methods are based on a certain degree

of knowledge of the object (e.g., geometry, mass, material, etc.) and require at least a

simplified contact model [142]. Empirical (or data-driven) approaches rely on grasp pose

candidates for the object, chosen on the basis of given metrics [143].

Data-driven methods, and in particular deep-learning approaches, benefit from the

availability of powerful GPUs. If the objects to grasp are known, deep learning meth-

ods are very effective as long as a database containing geometric object models and a

number of good grasp poses are available. For example, Convolutional Neural Network

(CNN) are used in [144], where an improvement of the structure of the Faster R-CNN

neural network is designed to achieve a better performance and a significant reduction

in running time of detection; experiments on a mobile manipulator show that the detec-

tion results allow to carry out a successful grasping. In CNN-based grasping approaches,

once the grasp pose is determined, a robot executes a motion towards that pose without

any other feedback. For this reason, a precise calibration between the camera and the



Figure 3.1: The grasp pose g̃ in the depth image is defined by its center pixel s = (u, v), its rotation

φ̃ around the image axis and perceived width w̃. The Figure is taken from [145].

robot, a precise robot control and a completely structured environment are required.

In [145, 146] a Generative Grasping Convolutional Neural Network (GG-CNN) has

been proposed. It directly generates a grasp pose and quality measure for every pixel

in an input depth image and is fast enough to performing grasping in dynamic environ-

ments. Given a depth image I ∈ IRh×w, where h and w are the height and width of the

image, respectively, a grasp is described by g̃ = (s, φ̃, w̃, q), where s = (u, v) is the center

in pixel of the box representing the grasp pose, φ̃ is the grasp rotation in the camera ref-

erence frame, w̃ is the grasp width in image coordinates, i.e., the gripper width required

for a successful object grasp, and q is a scalar quality measure, representing the chances

of grasp success. An example of grasp description is shown in Fig. 3.1.

The set of grasps in the image space can be referred as the grasp map of I , G =

(Φ,W ,Q) ∈ IR3×h×w, where Φ, W and Q contain the values of φ̃, w̃ and q respectively

at each pixel s. From G, it is possible to compute the best visible grasp in the image

reference frame and then, through the calibration matrices, this pose is expressed in the

inertial reference frame to command the robot and grasp the object.

More challenging is the case of unknown objects, where it is assumed neither object

knowledge nor grasp pose candidates are available. In this case, some approaches require

to approximate the object with shape primitives, e.g., by determining the quadratic func-

tion that best approximates the shape of the object using multi-view measurements [147].

Other approaches require to identify some features in sensory data for generating grasp

pose candidates [148]. A possible workaround is to assume that new objects are similar

to known ones, in terms of shape, color, texture or grasp poses (familiar objects [143]). In
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this case, the goal is to classify the objects on the basis of a similarity metric so to trans-

fer the grasp experience. In [149] the grasp pose candidates are defined by identifying

parts to which a grasp pose has already been successfully tested. In [150] the objects are

divided in category and for each category the same grasp pose candidates are assumed.

In the rest of the Chapter, methodologies to address the grasping problem are pre-

sented and analyzed. In particular, the Background subtraction technique applied to in-

dustrial problems and a method to detect the grasp pose for industrial objects are de-

tailed. Finally, an application that include object grasping and the cooperation between

two robots is described.

3.1 Background subtraction

Background subtraction (BS) is a common method for detecting moving objects from

images taken by static cameras, able to achieve real-time performance. This method is

usually used in intelligent video surveillance [151], in monitoring road traffic applica-

tions [152] and, more recently, in monitoring maritime traffic [153]. The basic idea is

to identify moving regions by comparing the current image with a model of the scene

background.

In this Thesis, BS has been used to solve the problem of object grasping in an in-

dustrial scenario, where usually the objects to be grasped can vary, while the boxes that

contain the objects remain the same. The advantage in modeling the background instead

of trying to detect the objects of interests (i.e., the foreground) is significant, because a

single, fixed detection model is used without the need of creating a new one when a new

object needs to be grasped [154].

According to this technique, given an image I from the camera, the foreground mask

F , containing the objects of interest, can be detected by applying the following formula:

F = I −B, (3.1)

where B is the background model, i.e., a model representing the scene without the ob-

jects. All quantities mentioned above have the same dimensions, depending on the reso-

lution of the camera. BS includes three main phases:

1. initialization, in which the first model of the background is built;

2. detection, where the foreground is determined;
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3. update, in which the model is updated with respect to the changes of the scene.

The major disadvantage of the basic BS is that it cannot handle sudden changes in

background, e.g., due to varying light conditions, shadows, and camera movements.

For this reason, a variant has been analyzed and exploited in the developed application.

The Independent Multi-modal Background Subtraction (IMBS) is the variant proposed

in [153] and has been designed to deal with highly dynamic backgrounds, such as water.

Moreover, it is robust with respect to illumination changes and camera jitters.

3.1.1 Background initialization

The background modelB ∈ IRw×h, where w and h are the width and the height of the in-

put images, respectively, is computed through a per-pixel statistical analysis of N images

(or samples). These images can be sequentially taken from the camera or can be extracted

from a video, by using a sampling period, P .

Each element (i, j) of the matrixB consists of a set of couples C = (c, f(c)), where c is

a value in a given color space (e.g., RGB or HSV) and f(c) is a function that counts how

many pixels in the scene have their value equal to c. It is worth noticing that using a single

value for all the color channel has the advantage of detect the statistical dependence

between the color channels. This would not happen if each channel were considered

independently.

Once the last sample has been processed, if there is a couple C∗ = (c∗, f∗(c)) where

f∗(c) ≥ D, then the color value c becomes a significant background value. The scalar

D represents a threshold value which allows to distinguish objects that are ”passing”

through the scene. In fact, unlike other methods, IMBS allows for obtaining an accurate

BG model, even if moving objects are present in the scene. This is possible because mov-

ing objects will appear in different positions in the images and for short time, therefore

the background values related to those objects will be discarded by using the threshold

D.

Statistic models are widely used to model the background, both with a single Gaus-

sian distribution and with a mixture of Gaussians [155]. However, building an accurate

model in the presence of varying light conditions, shadow, and camera movements is

a challenging task. The choice about how to generate the background model depends

also on the specific application environment. Models built with a single Gaussian are not

suitable for outdoor environment with highly dynamic background.
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Figure 3.2: Foreground detection.

