5 research outputs found

    Classification of medical images in the biomedical literature by jointly using deep and handcrafted visual features

    Get PDF
    The classification of medical images and illustrations from the biomedical literature is important for automated literature review, retrieval, and mining. Although deep learning is effective for large-scale image classification, it may not be the optimal choice for this task as there is only a small training dataset. We propose a combined deep and handcrafted visual feature (CDHVF) based algorithm that uses features learned by three fine-tuned and pretrained deep convolutional neural networks (DCNNs) and two handcrafted descriptors in a joint approach. We evaluated the CDHVF algorithm on the ImageCLEF 2016 Subfigure Classification dataset and it achieved an accuracy of 85.47%, which is higher than the best performance of other purely visual approaches listed in the challenge leaderboard. Our results indicate that handcrafted features complement the image representation learned by DCNNs on small training datasets and improve accuracy in certain medical image classification problems.Jianpeng Zhang, Yong Xia, Yutong Xie, Michael Fulham, David Dagan Feng ... et al

    Classification of Medical Images in the Biomedical Literature by Jointly Using Deep and Handcrafted Visual Features

    No full text

    Novel Deep Learning Models for Medical Imaging Analysis

    Get PDF
    abstract: Deep learning is a sub-field of machine learning in which models are developed to imitate the workings of the human brain in processing data and creating patterns for decision making. This dissertation is focused on developing deep learning models for medical imaging analysis of different modalities for different tasks including detection, segmentation and classification. Imaging modalities including digital mammography (DM), magnetic resonance imaging (MRI), positron emission tomography (PET) and computed tomography (CT) are studied in the dissertation for various medical applications. The first phase of the research is to develop a novel shallow-deep convolutional neural network (SD-CNN) model for improved breast cancer diagnosis. This model takes one type of medical image as input and synthesizes different modalities for additional feature sources; both original image and synthetic image are used for feature generation. This proposed architecture is validated in the application of breast cancer diagnosis and proved to be outperforming the competing models. Motivated by the success from the first phase, the second phase focuses on improving medical imaging synthesis performance with advanced deep learning architecture. A new architecture named deep residual inception encoder-decoder network (RIED-Net) is proposed. RIED-Net has the advantages of preserving pixel-level information and cross-modality feature transferring. The applicability of RIED-Net is validated in breast cancer diagnosis and Alzheimer’s disease (AD) staging. Recognizing medical imaging research often has multiples inter-related tasks, namely, detection, segmentation and classification, my third phase of the research is to develop a multi-task deep learning model. Specifically, a feature transfer enabled multi-task deep learning model (FT-MTL-Net) is proposed to transfer high-resolution features from segmentation task to low-resolution feature-based classification task. The application of FT-MTL-Net on breast cancer detection, segmentation and classification using DM images is studied. As a continuing effort on exploring the transfer learning in deep models for medical application, the last phase is to develop a deep learning model for both feature transfer and knowledge from pre-training age prediction task to new domain of Mild cognitive impairment (MCI) to AD conversion prediction task. It is validated in the application of predicting MCI patients’ conversion to AD with 3D MRI images.Dissertation/ThesisDoctoral Dissertation Industrial Engineering 201
    corecore