7,148 research outputs found

    Breast-Lesion Characterization using Textural Features of Quantitative Ultrasound Parametric Maps

    Get PDF
    © 2017 The Author(s). This study evaluated, for the first time, the efficacy of quantitative ultrasound (QUS) spectral parametric maps in conjunction with texture-analysis techniques to differentiate non-invasively benign versus malignant breast lesions. Ultrasound B-mode images and radiofrequency data were acquired from 78 patients with suspicious breast lesions. QUS spectral-analysis techniques were performed on radiofrequency data to generate parametric maps of mid-band fit, spectral slope, spectral intercept, spacing among scatterers, average scatterer diameter, and average acoustic concentration. Texture-analysis techniques were applied to determine imaging biomarkers consisting of mean, contrast, correlation, energy and homogeneity features of parametric maps. These biomarkers were utilized to classify benign versus malignant lesions with leave-one-patient-out cross-validation. Results were compared to histopathology findings from biopsy specimens and radiology reports on MR images to evaluate the accuracy of technique. Among the biomarkers investigated, one mean-value parameter and 14 textural features demonstrated statistically significant differences (p < 0.05) between the two lesion types. A hybrid biomarker developed using a stepwise feature selection method could classify the legions with a sensitivity of 96%, a specificity of 84%, and an AUC of 0.97. Findings from this study pave the way towards adapting novel QUS-based frameworks for breast cancer screening and rapid diagnosis in clinic

    Chemotherapy-Response Monitoring of Breast Cancer Patients Using Quantitative Ultrasound-Based Intra-Tumour Heterogeneities

    Get PDF
    © 2017 The Author(s). Anti-cancer therapies including chemotherapy aim to induce tumour cell death. Cell death introduces alterations in cell morphology and tissue micro-structures that cause measurable changes in tissue echogenicity. This study investigated the effectiveness of quantitative ultrasound (QUS) parametric imaging to characterize intra-tumour heterogeneity and monitor the pathological response of breast cancer to chemotherapy in a large cohort of patients (n = 100). Results demonstrated that QUS imaging can non-invasively monitor pathological response and outcome of breast cancer patients to chemotherapy early following treatment initiation. Specifically, QUS biomarkers quantifying spatial heterogeneities in size, concentration and spacing of acoustic scatterers could predict treatment responses of patients with cross-validated accuracies of 82 ± 0.7%, 86 ± 0.7% and 85 ± 0.9% and areas under the receiver operating characteristic (ROC) curve of 0.75 ± 0.1, 0.80 ± 0.1 and 0.89 ± 0.1 at 1, 4 and 8 weeks after the start of treatment, respectively. The patients classified as responders and non-responders using QUS biomarkers demonstrated significantly different survivals, in good agreement with clinical and pathological endpoints. The results form a basis for using early predictive information on survival-linked patient response to facilitate adapting standard anti-cancer treatments on an individual patient basis

    A Simple Ultrasound Based Classification Algorithm Allows Differentiation of Benign from Malignant Breast Lesions by Using Only Quantitative Parameters.