3.1.2 Foreground computation

The foreground mask is obtained by comparing the current image I(t) with the back-

ground model B(t), with a pixel-wise subtraction. As shown in Fig. 3.2, if the result of

the subtraction is lower than a threshold A, the pixel is considered as part of the back-

ground and is labeled with black color in the foreground mask. Otherwise, the pixel is

labeled with white color in the mask and considered as foreground.

3.1.3 Model update

After the creation of the first background model, which requires a time T = NP , where

N is the number of images and P is the sampling period, IMBS continuously builds a

new model, independent from the previous one, to adapt it to changes in the scene. The

update is performed by using a FIFO (First In, First Out) strategy, i.e., the oldest sample,

or pair, is discarded and a new sample, or pair, is added to the model.

In [156] two strategies to update the background are proposed. The first is the selective

(or conditional) update, in which a new sample is added to the model only if it is classified

as background. This method improves target detection, because the target pixels are not

added to the model, but it requires to find a way to decide if a pixel is part of the back-

ground or not. A simple method could be the use of the detection result as an update

decision, but any incorrect detection decision will result in persistent incorrect detection

later and the background model will never adapt to it. The second strategy to update the

background, proposed in [156], is the blind update, where new samples are always added
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Figure 3.3: A boat enters the monitored scene and remains in the same position over several

frames (a). A blind update gives a wrong result since the obtained model includes incorrectly

the boat as part of the scene background (b). IMBS model update (c): the boat is identified as a

potential foreground region (grey pixels). The Figure is taken from [153].

to the model. This method does not suffer from the persistent incorrect detection prob-

lem, but the detection of targets as false negatives might happen, since they erroneously

become part of the model.

In IMBS methods a different solutions is proposed, aiming at solving the problems

of both selective and blind update. Given a scene sample and a value of the pixel (i, j),

for each couple C ∈ B(i, j), if the pixel has been labeled as foreground in the previous

foreground mask and the difference between its value and the value c is less than a pa-

rameter A, then C is labeled as a ”foreground couple”. During foreground computation,

if I(i, j) is associated with a foreground couple, then the pixel is classified as a potential

foreground point.

This solution allows to detect not moving objects that do not belong to the back-

ground. An example of this situation is shown in Fig. 3.3, where a boat that remains

in the same position in several frames has been detected as a potential foreground. If a

pixel is classified as potential foreground consecutively for a time period longer than a

predefined value, it becomes part of the background model.

The three phases described above are shown in Fig. 3.4, where I(t) is the input image

at time t, B(t) is the background model, and F (t) is the foreground binary mask, which

contains the object pixels.
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Figure 3.4: Background subtraction phases.

3.2 Object grasping application

In this Section, an application of the BS technique in industrial environment is described

and experimental results are presented. The objects of interest are placed in a divider

box, whose position is uncertain and they need to be grasped by a robot equipped with a

RGB-D camera (Fig. 3.5(a)). The box is partitioned with dividers in such a way to obtain

different subspaces, each subspace can host a single object in order to avoid overlapping

(Fig. 3.5(b)).

The above described application scenario can be defined as a quasi-static industrial

environment, since the box containing the objects is placed within the robot workspace.

The following assumptions on the object are done:

Assumption 1. The object geometry is not known to the robot.

(a) (b)

Figure 3.5: Operational setting (a) and the box partitioned in subspaces by using the dividers (b).
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(a) (b)

Figure 3.6: Objects considered and corresponding reference frames: metal oil separator crankcase

(a) and plastic oil separator crankcase (b).

Assumption 2. For each object, the grasp pose candidate is positioned on the top and a coordinate

frame Fo = {O, xoyozo} is attached to the grasp point, so that the axis zo coincides with the

approach direction of the end-effector (Fig. 3.6).

Due to the position uncertainties of the box, the robot motion cannot be planned off-

line and the vision system must be adopted in order to 1) detect online the presence of an

object in the subspace, 2) determine the grasp point, and 3) compute the best orientation

to perform grasping.

Since the background subtraction requires the presence of a fixed background, the

relative position between the camera and the box with the objects must be constant. Only

slight positioning errors can be handled by the modelling procedure. In order to ensure

that the camera-box relative position is constant after the box positioning, an AprilTag

marker [157] has been attached to the box’s edge (Fig. 3.7(a)).

Assumption 3. The objects are always positioned in the box in such a way that the axis zo of the

grasping frame is aligned to the z axis of the AprilTag marker coordinate frame.

Therefore, the robot aligns the camera reference frame to the marker reference frame

by using the visual servoing algorithm implemented in the ViSP library [124] (Fig. 3.7(b)).

Then, the background subtraction technique, described in Section 3.1, has been used to

distinguish the objects from the box background (Fig. 3.7(c)). Once the presence of the

object is detected, the point cloud, provided by the camera, is segmented by means of the

foreground mask (Fig. 3.7(d)). This segmented point cloud is suitably filtered (Fig. 3.7(e))

as follows:

• a downsampling of the point cloud is performed by using a voxel grid filter [158];
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Figure 3.7: Functional scheme: a) initial condition; b) alignment with the marker; c) execution of

the background subtraction algorithm; d) point cloud segmentation; e) point cloud filtering; f)

point cloud clustering; g) estimation of the grasping pose.

• the points whose coordinates exceed the box dimensions are cropped.

The point cloud is clusterized by means of an algorithm based on Euclidean distance,

proposed in [159] and detailed in Algorithm 2. Thus, a number of clusters are isolated,

each corresponding to an object. Due to Assumptions 2 and 3, for each cluster, the vision

system has to detect the point characterized by the minimum distance from the origin of

the camera frame, that is the upper point of the object. Once the upper point is computed,

the points whose distance is bigger than a certain threshold are removed from the point

cloud. The remaining points are projected on a plane, in such a way to have a 2D cluster

(Fig. 3.7(f)).

For each cluster, the oriented bounding box and the coordinate of cluster center C =

[xcC , y
c
C , z

c
C ]T, expressed in the camera frame, are computed by using an algorithm of the

Point Cloud Library [160] (Fig. 3.7(g)). This algorithm computes the covariance matrix

CM , for each point πi in the current cluster and, then, the eigenvalues and the eigenvec-

tors of CM are extracted and used to find the cluster center C and the orientation of the

point cloud.

