24,337 research outputs found

    Regulation Theory

    Full text link
    This paper reviews the design of regulation loops for power converters. Power converter control being a vast domain, it does not aim to be exhaustive. The objective is to give a rapid overview of the main synthesis methods in both continuous- and discrete-time domains.Comment: 23 pages, contribution to the 2014 CAS - CERN Accelerator School: Power Converters, Baden, Switzerland, 7-14 May 201

    Geometrically Induced Phase Transitions at Large N

    Full text link
    Utilizing the large N dual description of a metastable system of branes and anti-branes wrapping rigid homologous S^2's in a non-compact Calabi-Yau threefold, we study phase transitions induced by changing the positions of the S^2's. At leading order in 1/N the effective potential for this system is computed by the planar limit of an auxiliary matrix model. Beginning at the two loop correction, the degenerate vacuum energy density of the discrete confining vacua split, and a potential is generated for the axion. Changing the relative positions of the S^2's causes discrete jumps in the energetically preferred confining vacuum and can also obstruct direct brane/anti-brane annihilation processes. The branes must hop to nearby S^2's before annihilating, thus significantly increasing the lifetime of the corresponding non-supersymmetric vacua. We also speculate that misaligned metastable glueball phases may generate a repulsive inter-brane force which stabilizes the radial mode present in compact Calabi-Yau threefolds.Comment: 47 pages, 7 figure

    Control bifurcations

    Get PDF
    A parametrized nonlinear differential equation can have multiple equilibria as the parameter is varied. A local bifurcation of a parametrized differential equation occurs at an equilibrium where there is a change in the topological character of the nearby solution curves. This typically happens because some eigenvalues of the parametrized linear approximating differential equation cross the imaginary axis and there is a change in stability of the equilibrium. The topological nature of the solutions is unchanged by smooth changes of state coordinates so these may be used to bring the differential equation into Poincare/spl acute/ normal form. From this normal form, the type of the bifurcation can be determined. For differential equations depending on a single parameter, the typical ways that the system can bifurcate are fully understood, e.g., the fold (or saddle node), the transcritical and the Hopf bifurcation. A nonlinear control system has multiple equilibria typically parametrized by the set value of the control. A control bifurcation of a nonlinear system typically occurs when its linear approximation loses stabilizability. The ways in which this can happen are understood through the appropriate normal forms. We present the quadratic and cubic normal forms of a scalar input nonlinear control system around an equilibrium point. These are the normal forms under quadratic and cubic change of state coordinates and invertible state feedback. The system need not be linearly controllable. We study some important control bifurcations, the analogues of the classical fold, transcritical and Hopf bifurcations

    Periodic orbit spectrum in terms of Ruelle--Pollicott resonances

    Full text link
    Fully chaotic Hamiltonian systems possess an infinite number of classical solutions which are periodic, e.g. a trajectory ``p'' returns to its initial conditions after some fixed time tau_p. Our aim is to investigate the spectrum tau_1, tau_2, ... of periods of the periodic orbits. An explicit formula for the density rho(tau) = sum_p delta (tau - tau_p) is derived in terms of the eigenvalues of the classical evolution operator. The density is naturally decomposed into a smooth part plus an interferent sum over oscillatory terms. The frequencies of the oscillatory terms are given by the imaginary part of the complex eigenvalues (Ruelle--Pollicott resonances). For large periods, corrections to the well--known exponential growth of the smooth part of the density are obtained. An alternative formula for rho(tau) in terms of the zeros and poles of the Ruelle zeta function is also discussed. The results are illustrated with the geodesic motion in billiards of constant negative curvature. Connections with the statistical properties of the corresponding quantum eigenvalues, random matrix theory and discrete maps are also considered. In particular, a random matrix conjecture is proposed for the eigenvalues of the classical evolution operator of chaotic billiards

    Optimal linear stability condition for scalar differential equations with distributed delay

    Get PDF
    Linear scalar differential equations with distributed delays appear in the study of the local stability of nonlinear differential equations with feedback, which are common in biology and physics. Negative feedback loops tend to promote oscillations around steady states, and their stability depends on the particular shape of the delay distribution. Since in applications the mean delay is often the only reliable information available about the distribution, it is desirable to find conditions for stability that are independent from the shape of the distribution. We show here that for a given mean delay, the linear equation with distributed delay is asymptotically stable if the associated differential equation with a discrete delay is asymptotically stable. We illustrate this criterion on a compartment model of hematopoietic cell dynamics to obtain sufficient conditions for stability
    • …
    corecore