24,878 research outputs found

    Classification with Costly Features using Deep Reinforcement Learning

    Full text link
    We study a classification problem where each feature can be acquired for a cost and the goal is to optimize a trade-off between the expected classification error and the feature cost. We revisit a former approach that has framed the problem as a sequential decision-making problem and solved it by Q-learning with a linear approximation, where individual actions are either requests for feature values or terminate the episode by providing a classification decision. On a set of eight problems, we demonstrate that by replacing the linear approximation with neural networks the approach becomes comparable to the state-of-the-art algorithms developed specifically for this problem. The approach is flexible, as it can be improved with any new reinforcement learning enhancement, it allows inclusion of pre-trained high-performance classifier, and unlike prior art, its performance is robust across all evaluated datasets.Comment: AAAI 201

    Learning to infer: RL-based search for DNN primitive selection on Heterogeneous Embedded Systems

    Full text link
    Deep Learning is increasingly being adopted by industry for computer vision applications running on embedded devices. While Convolutional Neural Networks' accuracy has achieved a mature and remarkable state, inference latency and throughput are a major concern especially when targeting low-cost and low-power embedded platforms. CNNs' inference latency may become a bottleneck for Deep Learning adoption by industry, as it is a crucial specification for many real-time processes. Furthermore, deployment of CNNs across heterogeneous platforms presents major compatibility issues due to vendor-specific technology and acceleration libraries. In this work, we present QS-DNN, a fully automatic search based on Reinforcement Learning which, combined with an inference engine optimizer, efficiently explores through the design space and empirically finds the optimal combinations of libraries and primitives to speed up the inference of CNNs on heterogeneous embedded devices. We show that, an optimized combination can achieve 45x speedup in inference latency on CPU compared to a dependency-free baseline and 2x on average on GPGPU compared to the best vendor library. Further, we demonstrate that, the quality of results and time "to-solution" is much better than with Random Search and achieves up to 15x better results for a short-time search

    Machine Learning for Fluid Mechanics

    Full text link
    The field of fluid mechanics is rapidly advancing, driven by unprecedented volumes of data from field measurements, experiments and large-scale simulations at multiple spatiotemporal scales. Machine learning offers a wealth of techniques to extract information from data that could be translated into knowledge about the underlying fluid mechanics. Moreover, machine learning algorithms can augment domain knowledge and automate tasks related to flow control and optimization. This article presents an overview of past history, current developments, and emerging opportunities of machine learning for fluid mechanics. It outlines fundamental machine learning methodologies and discusses their uses for understanding, modeling, optimizing, and controlling fluid flows. The strengths and limitations of these methods are addressed from the perspective of scientific inquiry that considers data as an inherent part of modeling, experimentation, and simulation. Machine learning provides a powerful information processing framework that can enrich, and possibly even transform, current lines of fluid mechanics research and industrial applications.Comment: To appear in the Annual Reviews of Fluid Mechanics, 202

    Deep Object-Centric Representations for Generalizable Robot Learning

    Full text link
    Robotic manipulation in complex open-world scenarios requires both reliable physical manipulation skills and effective and generalizable perception. In this paper, we propose a method where general purpose pretrained visual models serve as an object-centric prior for the perception system of a learned policy. We devise an object-level attentional mechanism that can be used to determine relevant objects from a few trajectories or demonstrations, and then immediately incorporate those objects into a learned policy. A task-independent meta-attention locates possible objects in the scene, and a task-specific attention identifies which objects are predictive of the trajectories. The scope of the task-specific attention is easily adjusted by showing demonstrations with distractor objects or with diverse relevant objects. Our results indicate that this approach exhibits good generalization across object instances using very few samples, and can be used to learn a variety of manipulation tasks using reinforcement learning

    Discovering Blind Spots in Reinforcement Learning

    Full text link
    Agents trained in simulation may make errors in the real world due to mismatches between training and execution environments. These mistakes can be dangerous and difficult to discover because the agent cannot predict them a priori. We propose using oracle feedback to learn a predictive model of these blind spots to reduce costly errors in real-world applications. We focus on blind spots in reinforcement learning (RL) that occur due to incomplete state representation: The agent does not have the appropriate features to represent the true state of the world and thus cannot distinguish among numerous states. We formalize the problem of discovering blind spots in RL as a noisy supervised learning problem with class imbalance. We learn models to predict blind spots in unseen regions of the state space by combining techniques for label aggregation, calibration, and supervised learning. The models take into consideration noise emerging from different forms of oracle feedback, including demonstrations and corrections. We evaluate our approach on two domains and show that it achieves higher predictive performance than baseline methods, and that the learned model can be used to selectively query an oracle at execution time to prevent errors. We also empirically analyze the biases of various feedback types and how they influence the discovery of blind spots.Comment: To appear at AAMAS 201
    corecore