The system estimates the object grasp point in the camera frame as follows:

Ô = [xcC , y
c
C , ẑ

c
O]T,

where ẑcO is the depth measure, obtained by the camera, at the point [xcC , y
c
C ]T. In or-
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Algorithm 2: Euclidean clustering.
Input : Input point cloud P , distance threshold dth

Output: List of clusters C
1 Create a hierarchical data structure from P .

2 Set up an empty list of clusters C.

3 Set a queue Qwhich contains points that need to be processed.

4 for each pi ∈ P do

5 add pi to Q
6 for each pj ∈ Q do

7 Pkj ← set of point neighbors of pj which are in a sphere with radius

r < dth.

8 for each pkj ∈ Pkj do

9 if pkj /∈ Q then

10 add pkj to Q.

11 end if

12 end for

13 end for

14 end for

15 return C

der to perform the grasp, the end-effector has to be commanded to align its reference

frame (Fig. 3.8) to the bounding box coordinate frame. Since the coordinates of the esti-

mated grasp point are determined by the vision system in the camera frame, they must

be transformed in the robot base frame before commanding the motion. To this aim, the

camera-end-effector transformation must be determined via a calibration [123, 161].

3.2.1 Experimental results

The experimental setup consists of a collaborative robot Franka Emika Panda equipped

with the Intel RealSense D435 depth camera (Fig 3.5). In order to evaluate the effective-

ness of the proposed approach, two different objects used in automotive factories, have

been considered (Fig. 3.6).

The box model has been built on the basis of 43 images acquired with different light

conditions and positioning the box in different locations, in order to simulate positioning
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Figure 3.8: End-effector and camera frames.

uncertainties. Fig. 3.9 shows three samples and the generated background model.

The segmented point clouds before and after the filtering operation, for both the ob-

jects, are shown in Fig. 3.10. It can be noted that, before filtering, the background is

mostly removed, but, due to different light conditions and/or slight alignment errors

some residual points are still present in the foreground.

Then, the cluster algorithm is applied to the segmented point cloud. In this phase,

it is crucial the choice of the cluster tolerance, i.e., the maximum distance between the

points belonging to the same cluster. If a small tolerance is chosen, a single object could

be seen as multiple clusters; on the other hand, if a very high value is chosen, multiple

objects could be seen as a single cluster.

In the next step, the upper point of the object, assumed coinciding with the grasp

point candidate, is determined by means of the depth measures, and a reduced point

cloud is obtained considering only the points in its neighborhood. Such a reduced point

cloud is projected on a plane in such a way to compute an oriented bounding box (Fig. 3.11).

Figure 3.9: Three examples of images (left) taken to build the model (right).
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(a)

(b)

Figure 3.10: Left: Segmented point clouds before the filtering. Right: Point clouds after the filter-

ing for metal oil separator crankcase (a) and plastic oil separator crankcase (b).

The coordinate frame attached to the bounding box, together with the depth mea-

sures, allow to compute the estimated grasp point and the desired orientation of the

end-effector. More in details, due to the Assumption 3, only a rotation around the z axis

is assigned, in such a way to align the y axis of the end-effector frame to the x axis of the

object frame. Moreover, due to the particular shape of the chosen objects, for the metal

crankcase the orientation is negligible, since it is grasped in a cylindrical part.

(a)

(b)

x

y

x

y

Figure 3.11: 2D reduced point cloud (left) and oriented bounding box (right) for metal crankcase

(a) and plastic crankcase (b).
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Table 3.1: Errors on grasp point for metal oil crankcase.

Test e [mm] Grasped Test e [mm] Grasped

1 (4.6, 11.0) Yes 15 (1.2, 2.3) Yes

2 (8.5, 10.7) No 16 (5.3, 5.5) Yes

3 (3.4, 8.7) No 17 (2.6, 7.6) Yes

4 (10.7, 11.4) Yes 18 (0.2, 12.5) Yes

5 (18.2, 8.3) No 19 (2.7, 8.9) Yes

6 (5.7, 5.2) Yes 20 (2.0, 3.8) Yes

7 (2.5, 12.7) Yes 21 (7.0, 19.1) No

8 (9.5, 13.4) Yes 22 (0.5, 11.9) Yes

9 (4.0, 2.8) Yes 23 (0.3, 1.2) Yes

10 (7.7, 5.3) Yes 24 (22.8, 2.8) No

11 (12.5, 5.8) No 25 (6.8, 3.7) Yes

12 (7.9, 5.3) Yes 26 (5.8, 2.2) Yes

13 (28.5, 2.6) No 27 (5.5, 0.7) Yes

14 (1.3, 10.5) Yes 28 (10.8, 0.4) Yes

In order to have statistically significant results, 54 tests have been executed: 28 for the

metal crankcase and 26 for the plastic one. Quantitative experimental results, in terms

of the error between the actual grasp point position and the estimated one, expressed in

the end-effector frame, are reported in Table 3.1, for the metal crankcase, and in Table 3.2,

for the plastic one. In the latter case, also the orientation error between the end-effector y

axis and the actual x axis of the object frame, is reported.

For the metal crankcase, it is worth noticing that not all the test have been concluded

with a successful grasping, since, due to the object shape, even an error of few centimeters

can lead to a failure. However, the estimation errors are rarely higher than 1 centimeter

and only in a couple of tests it reaches 2 centimeters.

For the plastic crankcase, only one test fails the grasping (in boldface in Table 3.2),

since the grasping area is bigger than the previous one and the bounding box is more

accurate. It can be seen that the failed grasping is due to a large orientation error.

Finally, since the gripper is characterized by parallel fingers, in both cases higher er-

rors along the closing direction are tolerated, while errors along the orthogonal direction
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Table 3.2: Errors on grasp pose for plastic oil crankcase.

