87 research outputs found

    On reducing the effect of silhouette quality on Iindividual gait recognition : a feature fusion approach

    Get PDF
    The quality of the extracted gait silhouettes can hinder the performance and practicability of gait recognition algorithms. In this paper, we propose a framework that integrates a feature fusion approach to improve recognition rate under this situation. Specifically, we first generate a dataset containing gait silhouettes with various qualities based on the CASIA Dataset B. We then fuse gallery data with different qualities and project data into embedded subspaces.We perform classification based on the Euclidean distances between fused gallery features and probe features. Experimental results show that the proposed framework can provide important improvements on recognition rate

    Efficient 3D Face Recognition with Gabor Patched Spectral Regression

    Get PDF
    In this paper, we utilize a novel framework for 3D face recognition, called 3D Gabor Patched Spectral Regression (3D GPSR), which can overcome some of the continuing challenges encountered with 2D or 3D facial images. In this active field, some obstacles, like expression variations, pose correction and data noise deteriorate the performance significantly. Our proposed system addresses these problems by first extracting the main facial area to remove irrelevant information corresponding to shoulders and necks. Pose correction is used to minimize the influence of large pose variations and then the normalized depth and gray images can be obtained. Due to better time-frequency characteristics and a distinctive biological background, the Gabor feature is extracted on depth images, known as 3D Gabor faces. Data noise is mainly caused by distorted meshes, varieties of subordinates and misalignment. To solve these problems, we introduce a Patched Spectral Regression strategy, which can make good use of the robustness and efficiency of accurate patched discriminant low-dimension features and minimize the effect of noise term. Computational analysis shows that spectral regression is much faster than the traditional approaches. Our experiments are based on the CASIA and FRGC 3D face databases which contain a huge number of challenging data. Experimental results show that our framework consistently outperforms the other existing methods with the distinctive characteristics of efficiency, robustness and generality

    Palmprint identification using restricted fusion

    Get PDF
    2008-2009 > Academic research: refereed > Publication in refereed journalAccepted ManuscriptPublishe

    Feature extraction and fusion techniques for patch-based face recognition

    Get PDF
    Face recognition is one of the most addressed pattern recognition problems in recent studies due to its importance in security applications and human computer interfaces. After decades of research in the face recognition problem, feasible technologies are becoming available. However, there is still room for improvement for challenging cases. As such, face recognition problem still attracts researchers from image processing, pattern recognition and computer vision disciplines. Although there exists other types of personal identification such as fingerprint recognition and retinal/iris scans, all these methods require the collaboration of the subject. However, face recognition differs from these systems as facial information can be acquired without collaboration or knowledge of the subject of interest. Feature extraction is a crucial issue in face recognition problem and the performance of the face recognition systems depend on the reliability of the features extracted. Previously, several dimensionality reduction methods were proposed for feature extraction in the face recognition problem. In this thesis, in addition to dimensionality reduction methods used previously for face recognition problem, we have implemented recently proposed dimensionality reduction methods on a patch-based face recognition system. Patch-based face recognition is a recent method which uses the idea of analyzing face images locally instead of using global representation, in order to reduce the effects of illumination changes and partial occlusions. Feature fusion and decision fusion are two distinct ways to make use of the extracted local features. Apart from the well-known decision fusion methods, a novel approach for calculating weights for the weighted sum rule is proposed in this thesis. On two separate databases, we have conducted both feature fusion and decision fusion experiments and presented recognition accuracies for different dimensionality reduction and normalization methods. Improvements in recognition accuracies are shown and superiority of decision fusion over feature fusion is advocated. Especially in the more challenging AR database, we obtain significantly better results using decision fusion as compared to conventional methods and feature fusion methods

    Automated dental identification: A micro-macro decision-making approach

    Get PDF
    Identification of deceased individuals based on dental characteristics is receiving increased attention, especially with the large volume of victims encountered in mass disasters. In this work we consider three important problems in automated dental identification beyond the basic approach of tooth-to-tooth matching.;The first problem is on automatic classification of teeth into incisors, canines, premolars and molars as part of creating a data structure that guides tooth-to-tooth matching, thus avoiding illogical comparisons that inefficiently consume the limited computational resources and may also mislead the decision-making. We tackle this problem using principal component analysis and string matching techniques. We reconstruct the segmented teeth using the eigenvectors of the image subspaces of the four teeth classes, and then call the teeth classes that achieve least energy-discrepancy between the novel teeth and their approximations. We exploit teeth neighborhood rules in validating teeth-classes and hence assign each tooth a number corresponding to its location in a dental chart. Our approach achieves 82% teeth labeling accuracy based on a large test dataset of bitewing films.;Because dental radiographic films capture projections of distinct teeth; and often multiple views for each of the distinct teeth, in the second problem we look for a scheme that exploits teeth multiplicity to achieve more reliable match decisions when we compare the dental records of a subject and a candidate match. Hence, we propose a hierarchical fusion scheme that utilizes both aspects of teeth multiplicity for improving teeth-level (micro) and case-level (macro) decision-making. We achieve a genuine accept rate in excess of 85%.;In the third problem we study the performance limits of dental identification due to features capabilities. We consider two types of features used in dental identification, namely teeth contours and appearance features. We propose a methodology for determining the number of degrees of freedom possessed by a feature set, as a figure of merit, based on modeling joint distributions using copulas under less stringent assumptions on the dependence between feature dimensions. We also offer workable approximations of this approach
    corecore