18,064 research outputs found

    Quantitative Screening of Cervical Cancers for Low-Resource Settings: Pilot Study of Smartphone-Based Endoscopic Visual Inspection After Acetic Acid Using Machine Learning Techniques

    Get PDF
    Background: Approximately 90% of global cervical cancer (CC) is mostly found in low- and middle-income countries. In most cases, CC can be detected early through routine screening programs, including a cytology-based test. However, it is logistically difficult to offer this program in low-resource settings due to limited resources and infrastructure, and few trained experts. A visual inspection following the application of acetic acid (VIA) has been widely promoted and is routinely recommended as a viable form of CC screening in resource-constrained countries. Digital images of the cervix have been acquired during VIA procedure with better quality assurance and visualization, leading to higher diagnostic accuracy and reduction of the variability of detection rate. However, a colposcope is bulky, expensive, electricity-dependent, and needs routine maintenance, and to confirm the grade of abnormality through its images, a specialist must be present. Recently, smartphone-based imaging systems have made a significant impact on the practice of medicine by offering a cost-effective, rapid, and noninvasive method of evaluation. Furthermore, computer-aided analyses, including image processing-based methods and machine learning techniques, have also shown great potential for a high impact on medicinal evaluations

    Histopathological image analysis : a review

    Get PDF
    Over the past decade, dramatic increases in computational power and improvement in image analysis algorithms have allowed the development of powerful computer-assisted analytical approaches to radiological data. With the recent advent of whole slide digital scanners, tissue histopathology slides can now be digitized and stored in digital image form. Consequently, digitized tissue histopathology has now become amenable to the application of computerized image analysis and machine learning techniques. Analogous to the role of computer-assisted diagnosis (CAD) algorithms in medical imaging to complement the opinion of a radiologist, CAD algorithms have begun to be developed for disease detection, diagnosis, and prognosis prediction to complement the opinion of the pathologist. In this paper, we review the recent state of the art CAD technology for digitized histopathology. This paper also briefly describes the development and application of novel image analysis technology for a few specific histopathology related problems being pursued in the United States and Europe

    Cervical cancer prognosis and diagnosis using electrical impedance spectroscopy

    Get PDF
    Electrical impedance spectroscopy (EIS) has been used as an adjunct to colposcopy for cervical cancer diagnosis for many years, Currently, the template match method is employed for EIS measurements analysis, where the measured EIS spectra are compared with the templates generated from three-dimensional finite element (FE) models of cancerous and non-cancerous cervical tissue, and the matches between the measured EIS spectra and the templates are then used to derive a score that indicates the association strength of the measured EIS to the High-Grade Cervical Intraepithelial Neoplasia (HG CIN). These FE models can be viewed as the computational versions of the associated physical tissue models. In this paper, the problem is revisited with an objective to develop a new method for EIS data analysis that might reveal the relationship between the change in the tissue structure due to disease and the change in the measured spectrum. This could provide us with important information to understand the histopathological mechanism that underpins the EIS-based HG CIN diagnostic decision making and the prognostic value of EIS for cervical cancer diagnosis. A further objective is to develop an alternative EIS data processing method for HG CIN detection that does not rely on physical models of tissues so as to facilitate extending the EIS technique to new medical diagnostic applications where the template spectra are not available. An EIS data-driven method was developed in this paper to achieve the above objectives, where the EIS data analysis for cervical cancer diagnosis and prognosis were formulated as the classification problems and a Cole model-based spectrum curve fitting approach was proposed to extract features from EIS readings for classification. Machine learning techniques were then used to build classification models with the selected features for cervical cancer diagnosis and evaluation of the prognostic value of the measured EIS. The interpretable classification models were developed with real EIS data sets, which enable us to associate the changes in the observed EIS and the risk of being HG CIN or developing HG CIN with the changes in tissue structure due to disease. The developed classification models were used for HG CIN detection and evaluation of the prognostic value of EIS and the results demonstrated the effectiveness of the developed method. The method developed is of long-term benefit for EISā€“based cervical cancer diagnosis and, in conjunction with standard colposcopy, there is the potential for the developed method to provide a more effective and efficient patient management strategy for clinic practice
    • ā€¦
    corecore