    Get PDF
    PURPOSE: We hypothesized that different quantitative ultrasound (US) parameters may be used as complementary diagnostic criteria and aimed to develop a simple classification algorithm to distinguish benign from malignant breast lesions and aid in the decision to perform biopsy or not. PROCEDURES: One hundred twenty-four patients, each with one biopsy-proven, sonographically evident breast lesion, were included in this prospective, IRB-approved study. Each lesion was examined with B-mode US, Color/Power Doppler US and elastography (Acoustic Radiation Force Impulse-ARFI). Different quantitative parameters were recorded for each technique, including pulsatility (PI) and resistive Index (RI) for Doppler US and lesion maximum, intermediate, and minimum shear wave velocity (SWVmax, SWVinterm, and SWVmin) as well as lesion-to-fat SWV ratio for ARFI. Receiver operating characteristic curve (ROC) analysis was used to evaluate the diagnostic performance of each quantitative parameter. Classification analysis was performed using the exhaustive chi-squared automatic interaction detection method. Results include the probability for malignancy for every descriptor combination in the classification algorithm. RESULTS: Sixty-five lesions were malignant and 59 benign. Out of all quantitative indices, maximum SWV (SWVmax), and RI were included in the classification algorithm, which showed a depth of three ramifications (SWVmax ≤ or > 3.16; if SWVmax ≤ 3.16 then RI ≤ 0.66, 0.66-0.77 or > 0.77; if RI ≤ 0.66 then SWVmax ≤ or > 2.71). The classification algorithm leads to an AUC of 0.887 (95 % CI 0.818-0.937, p < 0.0001), a sensitivity of 98.46 % (95 % CI 91.7-100 %), and a specificity of 61.02 % (95 % CI 47.4-73.5 %). By applying the proposed algorithm, a false-positive biopsy could have been avoided in 61 % of the cases. CONCLUSIONS: A simple classification algorithm incorporating two quantitative US parameters (SWVmax and RI) shows a high diagnostic performance, being able to accurately differentiate benign from malignant breast lesions and lower the number of unnecessary breast biopsies in up to 60 % of all cases, avoiding any subjective interpretation bias

    Dual-intended deep learning model for breast cancer diagnosis in ultrasound imaging

    Get PDF
    Automated medical data analysis demonstrated a significant role in modern medicine, and cancer diagnosis/prognosis to achieve highly reliable and generalizable systems. In this study, an automated breast cancer screening method in ultrasound imaging is proposed. A convolutional deep autoencoder model is presented for simultaneous segmentation and radiomic extraction. The model segments the breast lesions while concurrently extracting radiomic features. With our deep model, we perform breast lesion segmentation, which is linked to low-dimensional deep-radiomic extraction (four features). Similarly, we used high dimensional conventional imaging throughputs and applied spectral embedding techniques to reduce its size from 354 to 12 radiomics. A total of 780 ultrasound images—437 benign, 210, malignant, and 133 normal—were used to train and validate the models in this study. To diagnose malignant lesions, we have performed training, hyperparameter tuning, crossvalidation, and testing with a random forest model. This resulted in a binary classification accuracy of 78.5% (65.1–84.1%) for the maximal (full multivariate) cross-validated model for a combination of radiomic groups

    Breast Cancer Assessment With Pulse-Echo Speed of Sound Ultrasound From Intrinsic Tissue Reflections: Proof-of-Concept

    Full text link
    PURPOSE The aim of this study was to differentiate malignant and benign solid breast lesions with a novel ultrasound (US) technique, which measures speed of sound (SoS) using standard US transducers and intrinsic tissue reflections and scattering (speckles) as internal reference. MATERIALS AND METHODS This prospective, institutional review board-approved, Health Insurance Portability and Accountability Act-compliant prospective comparison study was performed with prior written informed consent from 20 women. Ten women with histological proven breast cancer and 10 with fibroadenoma were measured. A conventional US system with a linear probe was used for SoS-US (SonixTouch; Ultrasonix, Richmond, British Columbia, Canada). Tissue speckle reflections served as a timing reference for the US signals transmitted through the breasts. Relative phase inconsistencies were detected using plane wave measurements from different angular directions, and SoS images with 0.5-mm resolution were generated using a spatial domain reconstruction algorithm. The SoS of tumors were compared with the breast density of a larger cohort of 106 healthy women. RESULTS Breast lesions show focal increments ΔSoS (meters per second) with respect to the tissue background. Peak ΔSoS values were evaluated. Breast carcinoma showed significantly higher ΔSoS than fibroadenomas ([INCREMENT]SoS > 41.64 m/s: sensitivity, 90%; specificity, 80%; area under curve, 0.910) and healthy breast tissue of different densities (area under curve, 0.938; sensitivity, 90%; specificity, 96.5%). The lesion localization in SoS-US images was consistent with B-mode imaging and repeated SoS-US measurements were reproducible. CONCLUSIONS Using SoS-US, based on conventional US and tissue speckles as timing reference, breast carcinoma showed significantly higher SoS values than fibroadenoma and healthy breast tissue of different densities. The SoS presents a promising technique for differentiating solid breast lesions

