174 research outputs found

    Preserving Established Communications in IPv6 Multi-homed Sites with MEX

    Get PDF
    This research was supported by the SAM (Advanced Mobility Services) project, funded by the Spanish National R&D Programme under contract MCYT TIC2002-04531-C04-03.A proper support for multimedia communications transport has to provide fault tolerance capabilities such as the preservation of established connections in case of failures. While multi-homing addresses this issue, the currently available solution based in massive BGP route injection presents serious scalability limitations, since it contributes to the exponential growth of the BGP table size. Alternative solutions proposed for IPv6 fail to provide equivalent facilities to the current BGP based solution. In this paper we present MEX (Muti-homing through EXtension header) a novel proposal for the provision of IPv6 multi-homing capabilities. MEX preserves overall scalability by storing alternative route information in end-hosts while at the same time reduces packet loss by allowing routers to re-route in-course packets. This behavior is enabled by conveying alternative route information within packets inside a newly defined Extension Header. The resulting system provides fault tolerance capabilities and preserves scalability, while the incurred costs, namely deployment and packet overhead, are only imposed to those that benefit from it. An implementation of the MEX host and router components is also presented.Publicad

    Internet Bad Neighborhoods Aggregation

    Get PDF
    Internet Bad Neighborhoods have proven to be an innovative approach for fighting spam. They have also helped to understand how spammers are distributed on the Internet. In our previous works, the size of each bad neighborhood was fixed to a /24 subnetwork. In this paper, however, we investigate if it is feasible to aggregate Internet bad neighborhoods not only at /24, but to any network prefix. To do that, we propose two different aggregation strategies: fixed prefix and variable prefix. The motivation for doing that is to reduce the number of entries in the bad neighborhood list, thus reducing memory storage requirements for intrusion detection solutions. We also introduce two error measures that allow to quantify how much error was incurred by the aggregation process. An evaluation of both strategies was conducted by analyzing real world data in our aggregation prototype

    A Survey on Internet Protocol version 4 (IPv4)

    Get PDF
    Internet Protocol version 4 (IPv4) is an internetwork protocol that is active at the internet layer according to the TCP/IP model, it was developed in 1981 within a project managed by Defense Advanced Research Projects Agency. In the following years, the use of IPv4 grew to dominate data networks around the world, becoming the backbone of the modern Internet. In this survey, we highlight the operation of the protocol, explain its header structure, and show how it provides the following functions: Quality of service control, host addressing, data packet fragmentation and reassembly, connection multiplexing, and source routing. Furthermore, we handle both address-related and fragmentation-related implementation problems, focusing on the IPv4 address space exhaustion and explaining the short and long terms proposed solutions. Finally, this survey highlights several auxiliary protocols that provide solutions to IPV, namely address resolution, error reporting, multicast management, and security

    HIDRA: Hierarchical Inter-Domain Routing Architecture

    Get PDF
    As the Internet continues to expand, the global default-free zone (DFZ) forwarding table has begun to grow faster than hardware can economically keep pace with. Various policies are in place to mitigate this growth rate, but current projections indicate policy alone is inadequate. As such, a number of technical solutions have been proposed. This work builds on many of these proposed solutions, and furthers the debate surrounding the resolution to this problem. It discusses several design decisions necessary to any proposed solution, and based on these tradeoffs it proposes a Hierarchical Inter-Domain Routing Architecture - HIDRA, a comprehensive architecture with a plausible deployment scenario. The architecture uses a locator/identifier split encapsulation scheme to attenuate both the immediate size of the DFZ forwarding table, and the projected growth rate. This solution is based off the usage of an already existing number allocation policy - Autonomous System Numbers (ASNs). HIDRA has been deployed to a sandbox network in a proof-of-concept test, yielding promising results

    An investigation into some critical computer networking parameters : Internet addressing and routing

    Get PDF
    This thesis describes the evaluation of several proposals suggested as replacements for the currenT Internet's TCPJIP protocol suite. The emphasis of this thesis is on how the proposals solve the current routing and addressing problems associated with the Internet. The addressing problem is found to be related to address space depletion, and the routing problem related to excessive routing costs. The evaluation is performed based on criteria selected for their applicability as future Internet design criteria. AIl the protocols are evaluated using the above-mentioned criteria. It is concluded that the most suitable addressing mechanism is an expandable multi-level format, with a logical separation of location and host identification information. Similarly, the most suitable network representation technique is found to be an unrestricted hierarchical structure which uses a suitable abstraction mechanism. It is further found that these two solutions could adequately solve the existing addressing and routing problems and allow substantial growth of the Internet

    Revisiting Internet Adressing: Back to the Future!

    Get PDF
    IP prefixes undermine three goals of Internet routing: accurate reflection of network-layer reachability, secure routing messages, and effective traffic control. This paper presents Atomic IP (AIP), a simple change to Internet addressing (which in fact reverts to how addressing once worked), that allows Internet routing to achieve these goals

    A QoS-Driven ISP Selection Mechanism for IPv6 Multi-homed Sites

    Get PDF
    A global solution for the provision of QoS in IPng sites must include ISP selection based on per-application requirements. In this article we present a new site-local architecture for QoS-driven ISP selection in multi-homed domains, performed in a per application basis. This architecture proposes the novel use of existent network services, a new type of routing header, and the modification of address selection mechanisms to take into account QoS requirements. This proposal is an evolution of current technology, and therefore precludes the addition of new protocols, enabling fast deployment. The sitelocal scope of the proposed solution results in ISP transparency and thus in ISP independency.This research was supported by the LONG (Laboratories Over the Next Generation Networks) project IST-1999-20393.Publicad

    Measuring Effectiveness of Address Schemes for AS-level Graphs

    Get PDF
    This dissertation presents measures of efficiency and locality for Internet addressing schemes. Historically speaking, many issues, faced by the Internet, have been solved just in time, to make the Internet just work~\cite{justWork}. Consensus, however, has been reached that today\u27s Internet routing and addressing system is facing serious scaling problems: multi-homing which causes finer granularity of routing policies and finer control to realize various traffic engineering requirements, an increased demand for provider-independent prefix allocations which injects unaggregatable prefixes into the Default Free Zone (DFZ) routing table, and ever-increasing Internet user population and mobile edge devices. As a result, the DFZ routing table is again growing at an exponential rate. Hierarchical, topology-based addressing has long been considered crucial to routing and forwarding scalability. Recently, however, a number of research efforts are considering alternatives to this traditional approach. With the goal of informing such research, we investigated the efficiency of address assignment in the existing (IPv4) Internet. In particular, we ask the question: ``how can we measure the locality of an address scheme given an input AS-level graph?\u27\u27 To do so, we first define a notion of efficiency or locality based on the average number of bit-hops required to advertize all prefixes in the Internet. In order to quantify how far from ``optimal the current Internet is, we assign prefixes to ASes ``from scratch in a manner that preserves observed semantics, using three increasingly strict definitions of equivalence. Next we propose another metric that in some sense quantifies the ``efficiency of the labeling and is independent of forwarding/routing mechanisms. We validate the effectiveness of the metric by applying it to a series of address schemes with increasing randomness given an input AS-level graph. After that we apply the metric to the current Internet address scheme across years and compare the results with those of compact routing schemes
    • …
    corecore