Test e [mm]/[deg] Test e [mm]/[deg]

1 (1.8, 2.2)/(4.3) 14 (1.8, 6.0)/(-20.2)

2 (0.4, 3.9)/(6.7) 15 (2.9, 5.9)/(−7.1)

3 (2.3, 0.6)/(8.7) 16 (0.9, 3.8)/(−4.9)

4 (2.4, 5.1)/(−0.8) 17 (0.2, 4.2)/(6.6)

5 (1.9, 3.6)/(−2.6) 18 (0.6, 5.9)/(−12.4)

6 (2.0, 4.4)/(−11.7) 19 (0.5, 2.0)/(−2.1)

7 (2.2, 4.4)/(0.7) 20 (0.5, 6.9)/(−9.2)

8 (0.1, 7.2)/(7.0) 21 (2.6, 5.6)/(4.0)

9 (2.3, 2.5)/(−9.5) 22 (1.3, 3.0)/(−0.3)

10 (0.1, 6.8)/(3.0) 23 (1.1, 3.3)/(0.8)

11 (0.1, 4.8)/(−5.6) 24 (0.7, 2.8)/(0.0)

12 (0.0, 7.6)/(2.6) 25 (1.2, 6.6)/(8.1)

13 (0.3, 4.3)/(−3.5) 26 (0.3, 5.3)/(−9.2)

may cause a grasping failure. As for the detection time, for the metal crankcase the vision

algorithm takes an average of 2.4 seconds for each single detection, while for the plastic

one the average time is equal to 3.3 seconds. Such a difference is due to the different

size of the 2D reduced point cloud, which makes faster the algorithm that computes the

oriented bounding box.

3.3 Model generation

A registration methodology similar to the one used for the surface reconstruction and

holes localization, described in Chapter 2, is an alternative to background subtraction,

when the object CAD model, in which the gripping point has been labeled, is available

and the point cloud provided by the sensor is quite detailed. When the CAD is not avail-

able, the Digital Image Correlation, described in Section 1.2, could be used to build a

model of the object. As mentioned, this technique is difficult to automate and the perfor-

mance depends on the quality of the pattern on the surface and the illumination. For this

reason, the use of the second reconstruction technique presented in the Section 2.1 has

been tested on a set of mechanical workpieces used in automotive factories to verify its
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Figure 3.12: Robot and camera setup for data acquisition.

applicability even in the absence of the CAD model.

In this Section, a methodology to generate a model to be used as a substitute of the

CAD is presented, and some experiments are performed to highlight its advantages and

disadvantages. The basic idea to handle the grasping problem can be summarize as fol-

lows:

• the object data are acquired from different points of view, in order to obtain different

point clouds of various portions of the object;

• the point clouds are merged to obtain the model of the object surface, through the

ICP algorithm (see Section 1.3);

• a frame that represents the optimal grasping pose for the object is fixed on a point

of the model built in the previous step;

• during algorithm execution, the model is overlapped on the current point cloud, in

order to be able to transport the grasp pose on the current object;

• the current grasp pose is transformed into the robot coordinate frame;

• the robot is commanded to perform the grasp.

The setup to acquire camera data to build the model is shown in Fig. 3.12. The object

is located above the table surface to allow a faster background elimination from the point

cloud. In general, a segmentation neural network could also be used for this task (as

done in Section 2.3.1), but given the high amount of pre-processing work and the fact

Chapter 3. Object grasping and cooperative robotics 88



(a) (b)

Figure 3.13: Some examples of point cloud (b) for the plastic oil separator crankcase (a). The red

circle indicates the same part in the various views.

that in an industrial environment objects could vary very rapidly, the use of supports to

keep the object above the table has been chosen for this case, even if the accuracy of this

technique is lower.

To generate the model, the position of the camera is fixed and the object is rotated to

allow the data acquisition in different configurations. Some examples of acquired point

cloud are shown in Fig. 3.13. Then, these point clouds are merged by using the ICP

algorithm and a point cloud of the whole object is obtained (Fig. 3.14(a)). This point

cloud represents the object model in which the grasp pose will be manually fixed, by

using any modeling software. An example of a grasping pose is shown in Fig. 3.14(b).

𝑧𝑧𝑜𝑜𝑥𝑥𝑜𝑜

𝑦𝑦𝑜𝑜

(a) (b)

Figure 3.14: Example of the generated model for one object (a) and the relative grasp pose (b).
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Figure 3.15: Mechanical workpieces and relative generated models: plastic oil separator crankcase

(a), metal oil separator crankcase (b), air pipe (c), belt tensioner assembly (d), throttle body (e).

When an object needs to be grasped, its point cloud is acquired and it is overlapped

with the one that represents the model. In this way, the labeled grasp pose can be trans-

ported on the current object, that is referred with respect to the robot base frame. After

a further transformation, by using the camera-end-effector calibration matrix, the robot

can be commanded to perform the object grasp. The mechanical workpieces used in the

experiments and their generated model are shown in Fig. 3.15.

During the experiments, it was noted that, when the current object has a very different

orientation from the modeled one, the overlapping between the model and the current

point cloud was not successful. This happens because the point clouds provided by the

sensor are not very detailed and accurate; thus, some parts could be confused with others

in the matching search process. Therefore, both the model and its grasping pose have

been rotated, in order to have various models with different orientations. The current

point cloud is compared with all the models and the model with the best match is selected

to compute the grasping point.

The best match is measured through a parameter which measures the overlapping

area between the two point clouds, named fitness. In particular, one of the two point

clouds is chosen as a target and the fitness is computed as the ratio between the number

of correspondence points and the number of the points in the target point cloud. A cor-

respondence point represents a point for which has been found the corresponding point
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Figure 3.16: Examples of overlap failure (top row) and successful (bottom row) for three objects:

plastic oil separator crankcase (a), metal oil separator crankcase (b), air pipe (c). Two blue circles

highlight the non-overlapping for the metal oil separator crankcase by indicating the same object

part not aligned.

in the target point cloud. An example of correct overlapping and one of the incorrect

overlapping for three of the considered workpieces are shown in Fig. 3.16.

Although the model is well-built, for three object types (air pipe, belt tensioner assem-

bly and throttle body), the experiments show that the search for the best match was not

successful. This is due to the symmetry that characterizes the object and the fact that the

model is not very accurate. In these cases, the algorithm was not able to find the match

because many portions of the object are quite similar.

For the air pipe, the correct overlap was found only when the object position was very

similar to that of the original model. In this case, there were very few successful attempts

in the testing phase, therefore no results can be derived from them.

