4 research outputs found

    Classification of Routing Algorithms in Volatile Environment of Underwater Wireless Sensor Networks

    Get PDF
    The planet earth is basically a planet of water with less than 30% land mass available for humans to live on. However, the areas covered with water are important to mankind for the various resources which have been proven to be valuable. Such resources are gas, oil, marine products which can be used as food, and other minerals. In view of the vast area in which these resources can be found, a network of sensors is necessary so that they can be explored. However, sensor networks may not be helpful in the exploration of these resources if they do not have a sufficiently good routing mechanism. Over the past few decades, several methods for routing have been suggested to address the volatile environment in underwater communications. These continue researches; have enhanced the performance along with time. Meanwhile, there are still challenges to deal with for a better and efficient routing of data packets. Large end-to-end delays, high error channel rates, limited bandwidth, and the consumption of energy in sensor network are some such challenges. A comprehensive survey of the various routing methods for the partially connected underwater communication environment are presented in this paper

    A CASE STUDY OF VARIOUS WIRELESS NETWORK SIMULATION TOOLS

    Get PDF
    4G is the fastest developing system in the history of mobile communication networks. Network connectivity is paramount for all kinds of big enterprises.  4G not only provides super-fast connectivity to millions of users, but can also act as an enterprise network connectivity enabler and it has inherent advantages such as higher bandwidth, low latency, higher spectrum efficiency along with backward compatibility and future proofing. The design of the 4G based Long Term Evolution physical network provides the required flexibility for optimization during the development phase. In this paper LTE Network related supporting simulation tools is presented to demonstrate the need of Hardware co-simulation of the LTE system. After the feasibility analysis, the importance of the model is to be ported Field Programmable Gate Array platform is examined in survey in detail with the supporting inferences along with the comparison of different wireless network simulators suitable for LTE

    CALAR: Community Aware Location Assisted Routing Framework for Delay Tolerant Networks

    Get PDF
    Infrastructure less communication strategies havegreatly evolved and found its way to most of our real lifeapplications like sensor networks, terrestrial communications,military communications etc. The communication pattern for allthese scenarios being identical i.e. encounter basedcommunication,characteristics of each communication domainare distinct. Hence the protocols applied for each environmentshould be defined carefully by considering its owncommunication patterns. While designing a routing protocol themain aspects under consideration include delay, connectivity,cost etc. In case of applications having limited connectivity,concept of Delay tolerant network (DTN) is deployed, whichassists delivering messages even in partitioned networks withlimited connectivity by using store and forward architecture.Node properties like contact duration, inter contact duration,location, community, direction of movement, angle of contact etc.were used for designing different classes of routing protocols forDTN. This paper introduces a new protocol that exploits thefeatures of both community based as well as location basedrouting protocols to achieve higher data delivery ratio invehicular scenarios. Results obtained show that proposedalgorithms have much improved delivery ratio comparedtoexisting routing algorithms which use any one of the aboveproperty individually

    Part 1: acceptance test and administration of a farm of servers. Part 2: improving TCP performance in underwater wireless sensor networks

    Get PDF
    Dissertação de mestrado, Engenharia Informática, Faculdade de Ciências e Tecnologia, Universidade do Algarve, 2017Abstract 1 During the last decades, companies and organizations have focused on how to provide to the end-users or clients with web services or applications to make them more closer and involved to the activity. Therefore, many enterprises through their direction of the IT service, propose varieties of applications that allow to the stakeholders to perform what they need. The aim of this report is to present what the application integration job is and to report the missions that I have been able to carry out such as application integration, application qualification, and acceptance tests. This represents in total: - 19 qualified applications, - 33 administrated serversResumo 1 Ao longo das últimas décadas, as empresas e as organizações concentraram-se na forma de fornecer aos usuários finais ou clientes, serviços Web ou aplicativos para torná-los mais próximos e envolvidos na actividade. Portanto, muitas empresas através da sua direcção do serviço de Tecnólogia da Informação TI, propõem variedades de aplicativos que permitem às partes interessadas realizar o que necessitam. O objectivo deste relatório é apresentar o que é o trabalho de integração de aplicativos e as missões que fui capaz de executar, como a integração de aplicativos, a qualificação de aplicativos e testes de aceitação. Isto representa no total: - 19 aplicações qualificadas, - 33 servidores administradosAbstract 2 Underwater wireless sensor networks (UWSNs) are becoming popular due to their important role in different applications, such as offshore search and underwater monitoring. However, the data transmission in this underwater environment is impacted by various aspects such as bandwidth usage limitation, surrounding noise and large acoustic propagation delays. Therefore, communication itself is an outstanding challenge. The well-known traditional transmission control protocol (TCP), one of the most used transport protocol on the internet, is not suitable to enable this technology. Even though TCP variants for the wireless network are not foolproof in an underwater environment, their use could probably be more difficult in such a multi-hop communication system. We have chosen Newreno for our study. This variant is a modern implementation that includes the four congestion control algorithms. These algorithms have proved to be effective when it comes to terrestrial networks which could be a basis for our study. In addition, Newreno is known for its algorithm of recovery of several segments lost within the same sending window. In this dissertation, we have conducted a general study of UWSN technology and examined methods to improve TCP performance in a multi-hop UWSN. And then, we propose Underwater-Newreno (U-Newreno) our enhanced version of Newreno to improve TCP performance in UWSN. U-Newreno consists of two major modifications: controlling the maximum size of the congestion window and the adaptation of the round trip time (RTT) timeout. The results of simulations carried out with the Aquasim simulator show improvements of performances in terms of gain of: packets delivery Retransmission ratio of packets delivery.Resumo 2 As redes de sensores sem fio subaquáticos (Underwater Wireless Sensor Networks- UWSN) estão-se a tornar cada vez mais populares devido à sua importância em diferentes aplicações, como a pesquisa offshore e monitoramento subaquático. No entanto, a transmissão de dados neste ambiente subaquático sofre devido a vários factores, como a limitação do uso da largura de banda, o ruído envolvente e grandes atrasos de propagação acústica. Portanto, a comunicação é um desafio problemático. O familiar transmission control protocol (TCP) tradicional, um dos protocolos de transporte mais utilizados na internet, não é adequado para habilitar esta tecnologia. Mesmo que as variantes TCP para a rede sem fio não sejam infalíveis num ambiente subaquático, o seu uso provavelmente pode ser mais difícil num sistema de comunicação de múltiplos saltos. Nós escolhemos o Newreno para o nosso estudo. Esta variante é uma implementação moderna que inclui os quatro algoritmos de controle de congestionamento. Estes algoritmos demonstraram a sua eficácia em redes terrestres que poderiam ser uma base para o nosso estudo. Além disso, Newreno é conhecido pelo seu algoritmo de recuperação de vários segmentos perdidos dentro da mesma janela de envio. Nesta dissertação, realizamos um estudo geral da tecnologia UWSN e examinamos métodos para melhorar o desempenho do TCP num UWSN de vários saltos. E então, propomos a U-Newreno (Underwater-Newreno), a nossa versão melhorada do Newreno para melhorar o desempenho do TCP no UWSN. O U-Newreno consiste em duas modificações principais: controlar o tamanho máximo da janela de congestionamento e a adaptação do tempo limite “Round Trip Time”(RTT). Os resultados das simulações realizadas com o simulador Aquasim mostram melhorias nos desempenhos em termos de ganho de: • entrega de pacotes • Taxa de retransmissão da entrega de pacotes
    corecore