152,277 research outputs found
Committee-Based Sample Selection for Probabilistic Classifiers
In many real-world learning tasks, it is expensive to acquire a sufficient
number of labeled examples for training. This paper investigates methods for
reducing annotation cost by `sample selection'. In this approach, during
training the learning program examines many unlabeled examples and selects for
labeling only those that are most informative at each stage. This avoids
redundantly labeling examples that contribute little new information. Our work
follows on previous research on Query By Committee, extending the
committee-based paradigm to the context of probabilistic classification. We
describe a family of empirical methods for committee-based sample selection in
probabilistic classification models, which evaluate the informativeness of an
example by measuring the degree of disagreement between several model variants.
These variants (the committee) are drawn randomly from a probability
distribution conditioned by the training set labeled so far. The method was
applied to the real-world natural language processing task of stochastic
part-of-speech tagging. We find that all variants of the method achieve a
significant reduction in annotation cost, although their computational
efficiency differs. In particular, the simplest variant, a two member committee
with no parameters to tune, gives excellent results. We also show that sample
selection yields a significant reduction in the size of the model used by the
tagger
Using multiple classifiers for predicting the risk of endovascular aortic aneurysm repair re-intervention through hybrid feature selection.
Feature selection is essential in medical area; however, its process becomes complicated with the presence of censoring which is the unique character of survival analysis. Most survival feature selection methods are based on Cox's proportional hazard model, though machine learning classifiers are preferred. They are less employed in survival analysis due to censoring which prevents them from directly being used to survival data. Among the few work that employed machine learning classifiers, partial logistic artificial neural network with auto-relevance determination is a well-known method that deals with censoring and perform feature selection for survival data. However, it depends on data replication to handle censoring which leads to unbalanced and biased prediction results especially in highly censored data. Other methods cannot deal with high censoring. Therefore, in this article, a new hybrid feature selection method is proposed which presents a solution to high level censoring. It combines support vector machine, neural network, and K-nearest neighbor classifiers using simple majority voting and a new weighted majority voting method based on survival metric to construct a multiple classifier system. The new hybrid feature selection process uses multiple classifier system as a wrapper method and merges it with iterated feature ranking filter method to further reduce features. Two endovascular aortic repair datasets containing 91% censored patients collected from two centers were used to construct a multicenter study to evaluate the performance of the proposed approach. The results showed the proposed technique outperformed individual classifiers and variable selection methods based on Cox's model such as Akaike and Bayesian information criterions and least absolute shrinkage and selector operator in p values of the log-rank test, sensitivity, and concordance index. This indicates that the proposed classifier is more powerful in correctly predicting the risk of re-intervention enabling doctor in selecting patients' future follow-up plan
uBoost: A boosting method for producing uniform selection efficiencies from multivariate classifiers
The use of multivariate classifiers, especially neural networks and decision
trees, has become commonplace in particle physics. Typically, a series of
classifiers is trained rather than just one to enhance the performance; this is
known as boosting. This paper presents a novel method of boosting that produces
a uniform selection efficiency in a user-defined multivariate space. Such a
technique is ideally suited for amplitude analyses or other situations where
optimizing a single integrated figure of merit is not what is desired
Using online linear classifiers to filter spam Emails
The performance of two online linear classifiers - the Perceptron and Littlestone’s Winnow – is explored for two anti-spam filtering benchmark corpora - PU1 and Ling-Spam. We study the performance for varying numbers of features, along with three different feature selection methods: Information Gain (IG), Document Frequency (DF) and Odds Ratio. The size of the training set and the number of training iterations are also investigated for both classifiers. The experimental results show that both the Perceptron and Winnow perform much better when using IG or DF than using Odds Ratio. It is further demonstrated that when using IG or DF, the classifiers are insensitive to the number of features and the number of training iterations, and not greatly sensitive to the size of training set. Winnow is shown to slightly outperform the Perceptron. It is also demonstrated that both of these online classifiers perform much better than a standard Naïve Bayes method. The theoretical and implementation computational complexity of these two classifiers are very low, and they are very easily adaptively updated. They outperform most of the published results, while being significantly easier to train and adapt. The analysis and promising experimental results indicate that the Perceptron and Winnow are two very competitive classifiers for anti-spam filtering
- …