For the remaining types of object (plastic and metal oil separator crankcases), the

algorithm was able to find the match and the robot was able to grasp the object. The

average error between the desired position (orientation) for grasping and the actual posi-

tion (orientation) of the end-effector was about 3.82 mm (8.39 degrees) for the plastic oil

separator crankcase and 4.64 mm (3.17 degrees) for the metal one.
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3.4 Cooperative application: shafts handover

The object handover is a typical industrial task involving cooperative robots, e.g. in

logistic applications, where robots are widely adopted in picking operations. Nowa-

days, collaborative robots are often used in handover with humans [162], and, in quasi-

autonomous production plants, even with robots, e.g., a logistic robot and an assembly

one. The robot that is in charge of grasping the object is called giver (or giver robot). To

complete the task, after taking the object, the giver needs to pass it to the other robot, that

is called receiver (or receiver robot). Object handover can be partitioned in two phases:

the pre-handover and the physical exchange phase. The pre-handover phase includes the

object detection, in which the giver must recognize the presence of the object to hand over

in its workspace, handle the object grasping, the transportation and the synchronization,

i.e., finding an agreement about the exchange location and timing [163]. In recent years,

interest in object detection has burst due to the rapid development of deep learning tech-

niques [164]. In particular, CNNs for object classification are mostly used, because they

represent the best trade-off among accuracy and the detection speed.

Regarding the synchronization phase, it can require the giver robot to explicitly or

implicitly communicate to the receiver. Explicit communication implies to share both

sensory data and control signals among the robots, while implicit communication occurs

when information is acquired only via sensors, e.g., via a force/torque sensor measuring

the interaction wrenches, tactile sensors and/or visual sensors [165]. Explicit communi-

cation has been largely adopted for cooperative robots, since it allows to easily handle

synchronization issues. However, in the presence of many and heterogeneous agents,

the communication load can increase. Even in an industrial scenario involving only few

manipulators, the communication channel, due to other devices connected, can experi-

ence packet loss and delays, which are detrimental to performance and can even cause

production scraps. The use of an implicit communication, even if the control scheme be-

comes usually more complex and the performance worse, improves the flexibility and

the scalability of the system.

The physical exchange phase starts at the instant of the first contact between the re-

ceiver robot and the object grasped by the giver robot and ends when the giver fully re-

leases the object to the receiver [162]. The physical exchange requires cooperation among

the giver and receiver robots, thus vision and force feedback can be adopted by the giver

in order to understand if the receiver has grasped the object. Only when the grasping is
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Figure 3.17: Experimental setup: two Panda Emika Franka robots equipped with depth cameras

are used for handing over a shaft.

safe the giver can start to release the object and allow the transition to the receiver.

Regarding the object handover, during the physical exchange phase, the object load is

shared by the giver and the receiver and they must guarantee the object safety. Different

studies have been conducted for the force exchanged by humans during handover op-

erations. For example, in [166], it is found that the grip force of both giver and receiver

is modulated during the object exchange, i.e., while the giver decreases its force, the re-

ceiver increases it until the load is transferred. Then, after the unloading, the giver still

applies a grasping force even though its sensed load is almost zero [167]. These results

can be also applied to robot-to-robot handovers, where techniques for grip force modu-

lation must be proposed. In [168], the sole communication mean between the two agents

is provided by custom force/tactile sensors measuring the interaction force and moment.

In this approach, the giver adopts a slipping detection algorithm that allows to foresee

the possibility that the receiver cannot keep the object orientation and thus dangerous

releases are avoided.

3.4.1 Proposed strategy

The considered task is an autonomous robot-to-robot object handover, in the absence of

any explicit communication [169]. The setup consists of two collaborative robot manip-

ulators Franka Emika Panda, both equipped with a camera in eye-in-hand configura-

tion. The camera on the giver robot is an Intel Realsense D435, while that mounted on
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Figure 3.18: Functional scheme. 1) Object detection phase. 2) Estimation of the grasping point.

3) Object grasping and motion to the exchange point. 4) Detection of the giver at the exchange

position. 5) Object grasped by the receiver. 6) Object released by the giver.

the receiver robot is an Intel Realsense L515. The manipulated objects are a couple of

counter-rotating shafts of different length and shape (Fig. 3.17).

It is assumed that the objects are placed in a box roughly positioned in the field of

view of the giver’s camera. Due to the position uncertainties, the robot motion cannot

be off-line planned and a vision system is adopted in order to detect the presence, iden-

tify the class and compute the pose of the objects. Among the object detection technique

described in the previous Sections, the deep neural network approach has been chosen.

Despite the tiring work to build and label the dataset, it is faster than background sub-

traction and the model-based technique.

The following strategy (shown in Fig. 3.18) is proposed:

1. When the box containing the objects is completely in the camera field of view of the

giver robot, a CNN detects the presence, the orientation and the type of the shafts.

The CNN recognizes also the roller bearings, that are used to determine the shaft

axes and estimate the grasping pose.

2. The position of the grasping point is estimated by computing the center of the roller

bearing bounding boxes and the shaft axis.

3. The giver grasps the shaft and moves it to the exchange point, assumed within the

field of view of the receiver’s camera.

4. The receiver robot recognizes, by using an eye-in-hand camera and a marker at-

tached to the giver gripper, the giver pose and, thus, the object exchange point.
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Figure 3.19: Classes for the objects of interest (a). Samples with different orientation and back-

ground (b).

5. The receiver aligns its gripper to the shaft axis and moves toward the object until a

contact is detected, then it closes the gripper.

6. The receiver moves the grasped shaft while the giver compliantly follows its mo-

tion. When the force exerted on the giver exceeds a threshold, the gripper is open

and the shaft is released.

3.4.2 Shaft detection and estimation of the grasping point

To carry out the shaft detector, a CNN-based approach has been used. Two CNN architec-

tures, Faster R-CNN and YOLOv4 (see Section 1.5.1), have been compared with respect

to their performance to select the best one. For the Faster R-CNN, the Inception V2 [170]

was chosen, due to its high degree of accuracy. It is designed to reduce the complexity of

CNN, by building an architecture that is wider than deep. In [170], the structure changes

improve the efficiency of the network and generate a reduced model size, which, in turn,

can help to reduce the overfitting problem.

Three object classes have been defined (Fig. 3.19(a)):

• counter-rotating shaft exhaust (CSE);

• counter-rotating shaft intake (CSI);

• roller bearing (RB).
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Table 3.3: Average Precision for IoU value of 0.5.

Network Architecture CSE CSI RB mAP

YOLOv4 0.952 0.966 1.000 0.973

Faster R-CNN 0.928 0.855 1.000 0.914

Detecting CSE and CSI is useful to identify the shaft’s type, while RB is used to deter-

mine the shaft axes and estimate the grasping point. A dataset made of 342 images, with

640 × 480 size, has been built by considering two shafts, captured at different distances

and with different orientation and background (Fig. 3.19(b)).