    Artificial intelligence in cancer imaging: Clinical challenges and applications

    Get PDF
    Judgement, as one of the core tenets of medicine, relies upon the integration of multilayered data with nuanced decision making. Cancer offers a unique context for medical decisions given not only its variegated forms with evolution of disease but also the need to take into account the individual condition of patients, their ability to receive treatment, and their responses to treatment. Challenges remain in the accurate detection, characterization, and monitoring of cancers despite improved technologies. Radiographic assessment of disease most commonly relies upon visual evaluations, the interpretations of which may be augmented by advanced computational analyses. In particular, artificial intelligence (AI) promises to make great strides in the qualitative interpretation of cancer imaging by expert clinicians, including volumetric delineation of tumors over time, extrapolation of the tumor genotype and biological course from its radiographic phenotype, prediction of clinical outcome, and assessment of the impact of disease and treatment on adjacent organs. AI may automate processes in the initial interpretation of images and shift the clinical workflow of radiographic detection, management decisions on whether or not to administer an intervention, and subsequent observation to a yet to be envisioned paradigm. Here, the authors review the current state of AI as applied to medical imaging of cancer and describe advances in 4 tumor types (lung, brain, breast, and prostate) to illustrate how common clinical problems are being addressed. Although most studies evaluating AI applications in oncology to date have not been vigorously validated for reproducibility and generalizability, the results do highlight increasingly concerted efforts in pushing AI technology to clinical use and to impact future directions in cancer care

    HE4 in the differential diagnosis of ovarian masses

    Get PDF
    Ovarian masses, a common finding among pre- and post-menopausal women, can be benign or malignant. Ovarian cancer is the leading cause of death from gynecologic malignancy among women living in industrialized countries. According to the current guidelines, measurement of CA125 tumor marker remains the gold standard in the management of ovarian cancer. Recently, HE4 has been proposed as emerging biomarker in the differential diagnosis of adnexal masses and in the early diagnosis of ovarian cancer. Discrimination of benign and malignant ovarian tumors is very important for correct patient referral to institutions specializing in care and management of ovarian cancer. Tumor markers CA125 and HE4 are currently incorporated into the Risk of Ovarian Malignancy Algorithm” (ROMA) with menopausal status for discerning malignant from benign pelvic masses. The availability of a good biomarker such as HE4, closely associated with the differential and early diagnosis of ovarian cancer, could reduce medical costs related to more expensive diagnostic procedures. Finally, it is important to note that HE4 identifies platinum non-responders thus enabling a switch to second line chemotherapy and improved survival

    Imaging Biomarkers for Precision Medicine in Locally Advanced Breast Cancer

    Get PDF
    Guidelines from the American National Comprehensive Cancer Network (NCCN)recommend neoadjuvant chemotherapy (NAC) to patients with locally advanced breast cancer (LABC) to downstage tumors before surgery. However, only a small fraction (15-17%) of LABC patients achieve complete pathologic response (pCR), i.e. no residual tumor in the breast, after treatment. Measuring tumor response during 53 neoadjuvant chemotherapy can potentially help physicians adapt treatment thus, potentially improving the pCR rate. Recently, imaging biomarkers that are used to measure the tumor’s functional and biological features have been studied as pre-treatment markers for pCR or as an indicator for intra-treatment tumor response. Also, imaging biomarkers have been the focus of intense research to characterize tumor heterogeneity as well as to advance our understanding of the principle mechanisms behind chemoresistance. Advances in investigational radiology are moving rapidly to high-resolution imaging, capturing metabolic data, performing tissue characterization and statistical modelling of imaging biomarkers, with an endpoint of personalized medicine in breast cancer treatment. In this commentary, we present studies within the framework of imaging biomarkers used to measure breast tumor response to chemotherapy. Current studies are showing that significant progress has been made in the accuracy of measuring tumor response either before or during chemotherapy, yet the challenges at the forefront of these works include translational gaps such as needing large-scale clinical trials for validation, and standardization of imaging methods. However, the ongoing research is showing that imaging biomarkers may play an important role in personalized treatments for LABC
    • …
    corecore