5 research outputs found

    Routing in Polygonal Domains

    Get PDF
    We consider the problem of routing a data packet through the visibility graph of a polygonal domain P with n vertices and h holes. We may preprocess P to obtain a label and a routing table for each vertex. Then, we must be able to route a data packet between any two vertices p and q of Pwhere each step must use only the label of the target node q and the routing table of the current node. For any fixed eps > 0, we pre ent a routing scheme that always achieves a routing path that exceeds the shortest path by a factor of at most 1 + eps. The labels have O(log n) bits, and the routing tables are of size O((eps^{-1} + h) log n). The preprocessing time is O(n^2 log n + hn^2 + eps^{-1}hn). It can be improved to O(n 2 + eps^{-1}n) for simple polygons

    Compact Routing in Unit Disk Graphs

    Get PDF

    Routing in Histograms

    Get PDF
    Let PP be an xx-monotone orthogonal polygon with nn vertices. We call PP a simple histogram if its upper boundary is a single edge; and a double histogram if it has a horizontal chord from the left boundary to the right boundary. Two points pp and qq in PP are co-visible if and only if the (axis-parallel) rectangle spanned by pp and qq completely lies in PP. In the rr-visibility graph G(P)G(P) of PP, we connect two vertices of PP with an edge if and only if they are co-visible. We consider routing with preprocessing in G(P)G(P). We may preprocess PP to obtain a label and a routing table for each vertex of PP. Then, we must be able to route a packet between any two vertices ss and tt of PP, where each step may use only the label of the target node tt, the routing table and neighborhood of the current node, and the packet header. We present a routing scheme for double histograms that sends any data packet along a path whose length is at most twice the (unweighted) shortest path distance between the endpoints. In our scheme, the labels, routing tables, and headers need O(logn)O(\log n) bits. For the case of simple histograms, we obtain a routing scheme with optimal routing paths, O(logn)O(\log n)-bit labels, one-bit routing tables, and no headers.Comment: 18 pages, 11 figure

    Close to Linear Space Routing Schemes

    No full text
    corecore