7,495 research outputs found

    On Refining Twitter Lists as Ground Truth Data for Multi-Community User Classification

    Get PDF
    To help scholars and businesses understand and analyse Twitter users, it is useful to have classifiers that can identify the communities that a given user belongs to, e.g. business or politics. Obtaining high quality training data is an important step towards producing an effective multi-community classifier. An efficient approach for creating such ground truth data is to extract users from existing public Twitter lists, where those lists represent different communities, e.g. a list of journalists. However, ground truth datasets obtained using such lists can be noisy, since not all users that belong to a community are good training examples for that community. In this paper, we conduct a thorough failure analysis of a ground truth dataset generated using Twitter lists. We discuss how some categories of users collected from these Twitter public lists could negatively affect the classification performance and therefore should not be used for training. Through experiments with 3 classifiers and 5 communities, we show that removing ambiguous users based on their tweets and profile can indeed result in a 10% increase in F1 performance

    Leveraging Personal Navigation Assistant Systems Using Automated Social Media Traffic Reporting

    Full text link
    Modern urbanization is demanding smarter technologies to improve a variety of applications in intelligent transportation systems to relieve the increasing amount of vehicular traffic congestion and incidents. Existing incident detection techniques are limited to the use of sensors in the transportation network and hang on human-inputs. Despite of its data abundance, social media is not well-exploited in such context. In this paper, we develop an automated traffic alert system based on Natural Language Processing (NLP) that filters this flood of information and extract important traffic-related bullets. To this end, we employ the fine-tuning Bidirectional Encoder Representations from Transformers (BERT) language embedding model to filter the related traffic information from social media. Then, we apply a question-answering model to extract necessary information characterizing the report event such as its exact location, occurrence time, and nature of the events. We demonstrate the adopted NLP approaches outperform other existing approach and, after effectively training them, we focus on real-world situation and show how the developed approach can, in real-time, extract traffic-related information and automatically convert them into alerts for navigation assistance applications such as navigation apps.Comment: This paper is accepted for publication in IEEE Technology Engineering Management Society International Conference (TEMSCON'20), Metro Detroit, Michigan (USA

    Modeling Crowd Feedback in the Mobile App Market

    Get PDF
    Mobile application (app) stores, such as Google Play and the Apple App Store, have recently emerged as a new model of online distribution platform. These stores have expanded in size in the past five years to host millions of apps, offering end-users of mobile software virtually unlimited options to choose from. In such a competitive market, no app is too big to fail. In fact, recent evidence has shown that most apps lose their users within the first 90 days after initial release. Therefore, app developers have to remain up-to-date with their end-users’ needs in order to survive. Staying close to the user not only minimizes the risk of failure, but also serves as a key factor in achieving market competitiveness as well as managing and sustaining innovation. However, establishing effective communication channels with app users can be a very challenging and demanding process. Specifically, users\u27 needs are often tacit, embedded in the complex interplay between the user, system, and market components of the mobile app ecosystem. Furthermore, such needs are scattered over multiple channels of feedback, such as app store reviews and social media platforms. To address these challenges, in this dissertation, we incorporate methods of requirements modeling, data mining, domain engineering, and market analysis to develop a novel set of algorithms and tools for automatically classifying, synthesizing, and modeling the crowd\u27s feedback in the mobile app market. Our analysis includes a set of empirical investigations and case studies, utilizing multiple large-scale datasets of mobile user data, in order to devise, calibrate, and validate our algorithms and tools. The main objective is to introduce a new form of crowd-driven software models that can be used by app developers to effectively identify and prioritize their end-users\u27 concerns, develop apps to meet these concerns, and uncover optimized pathways of survival in the mobile app ecosystem
    • …
    corecore