The dataset has been manually annotated (using the LabelImg tool) and then split in

two non-overlapping sets, namely the training (245 images) and test (97 images) sets. A

data augmentation step has been carried out to create a larger training set. In particular,

for each image, horizontal flipping, cropping and zooming have been performed. The

augmented training dataset, made of 980 images, has been used to train both the Faster

R-CNN and YOLOv4 networks.

An Intel Xeon 3.7 GHz CPU 32 GB RAM with a NVIDIA Quadro P4000 8GB GPU has

been used to carry out the training phase, which required about 8 hours for the Faster

R-CNN and 14 hours for the YOLOv4. To evaluate the detection performance, the mean

average precision (mAP) metric has been considered [171]. The Average Precision (AP)

for each class represents the integral of the precision-recall curve, measured for a certain

value of the Intersection over Union (IoU, see Section 1.4). The mAP is the AP averaged

over all classes. Table 3.3 shows detection results on the test set for a value of IoU of 0.5.

The detector is implemented in C++ and it runs on 640× 480 images coming from the

sensor mounted on the end-effector of the giver robot via the librealsense2 library.

The detection process takes on GPU an average time per image of 58 ms for the Faster

R-CNN and 44 ms for the YOLOv4. On the basis of these results and performance, the

YOLOv4 architecture has been chosen to implement the shaft detector.

Once the shaft has been detected, it is necessary to compute the position of the grasp-

ing point and the shaft orientation (Fig. 3.20). The latter is crucial to compute the gripper

orientation, since the shaft must be grasped by the receiver always from the cogwheel. In

order to identify the orientation, the distance, δ (Fig. 3.20), between the top-left corner of

the CSI bounding box and the edge of the left RB bounding box has been computed.

It is assumed that, for both shafts, a suitable grasping point should be located along
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(a) (b)

Figure 3.20: Two possible configurations of the shafts. The distance δ is computed in order to

detect the shaft orientation.

the longitudinal axis. More in detail, the best grasping point for the CSE is equidistant

from the center of the two roller bearings, while for the CSI, it is closer to the cogwheel.

A two step procedure is used to estimate the position of the grasping points: 1) the shaft

axis is estimated by connecting the centers of the two RB bounding boxes, 2) the grasping

point is computed along this axis (Fig. 3.21). It is worth noticing that, due to possible

variations in the detected bounding boxes size, the grasping point estimation could be

not perfect. However, such uncertainties will be managed in the physical exchange phase

by ensuring a suitable compliance to the robots.

The grasping point is detected in the image frame and, in order to perform the grasp,

must be transformed in a 3D reference position, expressed in the robot base frame. To

this aim, the RGB camera has been calibrated with a Direct-Linear-Transformation (DLT)

method [172] using a 3D target.

3.4.3 Shaft handover

Once the grasping point position and the shaft orientation have been detected, the giver

robot can be commanded to grasp the shaft in such a way to align the xe axis of its end-
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Figure 3.21: Shafts axes and grasping points: actual ones in blue and estimated ones in red.

effector reference frame (Fig. 3.22) with the shaft axis, and move it to the exchange point.

The commanded motion is computed by using a closed-loop inverse kinematics algo-

rithm [70]. The exchange point is off-line planned on the basis of the work-cell configura-

tion in such a way the marker attached on the giver’s gripper is in the field of view of the

receiver’s camera. It is worth noticing that the planned point is related to the end-effector

reference frame, while the shaft tip position is unknown, due to the uncertainties of the

grasping point estimation and the different length of the two shafts. Moreover, due to

the absence of communications, the exchange point is unknown to the receiver, thus its

motion cannot be planned off-line and performed via a pure positional control.

Figure 3.22: Reference frames for the robots’ end-effectors.
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Figure 3.23: Marker detection performed by the receiver robot to detect the presence of the giver

one.

The receiver needs an exteroceptive sensor to detect the presence of the shaft and

to align its gripper to the shaft axis. To this aim, it is equipped with a Intel Realsense

L515 camera, while an Aruco marker [173] is positioned on the giver robot (Fig. 3.23). In

order to avoid collisions, the receiver can start its motion only when the giver reaches the

exchange point. Therefore, the camera detects the position of the center of the marker,

by using the OpenCV library, in two consecutive frames: if the difference between the

detected positions is below a certain threshold for at least 0.5 s, the robot assumes that the

giver has reached the exchange position and starts its motion. Firstly, the receiver aligns

the xe and ye axes of its end-effector reference frame (Fig. 3.22) to the marker frame, then,

since the shaft position with respect to the marker is fixed and assumed known, moves

the end-effector in order to align the ze axis with the shaft axis. Finally, it moves along the

shaft axis and stops when a contact is detected. Since wrist mounted force-torque sensors

are not present, the contact detection is performed via the momentum-based observer

(1.14) described in Section 1.6.

3.4.4 Contact estimation and physical exchange phase

In the contact detection, the external wrench ĥp is estimated by using the wrench ob-

server (1.14) (see Section 1.6) and a set of dynamic parameters identified in [118]. The

parameters have been suitably modified in order to take into account the contribution of

the gripper to the inertia and gravity terms and, only for the giver robot, of the shafts.
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Table 3.4: Controller gains.

Gain Value

Ma eq. (3.2) diag[15, 15, 15, 0.5, 0.5, 0.5]

Da eq. (3.2) diag[30, 30, 30, 1, 1, 1]

Ka eq. (3.2) diag[45, 45, 45, 1.5, 1.5, 1.5]

Moreover, in order to suppress non-existent small force and torque estimations owing

to unmodeled dynamics and sensor noise, a dead zone has been implemented, i.e., any

estimated value of force component below 3 N and any estimated value of moment below

1 Nm are neglected. Finally, to achieve a continuous wrench signal, the same thresholds

have been subtracted from all estimated values.

During the physical exchange phase, different behaviors for the giver and the receiver

are required. When the receiver hits the object, a force along the shaft axis is perceived

by both robots. In this phase, in order to successfully perform the handover, the giver

has to keep constant its position and orientation, crucial to make possible the grasping of

the receiver, while the receiver must be compliant enough to avoid large contact forces

and mechanical stresses on the shaft. Then, after the receiver grasps the object, it moves

upward and the giver has to compliantly follow it.

