28,598 research outputs found

    The effects of clinical hypnosis versus Neurolinguistic Programming (NLP) before External Cephalic Version (ECV) : a prospective off-centre randomised, double-blind, controlled trial

    Get PDF
    Objective. To examine the effects of clinical hypnosis versus NLP intervention on the success rate of ECV procedures in comparison to a control group. Methods. A prospective off-centre randomised trial of a clinical hypnosis intervention against NLP of women with a singleton breech fetus at or after 370/7 (259 days) weeks of gestation and normal amniotic fluid index. All 80 participants heard a 20-minute recorded intervention via head phones. Main outcome assessed was success rate of ECV. The intervention groups were compared with a control group with standard medical care alone (n=122). Results. A total of 42 women, who received a hypnosis intervention prior to ECV, had a 40.5% (n=17), successful ECV, whereas 38 women, who received NLP, had a 44.7% (n=17) successful ECV (P > 0.05). The control group had similar patient characteristics compared to the intervention groups (P > 0.05). In the control group (n = 122) 27.3% (n = 33) had a statistically significant lower successful ECV procedure than NLP (P = 0.05) and hypnosis and NLP (P = 0.03). Conclusions. These findings suggest that prior clinical hypnosis and NLP have similar success rates of ECV procedures and are both superior to standard medical care alone

    Towards Automatic Generation of Shareable Synthetic Clinical Notes Using Neural Language Models

    Full text link
    Large-scale clinical data is invaluable to driving many computational scientific advances today. However, understandable concerns regarding patient privacy hinder the open dissemination of such data and give rise to suboptimal siloed research. De-identification methods attempt to address these concerns but were shown to be susceptible to adversarial attacks. In this work, we focus on the vast amounts of unstructured natural language data stored in clinical notes and propose to automatically generate synthetic clinical notes that are more amenable to sharing using generative models trained on real de-identified records. To evaluate the merit of such notes, we measure both their privacy preservation properties as well as utility in training clinical NLP models. Experiments using neural language models yield notes whose utility is close to that of the real ones in some clinical NLP tasks, yet leave ample room for future improvements.Comment: Clinical NLP Workshop 201

    Implementing a Portable Clinical NLP System with a Common Data Model - a Lisp Perspective

    Full text link
    This paper presents a Lisp architecture for a portable NLP system, termed LAPNLP, for processing clinical notes. LAPNLP integrates multiple standard, customized and in-house developed NLP tools. Our system facilitates portability across different institutions and data systems by incorporating an enriched Common Data Model (CDM) to standardize necessary data elements. It utilizes UMLS to perform domain adaptation when integrating generic domain NLP tools. It also features stand-off annotations that are specified by positional reference to the original document. We built an interval tree based search engine to efficiently query and retrieve the stand-off annotations by specifying positional requirements. We also developed a utility to convert an inline annotation format to stand-off annotations to enable the reuse of clinical text datasets with inline annotations. We experimented with our system on several NLP facilitated tasks including computational phenotyping for lymphoma patients and semantic relation extraction for clinical notes. These experiments showcased the broader applicability and utility of LAPNLP.Comment: 6 pages, accepted by IEEE BIBM 2018 as regular pape

    Knowledge-based best of breed approach for automated detection of clinical events based on German free text digital hospital discharge letters

    Get PDF
    OBJECTIVES: The secondary use of medical data contained in electronic medical records, such as hospital discharge letters, is a valuable resource for the improvement of clinical care (e.g. in terms of medication safety) or for research purposes. However, the automated processing and analysis of medical free text still poses a huge challenge to available natural language processing (NLP) systems. The aim of this study was to implement a knowledge-based best of breed approach, combining a terminology server with integrated ontology, a NLP pipeline and a rules engine. METHODS: We tested the performance of this approach in a use case. The clinical event of interest was the particular drug-disease interaction "proton-pump inhibitor [PPI] use and osteoporosis". Cases were to be identified based on free text digital discharge letters as source of information. Automated detection was validated against a gold standard. RESULTS: Precision of recognition of osteoporosis was 94.19%, and recall was 97.45%. PPIs were detected with 100% precision and 97.97% recall. The F-score for the detection of the given drug-disease-interaction was 96,13%. CONCLUSION: We could show that our approach of combining a NLP pipeline, a terminology server, and a rules engine for the purpose of automated detection of clinical events such as drug-disease interactions from free text digital hospital discharge letters was effective. There is huge potential for the implementation in clinical and research contexts, as this approach enables analyses of very high numbers of medical free text documents within a short time period

    Using Machine Learning and Natural Language Processing to Review and Classify the Medical Literature on Cancer Susceptibility Genes

    Full text link
    PURPOSE: The medical literature relevant to germline genetics is growing exponentially. Clinicians need tools monitoring and prioritizing the literature to understand the clinical implications of the pathogenic genetic variants. We developed and evaluated two machine learning models to classify abstracts as relevant to the penetrance (risk of cancer for germline mutation carriers) or prevalence of germline genetic mutations. METHODS: We conducted literature searches in PubMed and retrieved paper titles and abstracts to create an annotated dataset for training and evaluating the two machine learning classification models. Our first model is a support vector machine (SVM) which learns a linear decision rule based on the bag-of-ngrams representation of each title and abstract. Our second model is a convolutional neural network (CNN) which learns a complex nonlinear decision rule based on the raw title and abstract. We evaluated the performance of the two models on the classification of papers as relevant to penetrance or prevalence. RESULTS: For penetrance classification, we annotated 3740 paper titles and abstracts and used 60% for training the model, 20% for tuning the model, and 20% for evaluating the model. The SVM model achieves 89.53% accuracy (percentage of papers that were correctly classified) while the CNN model achieves 88.95 % accuracy. For prevalence classification, we annotated 3753 paper titles and abstracts. The SVM model achieves 89.14% accuracy while the CNN model achieves 89.13 % accuracy. CONCLUSION: Our models achieve high accuracy in classifying abstracts as relevant to penetrance or prevalence. By facilitating literature review, this tool could help clinicians and researchers keep abreast of the burgeoning knowledge of gene-cancer associations and keep the knowledge bases for clinical decision support tools up to date

    A Short Review of Ethical Challenges in Clinical Natural Language Processing

    Full text link
    Clinical NLP has an immense potential in contributing to how clinical practice will be revolutionized by the advent of large scale processing of clinical records. However, this potential has remained largely untapped due to slow progress primarily caused by strict data access policies for researchers. In this paper, we discuss the concern for privacy and the measures it entails. We also suggest sources of less sensitive data. Finally, we draw attention to biases that can compromise the validity of empirical research and lead to socially harmful applications.Comment: First Workshop on Ethics in Natural Language Processing (EACL'17
    corecore