2 research outputs found

    Classifying the Auditory P300 using mobile EEG recordings without calibration phase

    Get PDF
    One of the major drawbacks in mobile EEG Brain Computer Interfaces (BCI) is the need for subject specific training data to train a classifier. By removing the need for supervised classification and calibration phase, new users could start immediate interaction with a BCI. We propose a solution to exploit the structural difference by means of canonical polyadic decomposition (CPD) for three-class auditory oddball data without the need for subject-specific information. We achieve this by adding average event-related-potential (ERP) templates to the CPD model. This constitutes a novel similarity measure between single-trial pairs and known-templates, which results in a fast and interpretable classifier. These results have similar accuracy to those of the supervised and cross-validated stepwise LDA approach but without the need for having subject-dependent data. Therefore the described CPD method has a significant practical advantage over the traditional and widely used approach.status: publishe

    Classifying the auditory P300 using mobile EEG recordings without calibration phase

    No full text
    corecore