To enforce the desired behaviors to the robots, the admittance control schema de-

scribed in Section 1.6 has been used, with a small change in eq. (1.18), that becomes:

Mpẍ
e
dr +Dpẋ

e
dr +Kpx

e
dr = S̄TT

A (φedr)ĥ
e
, (3.2)

where S̄ is a 6×6 diagonal selection matrix of ones and zeros, whose (i, i) element is 0 (1)

if the robot must be rigid (compliant) with respect to the i-th component of the wrench

ĥ
e
. For the receiver robot, the matrix S̄ has been set as S̄r = I6, while, for the giver, in

order to enforce the above described behavior, it has been set as a matrix with all zeros

except the element (1,1) given by

S̄g(1, 1) =
1− sgn(f̂eg,x)

2
, (3.3)

where sgn(·) is the sign function and f̂eg,x is the estimated force acting on the giver end-

effector along the axis xe, expressed in the robot end-effector frame. In other words, such

a condition means that the giver robot is commanded to be compliant with respect to

force along the axis −xe and rigid with respect to other forces and moments (Fig. 3.22).
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(a) (b)

Figure 3.24: Estimated contact forces along the CSI axis: force f̂eg,x acting on the giver robot (a),

force f̂er,z acting on the receiver robot (b). Vertical dashed lines delimit the physical exchange

phase. Horizontal dashed red lines represent the thresholds.

The admittance filter parameters used in this application are reported in Table 3.4.

The estimated forces acting on the two robots along the CSI axis are reported in Fig. 3.24.

In Fig. 3.24(a), i.e., the one relative to the force acting on the giver robot, only the time

range in which the physical interaction takes place is represented. Outside this range, the

estimated external force is equal to zero, since the robot is still and the weight of the shaft

has been compensated within the observer.

In detail, the receiver detects the first contact when the force f̂r,z , i.e. the estimated

force acting on the receiver end-effector along the axis ze, overcomes a threshold, fr,th,

that has been set as−1 N (Fig. 3.24(b)). Once the contact is detected, the receiver closes the

gripper and starts to move compliantly followed by the giver robot. During this phase,

a force along the shaft axis, f̂g,x, is experienced on the giver’s end-effector (Fig. 3.24(a)),

it decreases until the threshold fg,th = −3 N is reached. At the same time, the force f̂r,z

increases until reaching the gravitational force due to the shaft’s mass (Fig. 3.24(b)). Once

the threshold is reached, the giver opens the gripper and the object is fully released to the

receiver. The results for the CSE handover are reported in Fig. 3.25. They are analogous

to those showed above for the CSI shaft and have different time range on the x-axis for

the same reason of the other figure.

3.4.5 Cooperation in industrial environment

The application and the experiments described in Section 3.4 represent a preliminary

study that allowed the development of a setup at the Campus Manufacturing of the Cen-
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Figure 3.25: Estimated contact forces along the CSE axis: force f̂eg,x acting on giver robot (a),

force f̂er,z acting on receiver robot (b). Vertical dashed lines delimit the physical exchange phase.

Horizontal dashed red lines represent the thresholds.

tro Ricerche FIAT S.C.p.A. (CRF), part of the Stellantis group, based in Melfi (PZ), Italy.

The complete task involves the assembly of the two counter-rotating shafts (both the ex-

haust and intake) and the assembly of accessory components into an engine block. Until

now, the operation is manually carried out: the human operator takes and inspects the

shafts from an automated shelf. Then, she/he inserts them, by using a special tool, inside

the engine block, which is located on a handling line and, subsequently, assembles the

accessory components.

CRF is investigating technologies to automate this process by including two collabo-

rative robots in the assembly process. In the pilot, the present production line has been

split in two lines, made automatic through two Automated Guided Vehicles (AGVs). In

particular, a logistics line is used for transporting the components to be assembled on the

engine (counter-rotating shafts and accessory elements) and a main line for transporting

the engine block.

Two collaborative robots create a decoupling between the logistics line, i.e. the AGV

that transports the components kit, and the assembly line. In addition to monitoring the

whole execution through an interactive screen, the operator is in charge of inspecting

the counter-rotating shafts and picking and assembling accessory components into the

engine. In this way, a collaborative space-sharing area between the operator and the

robots and a cooperation area between the robots are created. The final setup with the

two collaborative robots and the two AGVs is shown in Fig. 3.26.

For safety reasons, in this setup, the exchange takes place with an explicit communi-
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Figure 3.26: Industrial setup for shafts assembly into an engine block.

cation between the agents. In particular, a client-server architecture model (with TCP/IP

and UDP sockets) has been implemented on a specific workstation for each agent and

on a workstation (leader), which is in charge of receiving messages from all agents and

sending the indications for the next operations they must execute. Some operations are

blocking for the whole system, e.g., if the AGV with the components kit does not arrive

in its final position or if the first shatf is not taken, the leader commands the agents not di-

rectly connected with these operations to keep waiting. Other operations are performed

in parallel, e.g., the insertion of the first shaft into the engine and the grasp of the second

(a) (b)

Figure 3.27: Counter-rotating shafts inspection (a) and shaft grasping performed by one of the

collaborative robots (b).
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Figure 3.28: Exchange of the exhaust (a) and intake (b) shaft between the two robots.

shaft from the components kit.

Some snapshots of the whole task execution are shown in Figs. 3.27-3.29. When the

AGV that transports the components kit arrives in the area, the first step is executed by

the operator that inspects the shafts and scans the code on the objects (Fig. 3.27(a)). Then,

the AGV enters in the field of view of the robot, that detects the shafts and grasps one of

them (Fig. 3.27(b)).

The physical interactions between the two robots to accomplish the shaft exchange

are shown in Fig. 3.28. As it can be seen, the position of the robot that receives the shaft

is different for the two exchanges, since it is mounted on a sled. For this reason, the

robot needs to compute the relative position between the engine and itself and this op-

(a) (b) (c)

Figure 3.29: Insertion of the exhaust (a) and intake (b) shaft and accessory components assembly

performed by the operator (c).
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eration is made by using a profilometer set on the sled. This device measures the engine

profile with a laser and it is able to position the robot in a certain pose with respect to

the engine. In this way, the robots know exactly where are the holes and can insert the

shafts (Fig. 3.29(a)-(b)) and, finally, the operator can assembly the accessory components

(Fig. 3.29(c)).

