17,869 research outputs found

    Interactive and Explainable Region-guided Radiology Report Generation

    Full text link
    The automatic generation of radiology reports has the potential to assist radiologists in the time-consuming task of report writing. Existing methods generate the full report from image-level features, failing to explicitly focus on anatomical regions in the image. We propose a simple yet effective region-guided report generation model that detects anatomical regions and then describes individual, salient regions to form the final report. While previous methods generate reports without the possibility of human intervention and with limited explainability, our method opens up novel clinical use cases through additional interactive capabilities and introduces a high degree of transparency and explainability. Comprehensive experiments demonstrate our method's effectiveness in report generation, outperforming previous state-of-the-art models, and highlight its interactive capabilities. The code and checkpoints are available at https://github.com/ttanida/rgrg .Comment: Accepted at CVPR 202

    On the Importance of Image Encoding in Automated Chest X-Ray Report Generation

    Full text link
    Chest X-ray is one of the most popular medical imaging modalities due to its accessibility and effectiveness. However, there is a chronic shortage of well-trained radiologists who can interpret these images and diagnose the patient's condition. Therefore, automated radiology report generation can be a very helpful tool in clinical practice. A typical report generation workflow consists of two main steps: (i) encoding the image into a latent space and (ii) generating the text of the report based on the latent image embedding. Many existing report generation techniques use a standard convolutional neural network (CNN) architecture for image encoding followed by a Transformer-based decoder for medical text generation. In most cases, CNN and the decoder are trained jointly in an end-to-end fashion. In this work, we primarily focus on understanding the relative importance of encoder and decoder components. Towards this end, we analyze four different image encoding approaches: direct, fine-grained, CLIP-based, and Cluster-CLIP-based encodings in conjunction with three different decoders on the large-scale MIMIC-CXR dataset. Among these encoders, the cluster CLIP visual encoder is a novel approach that aims to generate more discriminative and explainable representations. CLIP-based encoders produce comparable results to traditional CNN-based encoders in terms of NLP metrics, while fine-grained encoding outperforms all other encoders both in terms of NLP and clinical accuracy metrics, thereby validating the importance of image encoder to effectively extract semantic information. GitHub repository: https://github.com/mudabek/encoding-cxr-report-ge

    Advancing Medical Imaging with Language Models: A Journey from N-grams to ChatGPT

    Full text link
    In this paper, we aimed to provide a review and tutorial for researchers in the field of medical imaging using language models to improve their tasks at hand. We began by providing an overview of the history and concepts of language models, with a special focus on large language models. We then reviewed the current literature on how language models are being used to improve medical imaging, emphasizing different applications such as image captioning, report generation, report classification, finding extraction, visual question answering, interpretable diagnosis, and more for various modalities and organs. The ChatGPT was specially highlighted for researchers to explore more potential applications. We covered the potential benefits of accurate and efficient language models for medical imaging analysis, including improving clinical workflow efficiency, reducing diagnostic errors, and assisting healthcare professionals in providing timely and accurate diagnoses. Overall, our goal was to bridge the gap between language models and medical imaging and inspire new ideas and innovations in this exciting area of research. We hope that this review paper will serve as a useful resource for researchers in this field and encourage further exploration of the possibilities of language models in medical imaging
    • …
    corecore