5 research outputs found

    A Socio-inspired CALM Approach to Channel Assignment Performance Prediction and WMN Capacity Estimation

    Full text link
    A significant amount of research literature is dedicated to interference mitigation in Wireless Mesh Networks (WMNs), with a special emphasis on designing channel allocation (CA) schemes which alleviate the impact of interference on WMN performance. But having countless CA schemes at one's disposal makes the task of choosing a suitable CA for a given WMN extremely tedious and time consuming. In this work, we propose a new interference estimation and CA performance prediction algorithm called CALM, which is inspired by social theory. We borrow the sociological idea of a "sui generis" social reality, and apply it to WMNs with significant success. To achieve this, we devise a novel Sociological Idea Borrowing Mechanism that facilitates easy operationalization of sociological concepts in other domains. Further, we formulate a heuristic Mixed Integer Programming (MIP) model called NETCAP which makes use of link quality estimates generated by CALM to offer a reliable framework for network capacity prediction. We demonstrate the efficacy of CALM by evaluating its theoretical estimates against experimental data obtained through exhaustive simulations on ns-3 802.11g environment, for a comprehensive CA test-set of forty CA schemes. We compare CALM with three existing interference estimation metrics, and demonstrate that it is consistently more reliable. CALM boasts of accuracy of over 90% in performance testing, and in stress testing too it achieves an accuracy of 88%, while the accuracy of other metrics drops to under 75%. It reduces errors in CA performance prediction by as much as 75% when compared to other metrics. Finally, we validate the expected network capacity estimates generated by NETCAP, and show that they are quite accurate, deviating by as low as 6.4% on an average when compared to experimentally recorded results in performance testing

    Beyond hairballs: depicting complexity of a kinase-phosphatase network in the budding yeast