3.5 Conclusion

In this Chapter the object grasping problem has been introduced and some methodolo-

gies to address it have been presented and analyzed. The first consists of a real-time and

robust approach for detecting and grasping different objects. This method exploits the

background subtraction technique in order to remove the background and localize the

objects. Then, a clustering algorithm applied to the depth data provided by the camera,

allows to find the grasp pose. Background subtraction is usually used to detect moving

objects in intelligent video surveillance applications, but in this Thesis it is exploited in

an industrial scenario, where modeling the background instead of the objects can lead

to a shorter off-line planning phase. Experiments on two objects, with similar features,

demonstrate the feasibility and the effectiveness of the described approach.

Another investigated method consists of a comparison between a point cloud of the

object and a model, built from a set of point clouds previously acquired. The experiments,

conducted on a set of mechanical workpieces used in automotive factories, show that the

method is applicable in case of objects with particular shapes, but not in the case of ob-

jects with symmetric shape. Camera features influence the overall performance: a more

accurate sensor could allow to build a more detailed model to improve the performance

and robustness of the approach.

Moreover, the object grasping problem has been analyzed in the context of a complex

application. In particular, an autonomous execution of robot-to-robot object handover

task in a partially structured environment and in the absence of explicit communication

between the robots has been developed and validated. The proposed approach requires

only visual and joint torque sensors and can be easily extended to industrial scenarios

for flexible production. Visual measures are adopted for detecting the presence of the

object both in the giver and in the receiver robot workspace, while an observer which

exploits the joint torque measurements is adopted for modulating the grip force of the

two robots. For object detection a CNN-based approach has been chosen, which allows
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to apply the strategy to different objects by extending the classes detected by the CNN.

In the last Section, an industrial integration of the shaft exchange application has been

described. Future work can be devoted to extend the approach to mobile manipulators.
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Conclusions and future work

In the era of Industry 4.0, the adoption of human-robot and robot-robot collaboration rep-

resents the new frontier for industries. The use of collaborative robots (cobots), that are

smaller than traditional industrial ones and easily reprogrammable, represents an effec-

tive solution for companies that often tackle changes in the production mix. Cobots allow

the direct interaction with the human operators and are designed to work in unstructured

environments by leveraging on learning capabilities. Making robots autonomous in their

activities is still an open challenge and, in this Thesis, strategies for collaborative and

cooperative robotic applications have been proposed, which use advanced control and

vision techniques to confer robots a higher degree of autonomy.

First, advanced vision and control techniques have been studied and exploited in the

execution of a Peg-in-Hole task in partially structured environments. In particular, vision

techniques have been used to get information about the environment, e.g., where the

workpiece is located, while control techniques have been used to handle the interaction

with the workpiece.

Then, two solutions for the Peg-In-Hole assembly task, by means of a collaborative

robotic arm, in the presence of large uncertainties on the relative pose of the workpiece

with respect to the robot’s base, have been developed. The first strategy represents a

preliminary study of an accurate blind method, in which the workpiece surface is recon-

structed with a sub-millimeter accuracy. An admittance control scheme is used to control

the robot and confer compliance to the peg tip. This technique is very accurate, but diffi-

cult to automate, and the performance strongly depends on the quality of the pattern on

the surface and the illumination. The second one is a completely autonomous strategy;

experimental results confirm the effectiveness of the approach even with wide object ini-

tial positioning errors. This strategy is less accurate than the first one, but the addition

of a search phase makes the procedure more robust. The use of deep neural networks

improves the holes’ localization and reduces the failures.
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Then, the problem of object grasping has been tackled by adopting visual approaches.

One of these approaches is based on the background subtraction technique, usually used

in intelligent video surveillance and traffic monitoring applications. Experiments on two

objects, with similar features, have demonstrated the feasibility and the effectiveness of

the described approach. Another investigated method consists of a comparison between

a point cloud of the object and a model built from a set of point clouds previously ac-

quired. The experiments show that the method is applicable in case of objects with par-

ticular shapes, but not in the case of objects with symmetric shape. Finally, a complete

solution for a robot-to-robot object handover application has been described. A robot

needs to pass two counter-rotating shafts to another robot without any explicit commu-

nication, i.e., the robots only use their on-board sensors. Vision techniques are used to

compute the shafts pose and start the exchange phase, while control techniques are used

to handle the physical interaction with the objects.

In conclusion, the main contributions of this Thesis are:

• the analysis of visual processing techniques to evaluate their performance and their

applicability to industrial tasks;

• the application of visual techniques, for the first time, to solve a class of manufac-

turing tasks by adopting low-cost sensors;

• the integration of control techniques with the visual ones to achieve an autonomous

execution of industrial tasks as well as collaboration and cooperation between the

robots and/or the humans;

• demonstration of the developed approaches on real industrial setups.

For the Peg-in-Hole task, future work will be aimed at continuing the development

of the blind method, looking for solutions to overcome the limits imposed by the type

of surface and lighting. For the other insertion method, more experiments could be con-

ducted with different workpieces and with different background to test the robustness of

the image segmentation network. As for object grasping, future work will be devoted to

extend the developed method to objects characterized by different grasp pose candidates

and randomly placed, while the adoption of mobile manipulators can be explored for

object handover tasks.

Moreover, mobile robots could be involved in different cooperative and collaborative

tasks and the developed techniques will be adapted and used.
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[1] I. Karabegović, “Comparative analysis of automation of production process with industrial

robots in asia/australia and europe,” International Journal of Human Capital in Urban Man-

agement, vol. 2, no. 1, pp. 29–38, 2017.

[2] A. Weiss, A.-K. Wortmeier, and B. Kubicek, “Cobots in industry 4.0: A roadmap for fu-

ture practice studies on human–robot collaboration,” IEEE Transactions on Human-Machine

Systems, vol. 51, no. 4, pp. 335–345, 2021.

[3] A. De Luca and F. Flacco, “Integrated control for phri: Collision avoidance, detection, reac-

tion and collaboration,” in 2012 4th IEEE RAS & EMBS International Conference on Biomedical

Robotics and Biomechatronics (BioRob). IEEE, 2012, pp. 288–295.

[4] S. Haddadin, A. Albu-Schaffer, A. De Luca, and G. Hirzinger, “Collision detection and

reaction: A contribution to safe physical human-robot interaction,” in 2008 IEEE/RSJ Inter-

national Conference on Intelligent Robots and Systems. IEEE, 2008, pp. 3356–3363.
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