252,426 research outputs found
ClouNS - A Cloud-native Application Reference Model for Enterprise Architects
The capability to operate cloud-native applications can generate enormous
business growth and value. But enterprise architects should be aware that
cloud-native applications are vulnerable to vendor lock-in. We investigated
cloud-native application design principles, public cloud service providers, and
industrial cloud standards. All results indicate that most cloud service
categories seem to foster vendor lock-in situations which might be especially
problematic for enterprise architectures. This might sound disillusioning at
first. However, we present a reference model for cloud-native applications that
relies only on a small subset of well standardized IaaS services. The reference
model can be used for codifying cloud technologies. It can guide technology
identification, classification, adoption, research and development processes
for cloud-native application and for vendor lock-in aware enterprise
architecture engineering methodologies
Challenges for the comprehensive management of cloud services in a PaaS framework
The 4CaaSt project aims at developing a PaaS framework that enables flexible definition, marketing, deployment and management of Cloud-based services and applications. The major innovations proposed by 4CaaSt are the blueprint and its lifecycle management, a one stop shop for Cloud services and a PaaS level resource management featuring elasticity. 4CaaSt also provides a portfolio of ready to use Cloud native services and Cloud-aware immigrant technologies
Migrating to Cloud-Native Architectures Using Microservices: An Experience Report
Migration to the cloud has been a popular topic in industry and academia in
recent years. Despite many benefits that the cloud presents, such as high
availability and scalability, most of the on-premise application architectures
are not ready to fully exploit the benefits of this environment, and adapting
them to this environment is a non-trivial task. Microservices have appeared
recently as novel architectural styles that are native to the cloud. These
cloud-native architectures can facilitate migrating on-premise architectures to
fully benefit from the cloud environments because non-functional attributes,
like scalability, are inherent in this style. The existing approaches on cloud
migration does not mostly consider cloud-native architectures as their
first-class citizens. As a result, the final product may not meet its primary
drivers for migration. In this paper, we intend to report our experience and
lessons learned in an ongoing project on migrating a monolithic on-premise
software architecture to microservices. We concluded that microservices is not
a one-fit-all solution as it introduces new complexities to the system, and
many factors, such as distribution complexities, should be considered before
adopting this style. However, if adopted in a context that needs high
flexibility in terms of scalability and availability, it can deliver its
promised benefits
Self-Learning Cloud Controllers: Fuzzy Q-Learning for Knowledge Evolution
Cloud controllers aim at responding to application demands by automatically
scaling the compute resources at runtime to meet performance guarantees and
minimize resource costs. Existing cloud controllers often resort to scaling
strategies that are codified as a set of adaptation rules. However, for a cloud
provider, applications running on top of the cloud infrastructure are more or
less black-boxes, making it difficult at design time to define optimal or
pre-emptive adaptation rules. Thus, the burden of taking adaptation decisions
often is delegated to the cloud application. Yet, in most cases, application
developers in turn have limited knowledge of the cloud infrastructure. In this
paper, we propose learning adaptation rules during runtime. To this end, we
introduce FQL4KE, a self-learning fuzzy cloud controller. In particular, FQL4KE
learns and modifies fuzzy rules at runtime. The benefit is that for designing
cloud controllers, we do not have to rely solely on precise design-time
knowledge, which may be difficult to acquire. FQL4KE empowers users to specify
cloud controllers by simply adjusting weights representing priorities in system
goals instead of specifying complex adaptation rules. The applicability of
FQL4KE has been experimentally assessed as part of the cloud application
framework ElasticBench. The experimental results indicate that FQL4KE
outperforms our previously developed fuzzy controller without learning
mechanisms and the native Azure auto-scaling
4CaaSt: Comprehensive management of Cloud services through a PaaS
The 4CaaSt project aims at developing a PaaS framework that enables flexible definition, marketing, deployment and management of Cloud-based services and applications. The major innovations proposed by 4CaaSt are the blueprint and its management and lifecycle, a one stop shop for Cloud services and the management of resources in the PaaS level (including elasticity). 4CaaSt also provides a portfolio of ready to use Cloud native services and Cloud- aware immigrant technologies
VIoLET: A Large-scale Virtual Environment for Internet of Things
IoT deployments have been growing manifold, encompassing sensors, networks,
edge, fog and cloud resources. Despite the intense interest from researchers
and practitioners, most do not have access to large-scale IoT testbeds for
validation. Simulation environments that allow analytical modeling are a poor
substitute for evaluating software platforms or application workloads in
realistic computing environments. Here, we propose VIoLET, a virtual
environment for defining and launching large-scale IoT deployments within cloud
VMs. It offers a declarative model to specify container-based compute resources
that match the performance of the native edge, fog and cloud devices using
Docker. These can be inter-connected by complex topologies on which
private/public networks, and bandwidth and latency rules are enforced. Users
can configure synthetic sensors for data generation on these devices as well.
We validate VIoLET for deployments with > 400 devices and > 1500 device-cores,
and show that the virtual IoT environment closely matches the expected compute
and network performance at modest costs. This fills an important gap between
IoT simulators and real deployments.Comment: To appear in the Proceedings of the 24TH International European
Conference On Parallel and Distributed Computing (EURO-PAR), August 27-31,
2018, Turin, Italy, europar2018.org. Selected as a Distinguished Paper for
presentation at the Plenary Session of the conferenc
- …
