2 research outputs found

    Feature Space Augmentation: Improving Prediction Accuracy of Classical Problems in Cognitive Science and Computer Vison

    Get PDF
    The prediction accuracy in many classical problems across multiple domains has seen a rise since computational tools such as multi-layer neural nets and complex machine learning algorithms have become widely accessible to the research community. In this research, we take a step back and examine the feature space in two problems from very different domains. We show that novel augmentation to the feature space yields higher performance. Emotion Recognition in Adults from a Control Group: The objective is to quantify the emotional state of an individual at any time using data collected by wearable sensors. We define emotional state as a mixture of amusement, anger, disgust, fear, sadness, anxiety and neutral and their respective levels at any time. The generated model predicts an individual’s dominant state and generates an emotional spectrum, 1x7 vector indicating levels of each emotional state and anxiety. We present an iterative learning framework that alters the feature space uniquely to an individual’s emotion perception, and predicts the emotional state using the individual specific feature space. Hybrid Feature Space for Image Classification: The objective is to improve the accuracy of existing image recognition by leveraging text features from the images. As humans, we perceive objects using colors, dimensions, geometry and any textual information we can gather. Current image recognition algorithms rely exclusively on the first 3 and do not use the textual information. This study develops and tests an approach that trains a classifier on a hybrid text based feature space that has comparable accuracy to the state of the art CNN’s while being significantly inexpensive computationally. Moreover, when combined with CNN’S the approach yields a statistically significant boost in accuracy. Both models are validated using cross validation and holdout validation, and are evaluated against the state of the art

    Using customised image processing for noise reduction to extract data from early 20th century African newspapers

    Get PDF
    A research report submitted to the Faculty of Engineering and the Built Environment, University of the Witwatersrand, Johannesburg, in partial fulfilment of the requirements for the degree of Master of Science in Engineering, 2017The images from the African articles dataset presented challenges to the Optical Character Recognition (OCR) tool. Despite successful binerisation in the Image Processing step of the pipeline, noise remained in the foreground of the images. This noise caused the OCR tool to misinterpret the text from the images and thus needed removal from the foreground. The technique involved the application of the Maximally Stable Extremal Region (MSER) algorithm, borrowed from Scene-Text Detection, and supervised machine learning classifiers. The algorithm creates regions from the foreground elements. Regions are classifiable into noise and characters based on the characteristics of their shapes. Classifiers were trained to recognise noise and characters. The technique is useful for a researcher wanting to process and analyse the large dataset. They could semi-automate the foreground noise-removal process using this technique. This would allow for better quality OCR output, for use in the Text Analysis step of the pipeline. Better OCR quality means less compromises would be required at the Text Analysis step. These concessions can lead to false results when searching noisy text. Fewer compromises means simpler, less error-prone analysis and more trustworthy results. The technique was tested against specifically selected images from the dataset which exhibited noise. It involved a number of steps. Training regions were selected and manually classified. After training and running many classifiers, the highest performing classifier was selected. The classifier categorised regions from all images. New images were created by removing noise regions from the original images. To discover whether an improvement in the OCR output was achieved, a text comparison was conducted. OCR text was generated from both the original and processed images. The two outputs of each image were compared for similarity against the test text. The test text was a manually created version of the expected OCR output per image. The similarity test for both original and processed images produced a score. A change in the similarity score indicated whether the technique had successfully removed noise or not. The test results showed that blotches in the foreground could be removed, and OCR output improved. Bleed-through and page fold noise was not removable. For images affected by noise blotches, this technique can be applied and hence less concessions will be needed when processing the text generated from those images.CK201
    corecore