    Full text link
    Les kinases et les phosphatases (KP) représentent la plus grande famille des enzymes dans la cellule. Elles régulent les unes les autres ainsi que 60 % du protéome, formant des réseaux complexes kinase-phosphatase (KP-Net) jouant un rôle essentiel dans la signalisation cellulaire. Ces réseaux caractérisés d’une organisation de type commandes-exécutions possèdent généralement une structure hiérarchique. Malgré les nombreuse études effectuées sur le réseau KP-Net chez la levure, la structure hiérarchique ainsi que les principes fonctionnels sont toujours peux connu pour ce réseau. Dans ce contexte, le but de cette thèse consistait à effectuer une analyse d’intégration des données provenant de différentes sources avec la structure hiérarchique d’un réseau KP-Net de haute qualité chez la levure, S. cerevisiae, afin de générer des hypothèses concernant les principes fonctionnels de chaque couche de la hiérarchie du réseau KP-Net. En se basant sur une curation de données d’interactions effectuée dans la présente et dans d’autres études, le plus grand et authentique réseau KP-Net reconnu jusqu’à ce jour chez la levure a été assemblé dans cette étude. En évaluant le niveau hiérarchique du KP-Net en utilisant la métrique de la centralisation globale et en élucidant sa structure hiérarchique en utilisant l'algorithme vertex-sort (VS), nous avons trouvé que le réseau KP-Net possède une structure hiérarchique ayant la forme d’un sablier, formée de trois niveaux disjoints (supérieur, central et inférieur). En effet, le niveau supérieur du réseau, contenant un nombre élevé de KPs, était enrichi par des KPs associées à la régulation des signaux cellulaire; le niveau central, formé d’un nombre limité de KPs fortement connectées les unes aux autres, était enrichi en KPs impliquées dans la régulation du cycle cellulaire; et le niveau inférieur, composé d’un nombre important de KPs, était enrichi en KPs impliquées dans des processus cellulaires diversifiés. En superposant une grande multitude de propriétés biologiques des KPs sur le réseau KP-Net, le niveau supérieur était enrichi en phosphatases alors que le niveau inférieur en était appauvri, suggérant que les phosphatases seraient moins régulées par phosphorylation et déphosphorylation que les kinases. De plus, le niveau central était enrichi en KPs représentant des « bottlenecks », participant à plus d’une voie de signalisation, codées par des gènes essentiels et en KPs qui étaient les plus strictement régulées dans l’espace et dans le temps. Ceci implique que les KPs qui jouent un rôle essentiel dans le réseau KP-Net devraient être étroitement contrôlées. En outre, cette étude a montré que les protéines des KPs classées au niveau supérieur du réseau sont exprimées à des niveaux d’abondance plus élevés et à un niveau de bruit moins élevé que celles classées au niveau inférieur du réseau, suggérant que l’expression des enzymes à des abondances élevées invariables au niveau supérieur du réseau KP-Net pourrait être importante pour assurer un système robuste de signalisation. L’étude de l’algorithme VS a montré que le degré des nœuds affecte leur classement dans les différents niveaux d’un réseau hiérarchique sans biaiser les résultats biologiques du réseau étudié. En outre, une analyse de robustesse du réseau KP-Net a montré que les niveaus du réseau KP-Net sont modérément stable dans des réseaux bruités générés par ajout d’arrêtes au réseau KP-Net. Cependant, les niveaux de ces réseaux bruités et de ceux du réseau KP-Net se superposent significativement. De plus, les propriétés topologiques et biologiques du réseau KP-Net étaient retenues dans les réseaux bruités à différents niveaux. Ces résultats indiquant que bien qu’une robustesse partielle de nos résultats ait été observée, ces derniers représentent l’état actuel de nos connaissances des réseaux KP-Nets. Finalement, l’amélioration des techniques dédiées à l’identification des substrats des KPs aideront davantage à comprendre comment les réseaux KP-Nets fonctionnent. À titre d’exemple, je décris, dans cette thèse, une stratégie que nous avons conçu et qui permet à déterminer les interactions KP-substrats et les sous-unités régulatrices sur lesquelles ces interactions dépendent. Cette stratégie est basée sur la complémentation des fragments de protéines basée sur la cytosine désaminase chez la levure (OyCD PCA). L’OyCD PCA représente un essai in vivo à haut débit qui promet une description plus précise des réseaux KP-Nets complexes. En l’appliquant pour déterminer les substrats de la kinase cycline-dépendante de type 1 (Cdk1, appelée aussi Cdc28) chez la levure et l’implication des cyclines dans la phosphorylation de ces substrats par Cdk1, l’essai OyCD PCA a montré un comportement compensatoire collectif des cyclines pour la majorité des substrats. De plus, cet essai a montré que la tubuline- γ est phosphorylée spécifiquement par Clb3-Cdk1, établissant ainsi le moment pendant lequel cet événement contrôle l'assemblage du fuseau mitotique.Kinases and phosphatases (KP) form the largest family of enzymes in living cells. They regulate each other and 60 % of the proteome forming complex kinase-phosphatase networks (KP-Net) essential for cell signaling. Such networks having the command-execution aspect tend to have a hierarchical structure. Despite the extensive study of the KP-Net in the budding yeast, the hierarchical structure as well as the functional principles of this network are still not known. In this context, this thesis aims to perform an integrative analysis of multi-omics data with the hierarchical structure of a bona fide KP-Net in the budding yeast Saccharomyces cerevisiae, in order to generate hypotheses about the functional principles of each layer in the KP-Net hierarchy. Based on a literature curation effort accomplished in this and in other studies, the largest bona fide KP-Net of the S. cerevisiae known to date was assembled in this thesis. By assessing the hierarchical level of the KP-Net using the global reaching centrality and by elucidating the its hierarchical structure using the vertex-sort (VS) algorithm, we found that the KP-Net has a moderate hierarchical structure made of three disjoint layers (top, core and bottom) resembling a bow tie shape. The top layer having a large size was found enriched for signaling regulation; the core layer made of few strongly connected KPs was found enriched mostly for cell cycle regulation; and the bottom layer having a large size was found enriched for diverse biological processes. On overlaying a wide range of KP biological properties on top of the KP-Net hierarchical structure, the top layer was found enriched for and the bottom layer was found depleted for phosphatases, suggesting that phosphatases are less regulated by phosphorylation and dephosphoryation interactions (PDI) than kinases. Moreover, the core layer was found enriched for KPs representing bottlenecks, pathway-shared components, essential genes and for the most tightly regulated KPs in time and space, implying that KPs playing an essential role in the KP-Net should be firmly controlled. Interestingly, KP proteins in the top layer were found more abundant and less noisy than those of the bottom layer, suggesting that availability of enzymes at invariable protein expression level at the top of the network might be important to ensure a robust signaling. Analysis of the VS algorithm showed that node degrees affect their classification in the different layers of a network hierarchical structure without biasing biological results of the sorted network. Robustness analysis of the KP-Net showed that KP-Net layers are moderately stable in noisy networks generated by adding edges to the KP-Net. However, layers of these noisy overlap significantly with those of the KP-Net. Moreover, topological and biological properties of the KP-Net were retained in the noisy networks to different levels. These findings indicate that despite the observed partial robustness of our results, they mostly represent our current knowledge about KP-Nets. Finally, enhancement of techniques dedicated to identify KPs substrates will enhance our understanding about how KP-Nets function. As an example, I describe here a strategy that we devised to help in determining KP-substrate interactions and the regulatory subunits on which these interactions depend. The strategy is based on a protein-fragment complementation assay based on the optimized yeast cytosine deaminase (OyCD PCA). The OyCD PCA represents a large scale in vivo screen that promises a substantial improvement in delineating the complex KP-Nets. We applied the strategy to determine substrates of the cyclin-dependent kinase 1 (Cdk1; also called Cdc28) and cyclins implicated in phosphorylation of these substrates by Cdk1 in S. cerevisiae. The OyCD PCA showed a wide compensatory behavior of cyclins for most of the substrates and the phosphorylation of γ-tubulin specifically by Clb3-Cdk1, thus establishing the timing of the latter event in controlling assembly of the mitotic spindle
    corecore